#include "cs_defs.h"
#include "bft_mem.h"
#include "cs_base.h"
#include "cs_blas.h"
#include "cs_boundary_conditions.h"
#include "cs_convection_diffusion.h"
#include "cs_equation.h"
#include "cs_face_viscosity.h"
#include "cs_divergence.h"
#include "cs_field.h"
#include "cs_field_default.h"
#include "cs_field_pointer.h"
#include "cs_field_operator.h"
#include "cs_log.h"
#include "cs_physical_constants.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_rotation.h"
#include "cs_sles_default.h"
#include "cs_turbomachinery.h"
#include "cs_vof.h"
Functions | |
cs_vof_parameters_t * | cs_get_glob_vof_parameters (void) |
static void | _smoothe (const cs_mesh_t *m, const cs_mesh_quantities_t *mq, cs_real_t *restrict coefa, cs_real_t *restrict coefb, cs_real_t *restrict pvar) |
Smoothing a variable after several double-projections cells->faces->cells. More... | |
void | cs_vof_compute_linear_rho_mu (const cs_mesh_t *m) |
Compute the mixture density, mixture dynamic viscosity given fluid volume fractions and the reference density and dynamic viscosity ![]() ![]() | |
void | cs_vof_update_phys_prop (const cs_mesh_t *m) |
Compute the mixture density, mixture dynamic viscosity and mixture mass flux given the volumetric flux, the volume fraction and the reference density and dynamic viscosity ![]() ![]() | |
void | cs_vof_log_mass_budget (const cs_mesh_t *m, const cs_mesh_quantities_t *mq) |
Write in main log the global mixture mass budget:
. More... | |
void | cs_vof_surface_tension (const cs_mesh_t *m, const cs_mesh_quantities_t *mq, cs_real_3_t stf[]) |
Compute the surface tension momentum source term following the CSF model of Brackbill et al. (1992). More... | |
void | cs_vof_deshpande_drift_flux (const cs_mesh_t *m, const cs_mesh_quantities_t *mq) |
Compute a relative velocity ![]() | |
void | cs_vof_drift_term (int imrgra, int nswrgp, int imligp, int iwarnp, cs_real_t epsrgp, cs_real_t climgp, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, cs_real_t *restrict rhs) |
Add the divergence of the drift velocity term in the volume fraction equation. More... | |
cs_cavitation_parameters_t * | cs_get_glob_cavitation_parameters (void) |
VOF model data.
|
static |
Smoothing a variable after several double-projections cells->faces->cells.
[in] | m | pointer to mesh structure |
[in] | mq | pointer to mesh quantities structure |
[in] | coefa | boundary condition array for the variable |
[in] | coefb | boundary condition array for the variable |
[in,out] | pvar | diffused variable |
cs_cavitation_parameters_t* cs_get_glob_cavitation_parameters | ( | void | ) |
cs_vof_parameters_t* cs_get_glob_vof_parameters | ( | void | ) |
void cs_vof_compute_linear_rho_mu | ( | const cs_mesh_t * | m | ) |
Compute the mixture density, mixture dynamic viscosity given fluid volume fractions and the reference density and dynamic viscosity (liquid),
(gas).
Computation is done as follows on cells:
A similar linear formula is followed on boundary using fluid volume fraction value on the boundary.
[in] | m | pointer to mesh structure |
void cs_vof_deshpande_drift_flux | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | mq | ||
) |
Compute a relative velocity directly at internal faces (drift flux), following the approach described by Suraj S. Deshpande et al 2012 Comput. Sci. Disc. 5 014016. It is activated with the option idrift = 1.
Compute the flux of the drift velocity , by using the flux of the standard velocity
following the approach described by Suraj S Deshpande et al 2012 Comput. Sci. Disc. 5 014016. It is activated with the option idrift = 1.
Using the notation:
The drift flux is computed as:
Where is the drift flux factor defined with the variable cdrift,
the normal vector to the interface. The gradient is computed using a centered scheme:
[in] | m | pointer to mesh structure |
[in] | mq | pointer to mesh quantities structure |
void cs_vof_drift_term | ( | int | imrgra, |
int | nswrgp, | ||
int | imligp, | ||
int | iwarnp, | ||
cs_real_t | epsrgp, | ||
cs_real_t | climgp, | ||
cs_real_t *restrict | pvar, | ||
const cs_real_t *restrict | pvara, | ||
cs_real_t *restrict | rhs | ||
) |
Add the divergence of the drift velocity term in the volume fraction equation.
Add the explicit part of the convection/diffusion terms of a standard transport equation of a scalar field .
More precisely, the right hand side is updated as follows:
[in] | imrgra | indicator
|
[in] | nswrgp | number of reconstruction sweeps for the gradients |
[in] | imligp | clipping gradient method
|
[in] | iwarnp | verbosity |
[in] | epsrgp | relative precision for the gradient reconstruction |
[in] | climgp | clipping coefficient for the computation of the gradient |
[in] | pvar | solved variable (current time step) |
[in] | pvara | solved variable (previous time step) |
[in,out] | rhs | right hand side ![]() |
void cs_vof_log_mass_budget | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | mq | ||
) |
Write in main log the global mixture mass budget:
.
Write in main log the global mixture mass budget:
.
[in] | m | pointer to mesh structure |
[in] | mq | pointer to mesh quantities structure |
void cs_vof_surface_tension | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | mq, | ||
cs_real_3_t | stf[] | ||
) |
Compute the surface tension momentum source term following the CSF model of Brackbill et al. (1992).
[in] | m | pointer to mesh structure |
[in] | mq | pointer to mesh quantities structure |
[out] | stf | surface tension momentum source term |
void cs_vof_update_phys_prop | ( | const cs_mesh_t * | m | ) |
Compute the mixture density, mixture dynamic viscosity and mixture mass flux given the volumetric flux, the volume fraction and the reference density and dynamic viscosity (liquid),
(gas).
For the computation of mixture density, mixture dynamic viscosity, see cs_vof_compute_linear_rho_mu.
Computation of mass flux is as follows:
[in] | m | pointer to mesh structure |