programmer's documentation
Lagrangian module

Boundary conditions

Lagrangian boundary conditions are based on boundary zone (cs_boundary_zone_t) definitions. Additional information may be provided for Lagrangian boundary types and injections.

As usual, definitions may be created using the GUI and extended with user functions.

Access to the Lagrangian boundary conditions structure, which is necessary to most of the following examples, may be done as follows:

Boundary zones

In this example, we assign rebound conditions to all boundary zones, except for an inlet and outlet type to specified zones. The type assigned is an integer based on the cs_lagr_bc_type_t enumerator type.

{
const cs_zone_t *z;
int n_zones = cs_boundary_zone_n_zones();
/* default: rebound for all types */
for (int z_id = 0; z_id < n_zones; z_id++) {
lagr_bcs->zone_type[z_id] = CS_LAGR_REBOUND;
}
/* inlet and outlet for specified zones */
lagr_bcs->zone_type[z->id] = CS_LAGR_INLET;
z = cs_boundary_zone_by_name("outlet");
lagr_bcs->zone_type[z->id] = CS_LAGR_OUTLET;
}

Injection sets

In the following example, a first injection set for an inlet zone is defined. Note that newly injected particles may also be modified using the cs_user_lagr_in function.

{
const cs_zone_t *z = cs_boundary_zone_by_name("inlet");
int set_id = 0;
= cs_lagr_get_injection_set(lagr_bcs, z->id, set_id);
/* Now define parameters for this class and set */
zis->n_inject = 100;
/* Assign other attributes (could be done through the GUI) */
zis->cluster = set_id + 1;
zis->velocity_profile = 0;
zis->velocity_magnitude = 1.1;
zis->stat_weight = 1.0;
zis->flow_rate = 0.0;
/* Mean value and standard deviation of the diameter */
zis->diameter = 5e-05;
zis->diameter_variance = 0.0;
/* Density */
zis->density = 2500.0;
zis->fouling_index = 100.0;
/* Temperature and Cp */
zis->temperature = 20.0;
zis->cp = 1400.;
zis->emissivity = 0.7;
}
}

In the next example, a profile is assigned to the second injection set of an inlet zone (it is assumed this et was previously defined either through the GUI or user function).

This requires first defining a profile definition function, matching the profile of cs_lagr_injection_profile_compute_t. An example based on experimental profiles is given here:

static void
_injection_profile(int zone_id,
int location_id,
const void *input,
cs_lnum_t n_elts,
const cs_lnum_t elt_ids[],
cs_real_t profile[])
{
const cs_real_3_t *b_face_coords
const int itmx = 8;
/* Data initializations with experimental measurements
--------------------------------------------------- */
/* transverse coordinate */
cs_real_t zi[] = {0.e-3, 1.e-3, 1.5e-3, 2.0e-3, 2.5e-3, 3.0e-3, 3.5e-3,
4.0e-3, 4.5e-3, 5.0e-3};
/* particle volume fraction */
cs_real_t lvf[] = {0.377e-4, 2.236e-4, 3.014e-4, 4.306e-4, 5.689e-4,
8.567e-4, 7.099e-4, 4.520e-4, 2.184e-4, 0.377e-4};
/* vertical mean velocity of the particles */
cs_real_t ui[] = {5.544, 8.827, 9.068, 9.169, 8.923, 8.295, 7.151, 6.048,
4.785, 5.544};
/* Loop en elements
---------------- */
for (cs_lnum_t ei = 0; ei < n_elts; ei++) {
/* Face center */
const cs_lnum_t face_id = elt_ids[ei];
const cs_real_t z = b_face_coords[face_id][2];
/* Interpolation */
int i = 0;
if (z > zi[0]) {
for (i = 0; i < itmx; i++) {
if (z >= zi[i] && z < zi[i+1])
break;
}
}
/* Compute volume fraction and statistical weight */
cs_real_t up = ui[i] +(z-zi[i])*(ui[i+1]-ui[i])/(zi[i+1]-zi[i]);
cs_real_t lvfp = lvf[i] + (z-zi[i])*(lvf[i+1]-lvf[i])/(zi[i+1]-zi[i]);
/* number of particles in the cell */
profile[ei] = lvfp * up;
}
}

Assigning the profile to the injection set simply requires assigning the function to the pointer in the injection set structure:

{
const cs_zone_t *z = cs_boundary_zone_by_name("inlet");
int set_id = 1;
= cs_lagr_get_injection_set(lagr_bcs, z->id, set_id);
/* Assign injection profile function */
zis->injection_profile_func = _injection_profile;
zis->injection_profile_input = NULL; /* default */
}

An optional user-defined input function may also be associated.

Boundary-particle interactions

It is also possible to decide of the behavior of particle when they encounter a boundary (this boundary has to be of type CS_LAGR_BC_USER).

In the following example, the particle is simply deposited and marked for elimination:

# pragma omp atomic
particles->n_part_dep += 1;
# pragma omp atomic
particles->weight_dep += cs_lagr_particle_get_real(particles,
p_id,
/* Mark particle as deposited and update its coordinates */
cs_real_t *particle_coord
for (int k = 0; k < 3; k++)
particle_coord[k] = c_intersect[k];
/* Update event and particle state */
*event_flag = *event_flag | (CS_EVENT_OUTFLOW | CS_EVENT_DEPOSITION);
*tracking_state = CS_LAGR_PART_OUT;

Volume conditions

Lagrangian volume conditions are based on volume zone (cs_volume_zone_t) definitions. Additional information may be provided for Lagrangian injections.

As usual, definitions may be created using the GUI and extended with user functions.

Access to the Lagrangian volume conditions structure, which is necessary to most of the following examples, may be done as follows:

Injection sets

In the following example, we inject 1 particle set at each time step:

{
/* The volume zone named "particle_injection" is created in the GUI */
const cs_zone_t *z = cs_volume_zone_by_name("particle_injection");
/* Inject 1 particle set every time step */
int set_id = 0;
= cs_lagr_get_injection_set(lagr_vol_conds, z->id, set_id);
zis->n_inject = 1000;
zis->injection_frequency = 1; /* if <= 0, injection at
initialization only */
zis->velocity_profile = -1; /* fluid velocity */
zis->stat_weight = 1.0;
zis->diameter = 5e-6;
zis->diameter_variance = 1e-6;
zis->density = 2475.;
zis->fouling_index = 100.0;
}
{
/* The volume zone containing all cells always has id 0;
a given zone may otherwise be selected using cs_volume_zone_by_name() */
/* Inject 2 particle sets of different diameters */
cs_gnum_t n_inject[] = {500, 500};
cs_real_t diam[] = {1e-3, 1e-2};
cs_real_t diam_dev[] = {1e-6, 1e-5};
cs_real_t density[] = {2500., 1500.};
for (int set_id = 0; set_id < 2; set_id++) {
= cs_lagr_get_injection_set(lagr_vol_conds, z->id, set_id);
zis->n_inject = n_inject[set_id];
zis->injection_frequency = 0; /* if <= 0, injection at
initialization only */
zis->cluster = set_id + 1;
zis->velocity_profile = -1; /* fluid velocity */
zis->stat_weight = 1.0;
zis->flow_rate = 0;
zis->diameter = diam[set_id];
zis->diameter_variance = diam_dev[set_id];
zis->density = density[set_id];
zis->fouling_index = 100.0;
zis->temperature_profile = 0; /* fluid temperature */
zis->cp = 1400.0;
zis->emissivity = 0.7;
}
}

In the following example, we inject 2 particle sets at computation initialization (i.e. at the first time step of a computation sequence in which the Lagrangian module is activated). Note that newly injected particles may also be modified using the cs_user_lagr_in function.

{
/* The volume zone containing all cells always has id 0;
a given zone may otherwise be selected using cs_volume_zone_by_name() */
/* Inject 2 particle sets of different diameters */
cs_gnum_t n_inject[] = {500, 500};
cs_real_t diam[] = {1e-3, 1e-2};
cs_real_t diam_dev[] = {1e-6, 1e-5};
cs_real_t density[] = {2500., 1500.};
for (int set_id = 0; set_id < 2; set_id++) {
= cs_lagr_get_injection_set(lagr_vol_conds, z->id, set_id);
zis->n_inject = n_inject[set_id];
zis->injection_frequency = 0; /* if <= 0, injection at
initialization only */
zis->cluster = set_id + 1;
zis->velocity_profile = -1; /* fluid velocity */
zis->stat_weight = 1.0;
zis->flow_rate = 0;
zis->diameter = diam[set_id];
zis->diameter_variance = diam_dev[set_id];
zis->density = density[set_id];
zis->fouling_index = 100.0;
zis->temperature_profile = 0; /* fluid temperature */
zis->cp = 1400.0;
zis->emissivity = 0.7;
}
}