8.3
general documentation
cs_gradient_boundary.cpp File Reference

Gradient reconstruction at boundaries and associated functions. More...

#include "cs_defs.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "bft_error.h"
#include "bft_mem.h"
#include "bft_printf.h"
#include "cs_ext_neighborhood.h"
#include "cs_field.h"
#include "cs_halo.h"
#include "cs_gradient_priv.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_adjacencies.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_gradient_boundary.h"
+ Include dependency graph for cs_gradient_boundary.cpp:

Functions

void cs_gradient_boundary_iprime_lsq_s (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t c_weight[], const cs_real_t var[], cs_real_t *restrict var_iprime)
 Compute the values of a scalar at boundary face I' positions using least-squares interpolation. More...
 
void cs_gradient_boundary_iprime_lsq_s_ani (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t c_weight[][6], const cs_real_t var[], cs_real_t *restrict var_iprime)
 Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting. More...
 
void cs_gradient_boundary_iprime_lsq_v (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs_v, const cs_real_t c_weight[], const cs_real_t var[][3], cs_real_t(*restrict var_iprime)[3])
 Compute the values of a vector at boundary face I' positions using least-squares interpolation. More...
 
void cs_gradient_boundary_iprime_lsq_t (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs_ts, const cs_real_t c_weight[], const cs_real_t var[][6], cs_real_t(*restrict var_iprime)[6])
 Compute the values of a symmetric tensor at boundary face I' positions using least-squares interpolation. More...
 

Detailed Description

Gradient reconstruction at boundaries and associated functions.

Function Documentation

◆ cs_gradient_boundary_iprime_lsq_s()

void cs_gradient_boundary_iprime_lsq_s ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
cs_lnum_t  n_faces,
const cs_lnum_t face_ids,
cs_halo_type_t  halo_type,
double  clip_coeff,
const cs_field_bc_coeffs_t bc_coeffs,
const cs_real_t  c_weight[],
const cs_real_t  var[],
cs_real_t *restrict  var_iprime 
)

Compute the values of a scalar at boundary face I' positions using least-squares interpolation.

This assumes ghost cell values for the variable (var) are up-to-date.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

Remarks

To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neumann BC for a given face.

We still use the provided BC's when possible, for the following cases:

  • Given a non-uniform Dirichlet condition and a non-orthogonal mesh, the Dirichlet values at face centers (shifted by II' relative to I') can convey a portion of the information of the gradient along II'.
  • For cells with multiple boundary faces, information from faces whose normals are not orthogonal to II' can also provide a significant contribution to the normal.
Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]halo_typehalo (cell neighborhood) type
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffsboundary condition structure, or nullptr
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations

◆ cs_gradient_boundary_iprime_lsq_s_ani()

void cs_gradient_boundary_iprime_lsq_s_ani ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
cs_lnum_t  n_faces,
const cs_lnum_t face_ids,
double  clip_coeff,
const cs_field_bc_coeffs_t bc_coeffs,
const cs_real_t  c_weight[][6],
const cs_real_t  var[],
cs_real_t *restrict  var_iprime 
)

Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting.

This assumes ghost cell values for the variable (var) are up-to-date.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

Remarks
The same remark applies as for cs_gradient_boundary_iprime_lsq_s.
Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffsboundary condition structure
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations

◆ cs_gradient_boundary_iprime_lsq_t()

void cs_gradient_boundary_iprime_lsq_t ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
cs_lnum_t  n_faces,
const cs_lnum_t face_ids,
cs_halo_type_t  halo_type,
double  clip_coeff,
const cs_field_bc_coeffs_t bc_coeffs_ts,
const cs_real_t  c_weight[],
const cs_real_t  var[][6],
cs_real_t(*)  var_iprime[6] 
)

Compute the values of a symmetric tensor at boundary face I' positions using least-squares interpolation.

This assumes ghost cell values which might be used are already synchronized.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

This function uses a local iterative approach to compute the cell gradient, as handling of the boundary condition terms b in higher dimensions would otherwise require solving higher-dimensional systems, often at a higher cost.

Remarks

To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neuman BC.

The same logic is applied as for cs_gradient_boundary_iprime_lsq_s.

Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]halo_typehalo (cell neighborhood) type
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffs_tsboundary condition structure, or nullptr
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations

◆ cs_gradient_boundary_iprime_lsq_v()

void cs_gradient_boundary_iprime_lsq_v ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
cs_lnum_t  n_faces,
const cs_lnum_t face_ids,
cs_halo_type_t  halo_type,
double  clip_coeff,
const cs_field_bc_coeffs_t bc_coeffs_v,
const cs_real_t  c_weight[],
const cs_real_t  var[][3],
cs_real_t(*)  var_iprime[3] 
)

Compute the values of a vector at boundary face I' positions using least-squares interpolation.

This assumes ghost cell values which might be used are already synchronized.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

This function uses a local iterative approach to compute the cell gradient, as handling of the boundary condition terms b in higher dimensions would otherwise require solving higher-dimensional systems, often at a higher cost.

Remarks

To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neuman BC.

The same logic is applied as for cs_gradient_boundary_iprime_lsq_s.

Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]halo_typehalo (cell neighborhood) type
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffs_vboundary condition structure, or nullptr
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations