39#if (defined(__NVCC__) && defined(__CUDA_ARCH__)) \
40 || defined(SYCL_LANGUAGE_VERSION) \
41 || defined(HAVE_OPENMP_TARGET)
49#if defined(DEBUG) && !defined(NDEBUG)
84#if (defined(__NVCC__) && defined(__CUDA_ARCH__)) \
85 || defined(SYCL_LANGUAGE_VERSION) \
86 || defined(HAVE_OPENMP_TARGET)
90#define cs_math_zero_threshold FLT_MIN
91#define cs_math_epzero 1e-12
92#define cs_math_infinite_r 1.e30
93#define cs_math_big_r 1.e12
94#define cs_math_pi 3.14159265358979323846
108#if !(defined(__NVCC__) && defined(__CUDA_ARCH__))
134#if defined(__cplusplus)
151template <
typename T,
typename U>
157 return ((xb[0] - xa[0])*xc[0]+(xb[1] - xa[1])*xc[1]+(xb[2] - xa[2])*xc[2]);
174template <
typename T,
typename U>
179 double uv =
u[0]*
v[0] +
u[1]*
v[1] +
u[2]*
v[2];
200 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
223template <
typename T,
typename U,
typename V>
229 return ( n1[0] * (
t[0]*n2[0] +
t[3]*n2[1] +
t[5]*n2[2])
230 + n1[1] * (
t[3]*n2[0] +
t[1]*n2[1] +
t[4]*n2[2])
231 + n1[2] * (
t[5]*n2[0] +
t[4]*n2[1] +
t[2]*n2[2]));
269template <
typename T,
typename U>
278 vout[0] = inv_norm * vin[0];
279 vout[1] = inv_norm * vin[1];
280 vout[2] = inv_norm * vin[2];
299template <
typename T,
typename U,
typename V>
305 mv[0] = m[0]*
v[0] + m[3]*
v[1] + m[5]*
v[2];
306 mv[1] = m[3]*
v[0] + m[1]*
v[1] + m[4]*
v[2];
307 mv[2] = m[5]*
v[0] + m[4]*
v[1] + m[2]*
v[2];
325template <
typename T,
typename U,
typename V>
332 for (
int i = 0; i < 3; i++)
333 v[i] += v_dot_n * n[i];
352template <
typename T,
typename U,
typename V>
359 = ( n1[0]*
t[0][0]*n2[0] + n1[1]*
t[1][0]*n2[0] + n1[2]*
t[2][0]*n2[0]
360 + n1[0]*
t[0][1]*n2[1] + n1[1]*
t[1][1]*n2[1] + n1[2]*
t[2][1]*n2[1]
361 + n1[0]*
t[0][2]*n2[2] + n1[1]*
t[1][2]*n2[2] + n1[2]*
t[2][2]*n2[2]);
380template <
typename T,
typename U,
typename V>
386 vout[0] =
v[0]*(1.-n[0]*n[0])-
v[1]* n[1]*n[0] -
v[2]* n[2]*n[0];
387 vout[1] = -
v[0]* n[0]*n[1] +
v[1]*(1.-n[1]*n[1])-
v[2]* n[2]*n[1];
388 vout[2] = -
v[0]* n[0]*n[2] -
v[1]* n[1]*n[2] +
v[2]*(1.-n[2]*n[2]);
405template <
typename T,
typename U,
typename V>
411 uv[0] =
u[1]*
v[2] -
u[2]*
v[1];
412 uv[1] =
u[2]*
v[0] -
u[0]*
v[2];
413 uv[2] =
u[0]*
v[1] -
u[1]*
v[0];
442 const int n_iter = (
k > n-
k) ? n-
k :
k;
443 for (
int j = 1; j <= n_iter; j++, n--) {
446 else if (ret % j == 0)
634 v[0] = xb[0] - xa[0];
635 v[1] = xb[1] - xa[1];
636 v[2] = xb[2] - xa[2];
638 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
658 return ((xb[0] - xa[0])*xc[0]+(xb[1] - xa[1])*xc[1]+(xb[2] - xa[2])*xc[2]);
681 return (
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
722 = ( n1[0]*
t[0][0]*n2[0] + n1[1]*
t[1][0]*n2[0] + n1[2]*
t[2][0]*n2[0]
723 + n1[0]*
t[0][1]*n2[1] + n1[1]*
t[1][1]*n2[1] + n1[2]*
t[2][1]*n2[1]
724 + n1[0]*
t[0][2]*n2[2] + n1[1]*
t[1][2]*n2[2] + n1[2]*
t[2][2]*n2[2]);
749 return ( n1[0] * (
t[0]*n2[0] +
t[3]*n2[1] +
t[5]*n2[2])
750 + n1[1] * (
t[3]*n2[0] +
t[1]*n2[1] +
t[4]*n2[2])
751 + n1[2] * (
t[5]*n2[0] +
t[4]*n2[1] +
t[2]*n2[2]));
767 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
807 vout[0] = inv_norm * vin[0];
808 vout[1] = inv_norm * vin[1];
809 vout[2] = inv_norm * vin[2];
832 cs_real_t inv_norm = ((norm > thres) ? 1. / norm : 1. / thres);
834 vout[0] = inv_norm * vin[0];
835 vout[1] = inv_norm * vin[1];
836 vout[2] = inv_norm * vin[2];
855 vout[0] =
v[0]*(1.-n[0]*n[0])-
v[1]* n[1]*n[0] -
v[2]* n[2]*n[0];
856 vout[1] = -
v[0]* n[0]*n[1] +
v[1]*(1.-n[1]*n[1])-
v[2]* n[2]*n[1];
857 vout[2] = -
v[0]* n[0]*n[2] -
v[1]* n[1]*n[2] +
v[2]*(1.-n[2]*n[2]);
877 for (
int i = 0; i < 3; i++)
878 v[i] += v_dot_n * n[i];
899 ( n[0] *
t[0][0] * n[0] + n[1] *
t[1][0] * n[0] + n[2] *
t[2][0] * n[0]
900 + n[0] *
t[0][1] * n[1] + n[1] *
t[1][1] * n[1] + n[2] *
t[2][1] * n[1]
901 + n[0] *
t[0][2] * n[2] + n[1] *
t[1][2] * n[2] + n[2] *
t[2][2] * n[2]);
902 for (
int i = 0; i < 3; i++) {
903 for (
int j = 0; j < 3; j++)
904 t[i][j] += n_t_n * n[i] * n[j];
923 mv[0] = m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
924 mv[1] = m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
925 mv[2] = m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
944 mv[0] += m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
945 mv[1] += m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
946 mv[2] += m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
965 mv[0] = m[0][0]*
v[0] + m[1][0]*
v[1] + m[2][0]*
v[2];
966 mv[1] = m[0][1]*
v[0] + m[1][1]*
v[1] + m[2][1]*
v[2];
967 mv[2] = m[0][2]*
v[0] + m[1][2]*
v[1] + m[2][2]*
v[2];
987 mv[0] = m[0]*
v[0] + m[3]*
v[1] + m[5]*
v[2];
988 mv[1] = m[3]*
v[0] + m[1]*
v[1] + m[4]*
v[2];
989 mv[2] = m[5]*
v[0] + m[4]*
v[1] + m[2]*
v[2];
1009 mv[0] += m[0] *
v[0] + m[3] *
v[1] + m[5] *
v[2];
1010 mv[1] += m[3] *
v[0] + m[1] *
v[1] + m[4] *
v[2];
1011 mv[2] += m[5] *
v[0] + m[4] *
v[1] + m[2] *
v[2];
1030 return m1[0]*m2[0] + 2.*m1[3]*m2[3] + 2.*m1[5]*m2[5]
1031 + m1[1]*m2[1] + 2.*m1[4]*m2[4]
1048 return (
t[0][0] +
t[1][1] +
t[2][2]);
1064 return (
t[0] +
t[1] +
t[2]);
1083 for (
int i = 0; i < 6; i++) {
1084 for (
int j = 0; j < 6; j++)
1085 mv[i] = m[i][j] *
v[j];
1105 for (
int i = 0; i < 6; i++) {
1106 for (
int j = 0; j < 6; j++)
1107 mv[i] += m[i][j] *
v[j];
1124 const cs_real_t com0 = m[1][1]*m[2][2] - m[2][1]*m[1][2];
1125 const cs_real_t com1 = m[2][1]*m[0][2] - m[0][1]*m[2][2];
1126 const cs_real_t com2 = m[0][1]*m[1][2] - m[1][1]*m[0][2];
1128 return m[0][0]*com0 + m[1][0]*com1 + m[2][0]*com2;
1144 const cs_real_t com0 = m[1]*m[2] - m[4]*m[4];
1145 const cs_real_t com1 = m[4]*m[5] - m[3]*m[2];
1146 const cs_real_t com2 = m[3]*m[4] - m[1]*m[5];
1148 return m[0]*com0 + m[3]*com1 + m[5]*com2;
1166 uv[0] = (
u[0] +
v[0]) / 2.0;
1167 uv[1] = (
u[1] +
v[1]) / 2.0;
1168 uv[2] = (
u[2] +
v[2]) / 2.0;
1181#if defined(__INTEL_COMPILER)
1182#pragma optimization_level 0
1190 uv[0] =
u[1]*
v[2] -
u[2]*
v[1];
1191 uv[1] =
u[2]*
v[0] -
u[0]*
v[2];
1192 uv[2] =
u[0]*
v[1] -
u[1]*
v[0];
1207#if defined(__INTEL_COMPILER)
1208#pragma optimization_level 0
1216 return (
u[1]*
v[2] -
u[2]*
v[1]) * w[0]
1217 + (
u[2]*
v[0] -
u[0]*
v[2]) * w[1]
1218 + (
u[0]*
v[1] -
u[1]*
v[0]) * w[2];
1274 out[0][0] = in[1][1]*in[2][2] - in[2][1]*in[1][2];
1275 out[0][1] = in[2][1]*in[0][2] - in[0][1]*in[2][2];
1276 out[0][2] = in[0][1]*in[1][2] - in[1][1]*in[0][2];
1278 out[1][0] = in[2][0]*in[1][2] - in[1][0]*in[2][2];
1279 out[1][1] = in[0][0]*in[2][2] - in[2][0]*in[0][2];
1280 out[1][2] = in[1][0]*in[0][2] - in[0][0]*in[1][2];
1282 out[2][0] = in[1][0]*in[2][1] - in[2][0]*in[1][1];
1283 out[2][1] = in[2][0]*in[0][1] - in[0][0]*in[2][1];
1284 out[2][2] = in[0][0]*in[1][1] - in[1][0]*in[0][1];
1286 const double det = in[0][0]*out[0][0]+in[1][0]*out[0][1]+in[2][0]*out[0][2];
1287 const double invdet = 1./det;
1289 out[0][0] *= invdet, out[0][1] *= invdet, out[0][2] *= invdet;
1290 out[1][0] *= invdet, out[1][1] *= invdet, out[1][2] *= invdet;
1291 out[2][0] *= invdet, out[2][1] *= invdet, out[2][2] *= invdet;
1305 cs_real_t a00 = a[1][1]*a[2][2] - a[2][1]*a[1][2];
1306 cs_real_t a01 = a[2][1]*a[0][2] - a[0][1]*a[2][2];
1307 cs_real_t a02 = a[0][1]*a[1][2] - a[1][1]*a[0][2];
1308 cs_real_t a10 = a[2][0]*a[1][2] - a[1][0]*a[2][2];
1309 cs_real_t a11 = a[0][0]*a[2][2] - a[2][0]*a[0][2];
1310 cs_real_t a12 = a[1][0]*a[0][2] - a[0][0]*a[1][2];
1311 cs_real_t a20 = a[1][0]*a[2][1] - a[2][0]*a[1][1];
1312 cs_real_t a21 = a[2][0]*a[0][1] - a[0][0]*a[2][1];
1313 cs_real_t a22 = a[0][0]*a[1][1] - a[1][0]*a[0][1];
1315 double det_inv = 1. / (a[0][0]*a00 + a[1][0]*a01 + a[2][0]*a02);
1317 a[0][0] = a00 * det_inv;
1318 a[0][1] = a01 * det_inv;
1319 a[0][2] = a02 * det_inv;
1320 a[1][0] = a10 * det_inv;
1321 a[1][1] = a11 * det_inv;
1322 a[1][2] = a12 * det_inv;
1323 a[2][0] = a20 * det_inv;
1324 a[2][1] = a21 * det_inv;
1325 a[2][2] = a22 * det_inv;
1340 cs_real_t a00 = a[1][1]*a[2][2] - a[2][1]*a[1][2];
1341 cs_real_t a01 = a[2][1]*a[0][2] - a[0][1]*a[2][2];
1342 cs_real_t a02 = a[0][1]*a[1][2] - a[1][1]*a[0][2];
1343 cs_real_t a11 = a[0][0]*a[2][2] - a[2][0]*a[0][2];
1344 cs_real_t a12 = a[1][0]*a[0][2] - a[0][0]*a[1][2];
1345 cs_real_t a22 = a[0][0]*a[1][1] - a[1][0]*a[0][1];
1347 double det_inv = 1. / (a[0][0]*a00 + a[1][0]*a01 + a[2][0]*a02);
1349 a[0][0] = a00 * det_inv;
1350 a[0][1] = a01 * det_inv;
1351 a[0][2] = a02 * det_inv;
1352 a[1][0] = a01 * det_inv;
1353 a[1][1] = a11 * det_inv;
1354 a[1][2] = a12 * det_inv;
1355 a[2][0] = a02 * det_inv;
1356 a[2][1] = a12 * det_inv;
1357 a[2][2] = a22 * det_inv;
1378 sout[0] = s[1]*s[2] - s[4]*s[4];
1379 sout[1] = s[0]*s[2] - s[5]*s[5];
1380 sout[2] = s[0]*s[1] - s[3]*s[3];
1381 sout[3] = s[4]*s[5] - s[3]*s[2];
1382 sout[4] = s[3]*s[5] - s[0]*s[4];
1383 sout[5] = s[3]*s[4] - s[1]*s[5];
1385 detinv = 1. / (s[0]*sout[0] + s[3]*sout[3] + s[5]*sout[5]);
1410 mout[0][0] = m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1411 mout[0][1] = m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1412 mout[0][2] = m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1414 mout[1][0] = m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1415 mout[1][1] = m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1416 mout[1][2] = m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1418 mout[2][0] = m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1419 mout[2][1] = m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1420 mout[2][2] = m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1441 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[1][0] + m[0][2]*q[2][0];
1442 _m[0][1] = m[0][0]*q[0][1] + m[0][1]*q[1][1] + m[0][2]*q[2][1];
1443 _m[0][2] = m[0][0]*q[0][2] + m[0][1]*q[1][2] + m[0][2]*q[2][2];
1445 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[1][0] + m[1][2]*q[2][0];
1446 _m[1][1] = m[1][0]*q[0][1] + m[1][1]*q[1][1] + m[1][2]*q[2][1];
1447 _m[1][2] = m[1][0]*q[0][2] + m[1][1]*q[1][2] + m[1][2]*q[2][2];
1449 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[1][0] + m[2][2]*q[2][0];
1450 _m[2][1] = m[2][0]*q[0][1] + m[2][1]*q[1][1] + m[2][2]*q[2][1];
1451 _m[2][2] = m[2][0]*q[0][2] + m[2][1]*q[1][2] + m[2][2]*q[2][2];
1454 mout[0][0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1455 mout[0][1] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1456 mout[0][2] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1458 mout[1][0] = q[0][1]*_m[0][0] + q[1][1]*_m[1][0] + q[2][1]*_m[2][0];
1459 mout[1][1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1460 mout[1][2] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1462 mout[2][0] = q[0][2]*_m[0][0] + q[1][2]*_m[1][0] + q[2][2]*_m[2][0];
1463 mout[2][1] = q[0][2]*_m[0][1] + q[1][2]*_m[1][1] + q[2][2]*_m[2][1];
1464 mout[2][2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1485 _m[0][0] = m[0]*q[0][0] + m[3]*q[1][0] + m[5]*q[2][0];
1486 _m[0][1] = m[0]*q[0][1] + m[3]*q[1][1] + m[5]*q[2][1];
1487 _m[0][2] = m[0]*q[0][2] + m[3]*q[1][2] + m[5]*q[2][2];
1489 _m[1][0] = m[3]*q[0][0] + m[1]*q[1][0] + m[4]*q[2][0];
1490 _m[1][1] = m[3]*q[0][1] + m[1]*q[1][1] + m[4]*q[2][1];
1491 _m[1][2] = m[3]*q[0][2] + m[1]*q[1][2] + m[4]*q[2][2];
1493 _m[2][0] = m[5]*q[0][0] + m[4]*q[1][0] + m[2]*q[2][0];
1494 _m[2][1] = m[5]*q[0][1] + m[4]*q[1][1] + m[2]*q[2][1];
1495 _m[2][2] = m[5]*q[0][2] + m[4]*q[1][2] + m[2]*q[2][2];
1498 mout[0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1499 mout[1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1500 mout[2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1502 mout[3] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1503 mout[4] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1504 mout[5] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1525 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[0][1] + m[0][2]*q[0][2];
1526 _m[0][1] = m[0][0]*q[1][0] + m[0][1]*q[1][1] + m[0][2]*q[1][2];
1527 _m[0][2] = m[0][0]*q[2][0] + m[0][1]*q[2][1] + m[0][2]*q[2][2];
1529 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[0][1] + m[1][2]*q[0][2];
1530 _m[1][1] = m[1][0]*q[1][0] + m[1][1]*q[1][1] + m[1][2]*q[1][2];
1531 _m[1][2] = m[1][0]*q[2][0] + m[1][1]*q[2][1] + m[1][2]*q[2][2];
1533 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[0][1] + m[2][2]*q[0][2];
1534 _m[2][1] = m[2][0]*q[1][0] + m[2][1]*q[1][1] + m[2][2]*q[1][2];
1535 _m[2][2] = m[2][0]*q[2][0] + m[2][1]*q[2][1] + m[2][2]*q[2][2];
1538 mout[0][0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1539 mout[0][1] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1540 mout[0][2] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1542 mout[1][0] = q[1][0]*_m[0][0] + q[1][1]*_m[1][0] + q[1][2]*_m[2][0];
1543 mout[1][1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1544 mout[1][2] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1546 mout[2][0] = q[2][0]*_m[0][0] + q[2][1]*_m[1][0] + q[2][2]*_m[2][0];
1547 mout[2][1] = q[2][0]*_m[0][1] + q[2][1]*_m[1][1] + q[2][2]*_m[2][1];
1548 mout[2][2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1569 _m[0][0] = m[0]*q[0][0] + m[3]*q[0][1] + m[5]*q[0][2];
1570 _m[0][1] = m[0]*q[1][0] + m[3]*q[1][1] + m[5]*q[1][2];
1571 _m[0][2] = m[0]*q[2][0] + m[3]*q[2][1] + m[5]*q[2][2];
1573 _m[1][0] = m[3]*q[0][0] + m[1]*q[0][1] + m[4]*q[0][2];
1574 _m[1][1] = m[3]*q[1][0] + m[1]*q[1][1] + m[4]*q[1][2];
1575 _m[1][2] = m[3]*q[2][0] + m[1]*q[2][1] + m[4]*q[2][2];
1577 _m[2][0] = m[5]*q[0][0] + m[4]*q[0][1] + m[2]*q[0][2];
1578 _m[2][1] = m[5]*q[1][0] + m[4]*q[1][1] + m[2]*q[1][2];
1579 _m[2][2] = m[5]*q[2][0] + m[4]*q[2][1] + m[2]*q[2][2];
1582 mout[0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1583 mout[1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1584 mout[2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1587 mout[3] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1588 mout[4] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1589 mout[5] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1609 m_sym[0][0] = 0.5 * (m[0][0] + m[0][0]);
1610 m_sym[0][1] = 0.5 * (m[0][1] + m[1][0]);
1611 m_sym[0][2] = 0.5 * (m[0][2] + m[2][0]);
1612 m_sym[1][0] = 0.5 * (m[1][0] + m[0][1]);
1613 m_sym[1][1] = 0.5 * (m[1][1] + m[1][1]);
1614 m_sym[1][2] = 0.5 * (m[1][2] + m[2][1]);
1615 m_sym[2][0] = 0.5 * (m[2][0] + m[0][2]);
1616 m_sym[2][1] = 0.5 * (m[2][1] + m[1][2]);
1617 m_sym[2][2] = 0.5 * (m[2][2] + m[2][2]);
1620 m_ant[0][0] = 0.5 * (m[0][0] - m[0][0]);
1621 m_ant[0][1] = 0.5 * (m[0][1] - m[1][0]);
1622 m_ant[0][2] = 0.5 * (m[0][2] - m[2][0]);
1623 m_ant[1][0] = 0.5 * (m[1][0] - m[0][1]);
1624 m_ant[1][1] = 0.5 * (m[1][1] - m[1][1]);
1625 m_ant[1][2] = 0.5 * (m[1][2] - m[2][1]);
1626 m_ant[2][0] = 0.5 * (m[2][0] - m[0][2]);
1627 m_ant[2][1] = 0.5 * (m[2][1] - m[1][2]);
1628 m_ant[2][2] = 0.5 * (m[2][2] - m[2][2]);
1669 mout[0][0] += m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1670 mout[0][1] += m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1671 mout[0][2] += m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1673 mout[1][0] += m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1674 mout[1][1] += m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1675 mout[1][2] += m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1677 mout[2][0] += m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1678 mout[2][1] += m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1679 mout[2][2] += m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1704 sout[0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1706 sout[1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1708 sout[2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1710 sout[3] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1712 sout[4] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1714 sout[5] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1731 const int t2v[3][3] = {{0, 3, 5},
1735 const int iv2t[6] = {0, 1, 2, 0, 1, 0};
1736 const int jv2t[6] = {0, 1, 2, 1, 2, 2};
1738 for (
int i = 0; i < 6; i++) {
1739 for (
int j = 0; j < 6; j++)
1752 for (
int ij = 0; ij < 6; ij++) {
1755 for (
int k = 0;
k < 3;
k++) {
1759 sout[ij][
ik] += s[j][
k];
1760 sout[ij][jk] += s[i][
k];
1788 _sout[0][0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1790 _sout[1][1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1792 _sout[2][2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1794 _sout[0][1] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1796 _sout[1][0] = s2[0]*s1[3] + s2[3]*s1[1] + s2[5]*s1[4];
1798 _sout[1][2] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1800 _sout[2][1] = s2[3]*s1[5] + s2[1]*s1[4] + s2[4]*s1[2];
1802 _sout[0][2] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1804 _sout[2][0] = s2[0]*s1[5] + s2[3]*s1[4] + s2[5]*s1[2];
1806 sout[0][0] = _sout[0][0]*s3[0] + _sout[0][1]*s3[3] + _sout[0][2]*s3[5];
1808 sout[1][1] = _sout[1][0]*s3[3] + _sout[1][1]*s3[1] + _sout[1][2]*s3[4];
1810 sout[2][2] = _sout[2][0]*s3[5] + _sout[2][1]*s3[4] + _sout[2][2]*s3[2];
1812 sout[0][1] = _sout[0][0]*s3[3] + _sout[0][1]*s3[1] + _sout[0][2]*s3[4];
1814 sout[1][0] = s3[0]*_sout[1][0] + s3[3]*_sout[1][1] + s3[5]*_sout[1][2];
1816 sout[1][2] = _sout[1][0]*s3[5] + _sout[1][1]*s3[4] + _sout[1][2]*s3[2];
1818 sout[2][1] = s3[3]*_sout[2][0] + s3[1]*_sout[2][1] + s3[4]*_sout[2][2];
1820 sout[0][2] = _sout[0][0]*s3[5] + _sout[0][1]*s3[4] + _sout[0][2]*s3[2];
1822 sout[2][0] = s3[0]*_sout[2][0] + s3[3]*_sout[2][1] + s3[5]*_sout[2][2];
1840 qv->
meas = magnitude;
1844 qv->
unitv[0] = inv *
v[0];
1845 qv->
unitv[1] = inv *
v[1];
1846 qv->
unitv[2] = inv *
v[2];
#define restrict
Definition: cs_defs.h:145
#define BEGIN_C_DECLS
Definition: cs_defs.h:542
#define CS_F_HOST_DEVICE
Definition: cs_defs.h:561
double cs_real_t
Floating-point value.
Definition: cs_defs.h:342
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:359
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:361
#define END_C_DECLS
Definition: cs_defs.h:543
cs_real_t cs_real_33_t[3][3]
3x3 matrix of floating-point values
Definition: cs_defs.h:368
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:335
@ t
Definition: cs_field_pointer.h:94
@ k
Definition: cs_field_pointer.h:72
@ x2
Definition: cs_field_pointer.h:226
static CS_F_HOST_DEVICE void cs_math_3_normalize(const cs_real_t vin[3], cs_real_t vout[3])
Normalise a vector of 3 real values.
Definition: cs_math.h:800
const cs_real_t cs_math_1ov6
static CS_F_HOST_DEVICE cs_real_t cs_math_pow3(cs_real_t x)
Compute the cube of a real value.
Definition: cs_math.h:577
static CS_F_HOST_DEVICE cs_real_t cs_math_3_sym_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[6], const cs_real_t n2[3])
Compute the dot product of a symmetric tensor t with two vectors, n1 and n2.
Definition: cs_math.h:745
static CS_F_HOST_DEVICE void cs_math_sym_33_inv_cramer(const cs_real_t s[6], cs_real_t *restrict sout)
Compute the inverse of a symmetric matrix using Cramer's rule.
Definition: cs_math.h:1373
void cs_math_33_eig_val_vec(const cs_real_t m_in[3][3], const cs_real_t tol_err, cs_real_t eig_val[3], cs_real_t eig_vec[3][3])
Evaluate eigenvalues and eigenvectors of a real symmetric matrix m1[3,3]: m1*m2 = lambda*m2.
static CS_F_HOST_DEVICE void cs_math_33_extract_sym_ant(const cs_real_t m[3][3], cs_real_t m_sym[3][3], cs_real_t m_ant[3][3])
Extract from the given matrix its symmetric and anti-symmetric part.
Definition: cs_math.h:1604
double cs_math_surftri(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3])
Compute the area of the convex_hull generated by 3 points. This corresponds to the computation of the...
Definition: cs_math.cpp:442
static CS_F_HOST_DEVICE void cs_math_sym_33_3_product_add(const cs_real_t m[6], const cs_real_t v[3], cs_real_t *restrict mv)
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values and add it ...
Definition: cs_math.h:1005
static CS_F_HOST_DEVICE void cs_math_33_inv_cramer_sym_in_place(cs_real_t a[3][3])
Inverse a 3x3 symmetric matrix (with non-symmetric storage) in place, using Cramer's rule.
Definition: cs_math.h:1338
const cs_real_t cs_math_infinite_r
static CS_F_HOST_DEVICE void cs_math_sym_33_3_product(const cs_real_t m[6], const cs_real_t v[3], cs_real_t *restrict mv)
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values....
Definition: cs_math.h:983
static CS_F_HOST_DEVICE cs_real_t cs_math_pow2(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:561
const cs_real_t cs_math_4ov3
static CS_F_HOST_DEVICE void cs_math_33t_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t *restrict mv)
Compute the product of the transpose of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:961
static CS_F_HOST_DEVICE cs_real_t cs_math_3_square_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the squared distance between two points xa and xb in a Cartesian coordinate system of dimensi...
Definition: cs_math.h:674
static CS_F_HOST_DEVICE cs_real_t cs_math_sym_33_determinant(const cs_real_t m[6])
Compute the determinant of a 3x3 symmetric matrix.
Definition: cs_math.h:1142
static CS_F_HOST_DEVICE void cs_math_sym_33_transform_r_to_a(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1479
static CS_F_HOST_DEVICE void cs_math_sym_33_product(const cs_real_t s1[6], const cs_real_t s2[6], cs_real_t *restrict sout)
Compute the product of two symmetric matrices.
Definition: cs_math.h:1699
static CS_F_HOST_DEVICE void cs_math_33_transform_r_to_a(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1435
static CS_F_HOST_DEVICE void cs_math_66_6_product(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t *restrict mv)
Compute the product of a matrix of 6x6 real values by a vector of 6 real values.
Definition: cs_math.h:1079
void cs_math_sym_33_eigen(const cs_real_t m[6], cs_real_t eig_vals[3])
Compute all eigenvalues of a 3x3 symmetric matrix with symmetric storage.
Definition: cs_math.cpp:230
static CS_F_HOST_DEVICE cs_real_t cs_math_33_main_invariant_2(const cs_real_t m[3][3])
Compute the second main invariant of the symmetric part of a 3x3 tensor.
Definition: cs_math.h:1643
const cs_real_t cs_math_2ov3
static CS_F_HOST_DEVICE cs_real_t cs_math_pow4(cs_real_t x)
Compute the 4-th power of a real value.
Definition: cs_math.h:593
void cs_math_fw_and_bw_lu(const cs_real_t a_lu[], const int n, cs_real_t x[], const cs_real_t b[])
Block Jacobi utilities. Compute forward and backward to solve an LU P*P system.
Definition: cs_math.cpp:688
const cs_real_t cs_math_1ov12
static CS_F_HOST_DEVICE void cs_math_sym_33_double_product(const cs_real_t s1[6], const cs_real_t s2[6], const cs_real_t s3[6], cs_real_t(*restrict sout)[3])
Compute the product of three symmetric matrices.
Definition: cs_math.h:1780
static CS_F_HOST_DEVICE void cs_math_66_6_product_add(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t *restrict mv)
Compute the product of a matrix of 6x6 real values by a vector of 6 real values and add it to the vec...
Definition: cs_math.h:1101
void cs_math_fact_lu(cs_lnum_t n_blocks, const int b_size, const cs_real_t *a, cs_real_t *a_lu)
Compute LU factorization of an array of dense matrices of identical size.
Definition: cs_math.cpp:630
static CS_F_HOST_DEVICE void cs_math_reduce_sym_prod_33_to_66(const cs_real_t s[3][3], cs_real_t(*restrict sout)[6])
Compute a 6x6 matrix A, equivalent to a 3x3 matrix s, such as: A*R_6 = R*s^t + s*R.
Definition: cs_math.h:1728
static CS_F_HOST_DEVICE cs_real_t cs_math_3_distance_dot_product(const cs_real_t xa[3], const cs_real_t xb[3], const cs_real_t xc[3])
Compute .
Definition: cs_math.h:654
static CS_F_HOST_DEVICE cs_real_t cs_math_3_square_norm(const cs_real_t v[3])
Compute the square norm of a vector of 3 real values.
Definition: cs_math.h:781
static CS_F_HOST_DEVICE void cs_math_33_normal_scaling_add(const cs_real_t n[3], cs_real_t factor, cs_real_t t[3][3])
Add the dot product with a normal vector to the normal,normal component of a tensor: t += factor * n....
Definition: cs_math.h:894
static CS_F_HOST_DEVICE void cs_math_3_normalize_threshold(const cs_real_t vin[3], const cs_real_t thres, cs_real_t vout[3])
Normalise a vector of 3 real values and clip the norm using a threshold value.
Definition: cs_math.h:826
static CS_F_HOST_DEVICE void cs_math_3_orthogonal_projection(const cs_real_t n[3], const cs_real_t v[3], cs_real_t *restrict vout)
Orthogonal projection of a vector with respect to a normalised vector.
Definition: cs_math.h:851
void cs_math_33_eigen(const cs_real_t m[3][3], cs_real_t *eig_ratio, cs_real_t *eig_max)
Compute max/min eigenvalues ratio and max. eigenvalue of a 3x3 symmetric matrix with non-symmetric st...
Definition: cs_math.cpp:319
const cs_real_t cs_math_1ov24
static CS_F_HOST_DEVICE void cs_math_3_normal_scaling(const cs_real_t n[3], cs_real_t factor, cs_real_t v[3])
Add the dot product with a normal vector to the normal direction to a vector.
Definition: cs_math.h:872
cs_real_t cs_math_sym_44_partial_solve_ldlt(const cs_real_t ldlt[10], const cs_real_t rhs[4])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.cpp:792
static CS_F_HOST_DEVICE void cs_math_33_inv_cramer_in_place(cs_real_t a[3][3])
Inverse a 3x3 matrix in place, using Cramer's rule.
Definition: cs_math.h:1303
static CS_F_HOST_DEVICE void cs_math_33_inv_cramer(const cs_real_t in[3][3], cs_real_t out[3][3])
Inverse a 3x3 matrix.
Definition: cs_math.h:1271
cs_math_sym_tensor_component_t
Definition: cs_math.h:67
@ ZZ
Definition: cs_math.h:71
@ XY
Definition: cs_math.h:72
@ XZ
Definition: cs_math.h:74
@ YZ
Definition: cs_math.h:73
@ YY
Definition: cs_math.h:70
@ XX
Definition: cs_math.h:69
CS_F_HOST_DEVICE void cs_math_3_length_unitv(const cs_real_t xa[3], const cs_real_t xb[3], cs_real_t *len, cs_real_3_t unitv)
Compute the length (Euclidean norm) between two points xa and xb in a Cartesian coordinate system of ...
Definition: cs_math.cpp:409
static CS_F_HOST_DEVICE cs_real_t cs_math_3_triple_product(const cs_real_t u[3], const cs_real_t v[3], const cs_real_t w[3])
Compute the triple product.
Definition: cs_math.h:1212
static CS_F_HOST_DEVICE void cs_math_33_3_product_add(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t *restrict mv)
Compute the product of a matrix of 3x3 real values by a vector of 3 real values add.
Definition: cs_math.h:940
static CS_F_HOST_DEVICE cs_real_t cs_math_3_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[3][3], const cs_real_t n2[3])
Compute the dot product of a tensor t with two vectors, n1 and n2.
Definition: cs_math.h:717
static CS_F_HOST_DEVICE cs_real_t cs_math_3_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the (euclidean) distance between two points xa and xb in a Cartesian coordinate system of dim...
Definition: cs_math.h:629
static CS_F_HOST_DEVICE cs_real_t cs_math_pow5(cs_real_t x)
Compute the 5-th power of a real value.
Definition: cs_math.h:610
const cs_real_t cs_math_1ov3
static CS_F_HOST_DEVICE void cs_math_sym_33_transform_a_to_r(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1563
static CS_F_HOST_DEVICE cs_real_t cs_math_3_dot_product(const cs_real_t u[3], const cs_real_t v[3])
Compute the dot product of two vectors of 3 real values.
Definition: cs_math.h:696
const cs_real_t cs_math_5ov3
static CS_F_HOST_DEVICE cs_real_t cs_math_33_determinant(const cs_real_t m[3][3])
Compute the determinant of a 3x3 matrix.
Definition: cs_math.h:1122
const cs_real_t cs_math_epzero
static CS_F_HOST_DEVICE void cs_math_33_product(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t mout[3][3])
Compute the product of two 3x3 real valued matrices.
Definition: cs_math.h:1406
const cs_real_t cs_math_big_r
static CS_F_HOST_DEVICE void cs_math_33_transform_a_to_r(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1519
double cs_math_voltet(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3], const cs_real_t xc[3])
Compute the volume of the convex_hull generated by 4 points. This is equivalent to the computation of...
Definition: cs_math.cpp:472
static int cs_math_binom(int n, int k)
Computes the binomial coefficient of n and k.
Definition: cs_math.h:436
static CS_F_HOST_DEVICE void cs_math_3_average(const cs_real_t u[3], const cs_real_t v[3], cs_real_t *restrict uv)
Compute the average of two vector of dimension 3.
Definition: cs_math.h:1162
static CS_F_HOST_DEVICE void cs_math_33_product_add(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t(*restrict mout)[3])
Add the product of two 3x3 real matrices to a matrix.
Definition: cs_math.h:1665
void cs_math_sym_44_factor_ldlt(cs_real_t ldlt[10])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.cpp:733
static CS_F_HOST_DEVICE void cs_nvec3(const cs_real_3_t v, cs_nvec3_t *qv)
Define a cs_nvec3_t structure from a cs_real_3_t.
Definition: cs_math.h:1835
static CS_F_HOST_DEVICE cs_real_t cs_math_6_trace(const cs_real_t t[6])
Compute the trace of a symmetric tensor.
Definition: cs_math.h:1062
static CS_F_HOST_DEVICE cs_real_t cs_math_sym_33_sym_33_product_trace(const cs_real_t m1[6], const cs_real_t m2[6])
Compute the product of two symmetric matrices of 3x3 real values and take the trace....
Definition: cs_math.h:1027
const cs_real_t cs_math_pi
static CS_F_HOST_DEVICE cs_real_t cs_math_clamp(cs_real_t x, cs_real_t xmin, cs_real_t xmax)
Clamp function for a given scalar value.
Definition: cs_math.h:525
static CS_F_HOST_DEVICE void cs_math_3_cross_product(const cs_real_t u[3], const cs_real_t v[3], cs_real_t *restrict uv)
Compute the cross product of two vectors of 3 real values.
Definition: cs_math.h:1186
static const cs_real_33_t cs_math_33_identity
Definition: cs_math.h:119
static const cs_real_6_t cs_math_sym_33_identity
Definition: cs_math.h:122
static CS_F_HOST_DEVICE cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:765
static CS_F_HOST_DEVICE cs_real_t cs_math_fabs(cs_real_t x)
Compute the absolute value of a real value.
Definition: cs_math.h:466
static CS_F_HOST_DEVICE cs_real_t cs_math_33_trace(const cs_real_t t[3][3])
Compute the trace of a 3x3 tensor.
Definition: cs_math.h:1046
static CS_F_HOST_DEVICE cs_real_t cs_math_fmin(cs_real_t x, cs_real_t y)
Compute the min value of two real values.
Definition: cs_math.h:484
const cs_real_t cs_math_zero_threshold
static CS_F_HOST_DEVICE void cs_math_33_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t *restrict mv)
Compute the product of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:919
static CS_F_HOST_DEVICE cs_real_t cs_math_sq(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:545
static CS_F_HOST_DEVICE void cs_math_3_orthonormal_basis(const cs_real_t vect[3], cs_real_t axes[3][3])
Build an orthonormal basis based on a first vector "vect". axes[0] is vect normalized,...
Definition: cs_math.h:1234
static CS_F_HOST_DEVICE cs_real_t cs_math_fmax(cs_real_t x, cs_real_t y)
Compute the max value of two real values.
Definition: cs_math.h:503
double precision, dimension(:,:,:), allocatable u
Definition: atimbr.f90:112
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:113
integer, save ik
turbulent kinetic energy
Definition: numvar.f90:75
Definition: cs_defs.h:400
double meas
Definition: cs_defs.h:402
double unitv[3]
Definition: cs_defs.h:403