8.1
general documentation
cs_les_mu_t.c File Reference
#include "cs_defs.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "bft_mem.h"
#include "bft_printf.h"
#include "cs_array.h"
#include "cs_base.h"
#include "cs_field.h"
#include "cs_field_default.h"
#include "cs_field_pointer.h"
#include "cs_field_operator.h"
#include "cs_gradient.h"
#include "cs_halo.h"
#include "cs_halo_perio.h"
#include "cs_les_filter.h"
#include "cs_log.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_location.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_physical_constants.h"
#include "cs_physical_model.h"
#include "cs_prototypes.h"
#include "cs_turbulence_model.h"
#include "cs_les_mu_t.h"
+ Include dependency graph for cs_les_mu_t.c:

Functions

void cs_les_mu_t_smago_dyn_prepare (cs_real_t s_n[], cs_real_t sf_n[], cs_real_t f_vel[][3], cs_real_t mijmij[], cs_real_t mijlij[])
 Calculation of Mij:Mij and Mij:Lij for dynamic Smagorinsky model. More...
 
void cs_les_mu_t_smago_dyn (void)
 Calculation of the turbulent viscosity for a dynamic Smagorinsky LES model. More...
 
void cs_les_mu_t_smago_const (void)
 Calculation of turbulent viscosity for a Smagorinsky LES model. More...
 
void cs_les_mu_t_wale (void)
 Compute the turbulent viscosity for the WALE LES model. More...
 

Variables

static const cs_lnum_t _iv2t [6] = {0, 1, 2, 0, 1, 0}
 
static const cs_lnum_t _jv2t [6] = {0, 1, 2, 1, 2, 2}
 

Function Documentation

◆ cs_les_mu_t_smago_const()

void cs_les_mu_t_smago_const ( void  )

Calculation of turbulent viscosity for a Smagorinsky LES model.

Calculation of the turbulent viscosity for a Smagorinsky LES model.

\[ \mu_T = \rho (C_{S} l)^2 \sqrt{2 S_{ij}S_{ij}} \]

\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]

!

◆ cs_les_mu_t_smago_dyn()

void cs_les_mu_t_smago_dyn ( void  )

Calculation of the turbulent viscosity for a dynamic Smagorinsky LES model.

Calculation of turbulent viscosity for a dynamic Smagorinsky LES model.

\[ smago = \dfrac{L_{ij}M_{ij}}{M_{ij}M_{ij}} \]

\[ \mu_T = \rho smago L^2 \sqrt{2 S_{ij}S_{ij}} \]

\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]

Please refer to the dynamic Smagorinsky model section of the theory guide for more informations.

!

◆ cs_les_mu_t_smago_dyn_prepare()

void cs_les_mu_t_smago_dyn_prepare ( cs_real_t  s_n[],
cs_real_t  sf_n[],
cs_real_t  f_vel[][3],
cs_real_t  mijmij[],
cs_real_t  mijlij[] 
)

Calculation of Mij:Mij and Mij:Lij for dynamic Smagorinsky model.

Please refer to the dynamic Smagorinsky model section of the theory guide for more informations.

Parameters
[out]s_nstrain rate (sqrt(2SijSij))
[out]sf_nfiltered strain rate
[out]f_velfiltered velocity
[out]mijmijMij:Mij
[out]mijlijMij:Lij

!

◆ cs_les_mu_t_wale()

void cs_les_mu_t_wale ( void  )

Compute the turbulent viscosity for the WALE LES model.

The turbulent viscosity is: $ \mu_T = \rho (C_{wale} L)^2 * \dfrac{(\tens{S}:\tens{Sd})^{3/2}} {(\tens{S} :\tens{S})^(5/2) +(\tens{Sd}:\tens{Sd})^(5/4)} $ with $ \tens{S} = \frac{1}{2}(\gradt \vect{u} + \transpose{\gradt \vect{u}})$ and $ \tens{Sd} = \deviator{(\symmetric{(\tens{S}^2)})}$

!

Variable Documentation

◆ _iv2t

const cs_lnum_t _iv2t[6] = {0, 1, 2, 0, 1, 0}
static

◆ _jv2t

const cs_lnum_t _jv2t[6] = {0, 1, 2, 1, 2, 2}
static