43 #if defined(DEBUG) && !defined(NDEBUG)
119 const int n_iter = (
k > n-
k) ? n-
k :
k;
120 for (
int j = 1; j <= n_iter; j++, n--) {
123 else if (ret % j == 0)
288 return x*(x*x)*(x*x);
309 v[0] = xb[0] - xa[0];
310 v[1] = xb[1] - xa[1];
311 v[2] = xb[2] - xa[2];
313 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
333 return ((xb[0] - xa[0])*xc[0]+(xb[1] - xa[1])*xc[1]+(xb[2] - xa[2])*xc[2]);
356 return (
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
397 = ( n1[0]*
t[0][0]*n2[0] + n1[1]*
t[1][0]*n2[0] + n1[2]*
t[2][0]*n2[0]
398 + n1[0]*
t[0][1]*n2[1] + n1[1]*
t[1][1]*n2[1] + n1[2]*
t[2][1]*n2[1]
399 + n1[0]*
t[0][2]*n2[2] + n1[1]*
t[1][2]*n2[2] + n1[2]*
t[2][2]*n2[2]);
424 return ( n1[0] * (
t[0]*n2[0] +
t[3]*n2[1] +
t[5]*n2[2])
425 + n1[1] * (
t[3]*n2[0] +
t[1]*n2[1] +
t[4]*n2[2])
426 + n1[2] * (
t[5]*n2[0] +
t[4]*n2[1] +
t[2]*n2[2]));
442 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
482 vout[0] = inv_norm * vin[0];
483 vout[1] = inv_norm * vin[1];
484 vout[2] = inv_norm * vin[2];
506 vout[0] = inv_norm * vin[0];
507 vout[1] = inv_norm * vin[1];
508 vout[2] = inv_norm * vin[2];
527 vout[0] =
v[0]*(1.-n[0]*n[0])-
v[1]* n[1]*n[0] -
v[2]* n[2]*n[0];
528 vout[1] = -
v[0]* n[0]*n[1] +
v[1]*(1.-n[1]*n[1])-
v[2]* n[2]*n[1];
529 vout[2] = -
v[0]* n[0]*n[2] -
v[1]* n[1]*n[2] +
v[2]*(1.-n[2]*n[2]);
549 for (
int i = 0; i < 3; i++)
550 v[i] += v_dot_n * n[i];
571 ( n[0] *
t[0][0] * n[0] + n[1] *
t[1][0] * n[0] + n[2] *
t[2][0] * n[0]
572 + n[0] *
t[0][1] * n[1] + n[1] *
t[1][1] * n[1] + n[2] *
t[2][1] * n[1]
573 + n[0] *
t[0][2] * n[2] + n[1] *
t[1][2] * n[2] + n[2] *
t[2][2] * n[2]);
574 for (
int i = 0; i < 3; i++) {
575 for (
int j = 0; j < 3; j++)
576 t[i][j] += n_t_n * n[i] * n[j];
595 mv[0] = m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
596 mv[1] = m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
597 mv[2] = m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
616 mv[0] += m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
617 mv[1] += m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
618 mv[2] += m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
637 mv[0] = m[0][0]*
v[0] + m[1][0]*
v[1] + m[2][0]*
v[2];
638 mv[1] = m[0][1]*
v[0] + m[1][1]*
v[1] + m[2][1]*
v[2];
639 mv[2] = m[0][2]*
v[0] + m[1][2]*
v[1] + m[2][2]*
v[2];
659 mv[0] = m[0]*
v[0] + m[3]*
v[1] + m[5]*
v[2];
660 mv[1] = m[3]*
v[0] + m[1]*
v[1] + m[4]*
v[2];
661 mv[2] = m[5]*
v[0] + m[4]*
v[1] + m[2]*
v[2];
681 mv[0] += m[0] *
v[0] + m[3] *
v[1] + m[5] *
v[2];
682 mv[1] += m[3] *
v[0] + m[1] *
v[1] + m[4] *
v[2];
683 mv[2] += m[5] *
v[0] + m[4] *
v[1] + m[2] *
v[2];
702 return m1[0]*m2[0] + 2.*m1[3]*m2[3] + 2.*m1[5]*m2[5]
703 + m1[1]*m2[1] + 2.*m1[4]*m2[4]
720 return (
t[0][0] +
t[1][1] +
t[2][2]);
736 return (
t[0] +
t[1] +
t[2]);
755 for (
int i = 0; i < 6; i++) {
756 for (
int j = 0; j < 6; j++)
757 mv[i] = m[i][j] *
v[j];
777 for (
int i = 0; i < 6; i++) {
778 for (
int j = 0; j < 6; j++)
779 mv[i] += m[i][j] *
v[j];
796 const cs_real_t com0 = m[1][1]*m[2][2] - m[2][1]*m[1][2];
797 const cs_real_t com1 = m[2][1]*m[0][2] - m[0][1]*m[2][2];
798 const cs_real_t com2 = m[0][1]*m[1][2] - m[1][1]*m[0][2];
800 return m[0][0]*com0 + m[1][0]*com1 + m[2][0]*com2;
816 const cs_real_t com0 = m[1]*m[2] - m[4]*m[4];
817 const cs_real_t com1 = m[4]*m[5] - m[3]*m[2];
818 const cs_real_t com2 = m[3]*m[4] - m[1]*m[5];
820 return m[0]*com0 + m[3]*com1 + m[5]*com2;
833 #if defined(__INTEL_COMPILER)
834 #pragma optimization_level 0
842 uv[0] =
u[1]*
v[2] -
u[2]*
v[1];
843 uv[1] =
u[2]*
v[0] -
u[0]*
v[2];
844 uv[2] =
u[0]*
v[1] -
u[1]*
v[0];
859 #if defined(__INTEL_COMPILER)
860 #pragma optimization_level 0
868 return (
u[1]*
v[2] -
u[2]*
v[1]) * w[0]
869 + (
u[2]*
v[0] -
u[0]*
v[2]) * w[1]
870 + (
u[0]*
v[1] -
u[1]*
v[0]) * w[2];
926 out[0][0] = in[1][1]*in[2][2] - in[2][1]*in[1][2];
927 out[0][1] = in[2][1]*in[0][2] - in[0][1]*in[2][2];
928 out[0][2] = in[0][1]*in[1][2] - in[1][1]*in[0][2];
930 out[1][0] = in[2][0]*in[1][2] - in[1][0]*in[2][2];
931 out[1][1] = in[0][0]*in[2][2] - in[2][0]*in[0][2];
932 out[1][2] = in[1][0]*in[0][2] - in[0][0]*in[1][2];
934 out[2][0] = in[1][0]*in[2][1] - in[2][0]*in[1][1];
935 out[2][1] = in[2][0]*in[0][1] - in[0][0]*in[2][1];
936 out[2][2] = in[0][0]*in[1][1] - in[1][0]*in[0][1];
938 const double det = in[0][0]*out[0][0]+in[1][0]*out[0][1]+in[2][0]*out[0][2];
939 const double invdet = 1./det;
941 out[0][0] *= invdet, out[0][1] *= invdet, out[0][2] *= invdet;
942 out[1][0] *= invdet, out[1][1] *= invdet, out[1][2] *= invdet;
943 out[2][0] *= invdet, out[2][1] *= invdet, out[2][2] *= invdet;
957 cs_real_t a00 = a[1][1]*a[2][2] - a[2][1]*a[1][2];
958 cs_real_t a01 = a[2][1]*a[0][2] - a[0][1]*a[2][2];
959 cs_real_t a02 = a[0][1]*a[1][2] - a[1][1]*a[0][2];
960 cs_real_t a10 = a[2][0]*a[1][2] - a[1][0]*a[2][2];
961 cs_real_t a11 = a[0][0]*a[2][2] - a[2][0]*a[0][2];
962 cs_real_t a12 = a[1][0]*a[0][2] - a[0][0]*a[1][2];
963 cs_real_t a20 = a[1][0]*a[2][1] - a[2][0]*a[1][1];
964 cs_real_t a21 = a[2][0]*a[0][1] - a[0][0]*a[2][1];
965 cs_real_t a22 = a[0][0]*a[1][1] - a[1][0]*a[0][1];
967 double det_inv = 1. / (a[0][0]*a00 + a[1][0]*a01 + a[2][0]*a02);
969 a[0][0] = a00 * det_inv;
970 a[0][1] = a01 * det_inv;
971 a[0][2] = a02 * det_inv;
972 a[1][0] = a10 * det_inv;
973 a[1][1] = a11 * det_inv;
974 a[1][2] = a12 * det_inv;
975 a[2][0] = a20 * det_inv;
976 a[2][1] = a21 * det_inv;
977 a[2][2] = a22 * det_inv;
992 cs_real_t a00 = a[1][1]*a[2][2] - a[2][1]*a[1][2];
993 cs_real_t a01 = a[2][1]*a[0][2] - a[0][1]*a[2][2];
994 cs_real_t a02 = a[0][1]*a[1][2] - a[1][1]*a[0][2];
995 cs_real_t a11 = a[0][0]*a[2][2] - a[2][0]*a[0][2];
996 cs_real_t a12 = a[1][0]*a[0][2] - a[0][0]*a[1][2];
997 cs_real_t a22 = a[0][0]*a[1][1] - a[1][0]*a[0][1];
999 double det_inv = 1. / (a[0][0]*a00 + a[1][0]*a01 + a[2][0]*a02);
1001 a[0][0] = a00 * det_inv;
1002 a[0][1] = a01 * det_inv;
1003 a[0][2] = a02 * det_inv;
1004 a[1][0] = a01 * det_inv;
1005 a[1][1] = a11 * det_inv;
1006 a[1][2] = a12 * det_inv;
1007 a[2][0] = a02 * det_inv;
1008 a[2][1] = a12 * det_inv;
1009 a[2][2] = a22 * det_inv;
1030 sout[0] = s[1]*s[2] - s[4]*s[4];
1031 sout[1] = s[0]*s[2] - s[5]*s[5];
1032 sout[2] = s[0]*s[1] - s[3]*s[3];
1033 sout[3] = s[4]*s[5] - s[3]*s[2];
1034 sout[4] = s[3]*s[5] - s[0]*s[4];
1035 sout[5] = s[3]*s[4] - s[1]*s[5];
1037 detinv = 1. / (s[0]*sout[0] + s[3]*sout[3] + s[5]*sout[5]);
1062 mout[0][0] = m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1063 mout[0][1] = m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1064 mout[0][2] = m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1066 mout[1][0] = m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1067 mout[1][1] = m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1068 mout[1][2] = m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1070 mout[2][0] = m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1071 mout[2][1] = m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1072 mout[2][2] = m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1093 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[1][0] + m[0][2]*q[2][0];
1094 _m[0][1] = m[0][0]*q[0][1] + m[0][1]*q[1][1] + m[0][2]*q[2][1];
1095 _m[0][2] = m[0][0]*q[0][2] + m[0][1]*q[1][2] + m[0][2]*q[2][2];
1097 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[1][0] + m[1][2]*q[2][0];
1098 _m[1][1] = m[1][0]*q[0][1] + m[1][1]*q[1][1] + m[1][2]*q[2][1];
1099 _m[1][2] = m[1][0]*q[0][2] + m[1][1]*q[1][2] + m[1][2]*q[2][2];
1101 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[1][0] + m[2][2]*q[2][0];
1102 _m[2][1] = m[2][0]*q[0][1] + m[2][1]*q[1][1] + m[2][2]*q[2][1];
1103 _m[2][2] = m[2][0]*q[0][2] + m[2][1]*q[1][2] + m[2][2]*q[2][2];
1106 mout[0][0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1107 mout[0][1] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1108 mout[0][2] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1110 mout[1][0] = q[0][1]*_m[0][0] + q[1][1]*_m[1][0] + q[2][1]*_m[2][0];
1111 mout[1][1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1112 mout[1][2] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1114 mout[2][0] = q[0][2]*_m[0][0] + q[1][2]*_m[1][0] + q[2][2]*_m[2][0];
1115 mout[2][1] = q[0][2]*_m[0][1] + q[1][2]*_m[1][1] + q[2][2]*_m[2][1];
1116 mout[2][2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1137 _m[0][0] = m[0]*q[0][0] + m[3]*q[1][0] + m[5]*q[2][0];
1138 _m[0][1] = m[0]*q[0][1] + m[3]*q[1][1] + m[5]*q[2][1];
1139 _m[0][2] = m[0]*q[0][2] + m[3]*q[1][2] + m[5]*q[2][2];
1141 _m[1][0] = m[3]*q[0][0] + m[1]*q[1][0] + m[4]*q[2][0];
1142 _m[1][1] = m[3]*q[0][1] + m[1]*q[1][1] + m[4]*q[2][1];
1143 _m[1][2] = m[3]*q[0][2] + m[1]*q[1][2] + m[4]*q[2][2];
1145 _m[2][0] = m[5]*q[0][0] + m[4]*q[1][0] + m[2]*q[2][0];
1146 _m[2][1] = m[5]*q[0][1] + m[4]*q[1][1] + m[2]*q[2][1];
1147 _m[2][2] = m[5]*q[0][2] + m[4]*q[1][2] + m[2]*q[2][2];
1150 mout[0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1151 mout[1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1152 mout[2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1154 mout[3] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1155 mout[4] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1156 mout[5] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1178 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[0][1] + m[0][2]*q[0][2];
1179 _m[0][1] = m[0][0]*q[1][0] + m[0][1]*q[1][1] + m[0][2]*q[1][2];
1180 _m[0][2] = m[0][0]*q[2][0] + m[0][1]*q[2][1] + m[0][2]*q[2][2];
1182 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[0][1] + m[1][2]*q[0][2];
1183 _m[1][1] = m[1][0]*q[1][0] + m[1][1]*q[1][1] + m[1][2]*q[1][2];
1184 _m[1][2] = m[1][0]*q[2][0] + m[1][1]*q[2][1] + m[1][2]*q[2][2];
1186 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[0][1] + m[2][2]*q[0][2];
1187 _m[2][1] = m[2][0]*q[1][0] + m[2][1]*q[1][1] + m[2][2]*q[1][2];
1188 _m[2][2] = m[2][0]*q[2][0] + m[2][1]*q[2][1] + m[2][2]*q[2][2];
1191 mout[0][0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1192 mout[0][1] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1193 mout[0][2] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1195 mout[1][0] = q[1][0]*_m[0][0] + q[1][1]*_m[1][0] + q[1][2]*_m[2][0];
1196 mout[1][1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1197 mout[1][2] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1199 mout[2][0] = q[2][0]*_m[0][0] + q[2][1]*_m[1][0] + q[2][2]*_m[2][0];
1200 mout[2][1] = q[2][0]*_m[0][1] + q[2][1]*_m[1][1] + q[2][2]*_m[2][1];
1201 mout[2][2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1222 _m[0][0] = m[0]*q[0][0] + m[3]*q[0][1] + m[5]*q[0][2];
1223 _m[0][1] = m[0]*q[1][0] + m[3]*q[1][1] + m[5]*q[1][2];
1224 _m[0][2] = m[0]*q[2][0] + m[3]*q[2][1] + m[5]*q[2][2];
1226 _m[1][0] = m[3]*q[0][0] + m[1]*q[0][1] + m[4]*q[0][2];
1227 _m[1][1] = m[3]*q[1][0] + m[1]*q[1][1] + m[4]*q[1][2];
1228 _m[1][2] = m[3]*q[2][0] + m[1]*q[2][1] + m[4]*q[2][2];
1230 _m[2][0] = m[5]*q[0][0] + m[4]*q[0][1] + m[2]*q[0][2];
1231 _m[2][1] = m[5]*q[1][0] + m[4]*q[1][1] + m[2]*q[1][2];
1232 _m[2][2] = m[5]*q[2][0] + m[4]*q[2][1] + m[2]*q[2][2];
1235 mout[0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1236 mout[1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1237 mout[2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1240 mout[3] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1241 mout[4] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1242 mout[5] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1262 m_sym[0][0] = 0.5 * (m[0][0] + m[0][0]);
1263 m_sym[0][1] = 0.5 * (m[0][1] + m[1][0]);
1264 m_sym[0][2] = 0.5 * (m[0][2] + m[2][0]);
1265 m_sym[1][0] = 0.5 * (m[1][0] + m[0][1]);
1266 m_sym[1][1] = 0.5 * (m[1][1] + m[1][1]);
1267 m_sym[1][2] = 0.5 * (m[1][2] + m[2][1]);
1268 m_sym[2][0] = 0.5 * (m[2][0] + m[0][2]);
1269 m_sym[2][1] = 0.5 * (m[2][1] + m[1][2]);
1270 m_sym[2][2] = 0.5 * (m[2][2] + m[2][2]);
1273 m_ant[0][0] = 0.5 * (m[0][0] - m[0][0]);
1274 m_ant[0][1] = 0.5 * (m[0][1] - m[1][0]);
1275 m_ant[0][2] = 0.5 * (m[0][2] - m[2][0]);
1276 m_ant[1][0] = 0.5 * (m[1][0] - m[0][1]);
1277 m_ant[1][1] = 0.5 * (m[1][1] - m[1][1]);
1278 m_ant[1][2] = 0.5 * (m[1][2] - m[2][1]);
1279 m_ant[2][0] = 0.5 * (m[2][0] - m[0][2]);
1280 m_ant[2][1] = 0.5 * (m[2][1] - m[1][2]);
1281 m_ant[2][2] = 0.5 * (m[2][2] - m[2][2]);
1322 mout[0][0] += m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1323 mout[0][1] += m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1324 mout[0][2] += m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1326 mout[1][0] += m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1327 mout[1][1] += m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1328 mout[1][2] += m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1330 mout[2][0] += m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1331 mout[2][1] += m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1332 mout[2][2] += m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1357 sout[0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1359 sout[1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1361 sout[2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1363 sout[3] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1365 sout[4] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1367 sout[5] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1384 const int t2v[3][3] = {{0, 3, 5},
1388 const int iv2t[6] = {0, 1, 2, 0, 1, 0};
1389 const int jv2t[6] = {0, 1, 2, 1, 2, 2};
1391 for (
int i = 0; i < 6; i++) {
1392 for (
int j = 0; j < 6; j++)
1405 for (
int ij = 0; ij < 6; ij++) {
1408 for (
int k = 0;
k < 3;
k++) {
1412 sout[ij][
ik] += s[j][
k];
1413 sout[ij][jk] += s[i][
k];
1441 _sout[0][0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1443 _sout[1][1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1445 _sout[2][2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1447 _sout[0][1] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1449 _sout[1][0] = s2[0]*s1[3] + s2[3]*s1[1] + s2[5]*s1[4];
1451 _sout[1][2] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1453 _sout[2][1] = s2[3]*s1[5] + s2[1]*s1[4] + s2[4]*s1[2];
1455 _sout[0][2] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1457 _sout[2][0] = s2[0]*s1[5] + s2[3]*s1[4] + s2[5]*s1[2];
1459 sout[0][0] = _sout[0][0]*s3[0] + _sout[0][1]*s3[3] + _sout[0][2]*s3[5];
1461 sout[1][1] = _sout[1][0]*s3[3] + _sout[1][1]*s3[1] + _sout[1][2]*s3[4];
1463 sout[2][2] = _sout[2][0]*s3[5] + _sout[2][1]*s3[4] + _sout[2][2]*s3[2];
1465 sout[0][1] = _sout[0][0]*s3[3] + _sout[0][1]*s3[1] + _sout[0][2]*s3[4];
1467 sout[1][0] = s3[0]*_sout[1][0] + s3[3]*_sout[1][1] + s3[5]*_sout[1][2];
1469 sout[1][2] = _sout[1][0]*s3[5] + _sout[1][1]*s3[4] + _sout[1][2]*s3[2];
1471 sout[2][1] = s3[3]*_sout[2][0] + s3[1]*_sout[2][1] + s3[4]*_sout[2][2];
1473 sout[0][2] = _sout[0][0]*s3[5] + _sout[0][1]*s3[4] + _sout[0][2]*s3[2];
1475 sout[2][0] = s3[0]*_sout[2][0] + s3[3]*_sout[2][1] + s3[5]*_sout[2][2];
1493 qv->
meas = magnitude;
1497 qv->
unitv[0] = inv *
v[0];
1498 qv->
unitv[1] = inv *
v[1];
1499 qv->
unitv[2] = inv *
v[2];
#define restrict
Definition: cs_defs.h:139
#define BEGIN_C_DECLS
Definition: cs_defs.h:514
double cs_real_t
Floating-point value.
Definition: cs_defs.h:319
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:334
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:336
#define END_C_DECLS
Definition: cs_defs.h:515
cs_real_t cs_real_33_t[3][3]
3x3 matrix of floating-point values
Definition: cs_defs.h:343
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:313
@ t
Definition: cs_field_pointer.h:92
@ k
Definition: cs_field_pointer.h:70
static cs_real_t cs_math_fabs(cs_real_t x)
Compute the absolute value of a real value.
Definition: cs_math.h:143
static cs_real_t cs_math_sym_33_determinant(const cs_real_6_t m)
Compute the determinant of a 3x3 symmetric matrix.
Definition: cs_math.h:814
static cs_real_t cs_math_3_square_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the squared distance between two points xa and xb in a Cartesian coordinate system of dimensi...
Definition: cs_math.h:349
void cs_math_3_length_unitv(const cs_real_t xa[3], const cs_real_t xb[3], cs_real_t *len, cs_real_3_t unitv)
Compute the length (Euclidean norm) between two points xa and xb in a Cartesian coordinate system of ...
Definition: cs_math.c:403
static cs_real_t cs_math_fmax(cs_real_t x, cs_real_t y)
Compute the max value of two real values.
Definition: cs_math.h:180
static void cs_math_3_normal_scaling(const cs_real_t n[3], cs_real_t factor, cs_real_t v[3])
Add the dot product with a normal vector to the normal direction to a vector.
Definition: cs_math.h:544
static void cs_math_sym_33_double_product(const cs_real_t s1[6], const cs_real_t s2[6], const cs_real_t s3[6], cs_real_t sout[restrict 3][3])
Compute the product of three symmetric matrices.
Definition: cs_math.h:1433
const cs_real_t cs_math_1ov6
static void cs_math_33_normal_scaling_add(const cs_real_t n[3], cs_real_t factor, cs_real_t t[3][3])
Add the dot product with a normal vector to the normal,normal component of a tensor: t += factor * n....
Definition: cs_math.h:566
static cs_real_t cs_math_fmin(cs_real_t x, cs_real_t y)
Compute the min value of two real values.
Definition: cs_math.h:161
static void cs_math_sym_33_3_product(const cs_real_t m[6], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values....
Definition: cs_math.h:655
static cs_real_t cs_math_clamp(cs_real_t x, cs_real_t xmin, cs_real_t xmax)
Clamp function for a given scalar value.
Definition: cs_math.h:202
static cs_real_t cs_math_3_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the (euclidean) distance between two points xa and xb in a Cartesian coordinate system of dim...
Definition: cs_math.h:304
static void cs_math_sym_33_3_product_add(const cs_real_t m[6], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values and add it ...
Definition: cs_math.h:677
static cs_real_t cs_math_6_trace(const cs_real_t t[6])
Compute the trace of a symmetric tensor.
Definition: cs_math.h:734
static void cs_math_3_orthonormal_basis(const cs_real_t vect[3], cs_real_t axes[3][3])
Build an orthonormal basis based on a first vector "vect". axes[0] is vect normalized,...
Definition: cs_math.h:886
double cs_math_surftri(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3])
Compute the area of the convex_hull generated by 3 points. This corresponds to the computation of the...
Definition: cs_math.c:436
static cs_real_t cs_math_33_trace(const cs_real_t t[3][3])
Compute the trace of a 3x3 tensor.
Definition: cs_math.h:718
const cs_real_t cs_math_infinite_r
static cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:440
static cs_real_t cs_math_3_square_norm(const cs_real_t v[3])
Compute the square norm of a vector of 3 real values.
Definition: cs_math.h:456
const cs_real_t cs_math_4ov3
static void cs_math_33_transform_a_to_r(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1172
static cs_real_t cs_math_pow2(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:238
static void cs_math_33_product_add(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t mout[restrict 3][3])
Add the product of two 3x3 real matrices to a matrix.
Definition: cs_math.h:1318
static void cs_math_33_inv_cramer_in_place(cs_real_t a[3][3])
Inverse a 3x3 matrix in place, using Cramer's rule.
Definition: cs_math.h:955
void cs_math_sym_33_eigen(const cs_real_t m[6], cs_real_t eig_vals[3])
Compute all eigenvalues of a 3x3 symmetric matrix with symmetric storage.
Definition: cs_math.c:230
const cs_real_t cs_math_2ov3
static void cs_math_3_normalize(const cs_real_t vin[3], cs_real_t vout[3])
Normalise a vector of 3 real values.
Definition: cs_math.h:499
static void cs_math_sym_33_transform_a_to_r(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1216
void cs_math_fw_and_bw_lu(const cs_real_t a_lu[], const int n, cs_real_t x[], const cs_real_t b[])
Block Jacobi utilities. Compute forward and backward to solve an LU P*P system.
Definition: cs_math.c:680
const cs_real_t cs_math_1ov12
static cs_real_t cs_math_pow3(cs_real_t x)
Compute the cube of a real value.
Definition: cs_math.h:254
void cs_math_fact_lu(cs_lnum_t n_blocks, const int b_size, const cs_real_t *a, cs_real_t *a_lu)
Compute LU factorization of an array of dense matrices of identical size.
Definition: cs_math.c:622
static void cs_math_sym_33_product(const cs_real_t s1[6], const cs_real_t s2[6], cs_real_t sout[restrict 6])
Compute the product of two symmetric matrices.
Definition: cs_math.h:1352
static void cs_math_33_extract_sym_ant(const cs_real_t m[3][3], cs_real_t m_sym[3][3], cs_real_t m_ant[3][3])
Extract from the given matrix its symmetric and anti-symmetric part.
Definition: cs_math.h:1257
static void cs_math_33t_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of the transpose of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:633
static cs_real_t cs_math_pow5(cs_real_t x)
Compute the 5-th power of a real value.
Definition: cs_math.h:286
static void cs_math_33_inv_cramer_sym_in_place(cs_real_t a[3][3])
Inverse a 3x3 symmetric matrix (with non-symmetric storage) in place, using Cramer's rule.
Definition: cs_math.h:990
void cs_math_33_eigen(const cs_real_t m[3][3], cs_real_t *eig_ratio, cs_real_t *eig_max)
Compute max/min eigenvalues ratio and max. eigenvalue of a 3x3 symmetric matrix with non-symmetric st...
Definition: cs_math.c:316
static void cs_math_33_inv_cramer(const cs_real_t in[3][3], cs_real_t out[3][3])
Inverse a 3x3 matrix.
Definition: cs_math.h:923
const cs_real_t cs_math_1ov24
cs_real_t cs_math_sym_44_partial_solve_ldlt(const cs_real_t ldlt[10], const cs_real_t rhs[4])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.c:784
static cs_real_t cs_math_3_dot_product(const cs_real_t u[3], const cs_real_t v[3])
Compute the dot product of two vectors of 3 real values.
Definition: cs_math.h:371
static cs_real_t cs_math_3_triple_product(const cs_real_t u[3], const cs_real_t v[3], const cs_real_t w[3])
Compute the triple product.
Definition: cs_math.h:864
static void cs_math_3_cross_product(const cs_real_t u[3], const cs_real_t v[3], cs_real_t uv[restrict 3])
Compute the cross product of two vectors of 3 real values.
Definition: cs_math.h:838
cs_math_sym_tensor_component_t
Definition: cs_math.h:61
@ ZZ
Definition: cs_math.h:65
@ XY
Definition: cs_math.h:66
@ XZ
Definition: cs_math.h:68
@ YZ
Definition: cs_math.h:67
@ YY
Definition: cs_math.h:64
@ XX
Definition: cs_math.h:63
static void cs_math_3_orthogonal_projection(const cs_real_t n[3], const cs_real_t v[3], cs_real_t vout[restrict 3])
Orthogonal projection of a vector with respect to a normalised vector.
Definition: cs_math.h:523
static void cs_math_sym_33_inv_cramer(const cs_real_t s[6], cs_real_t sout[restrict 6])
Compute the inverse of a symmetric matrix using Cramer's rule.
Definition: cs_math.h:1025
static void cs_math_33_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:591
const cs_real_t cs_math_1ov3
static cs_real_t cs_math_3_distance_dot_product(const cs_real_t xa[3], const cs_real_t xb[3], const cs_real_t xc[3])
Compute .
Definition: cs_math.h:329
static void cs_math_sym_33_transform_r_to_a(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1131
static void cs_math_33_3_product_add(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a matrix of 3x3 real values by a vector of 3 real values add.
Definition: cs_math.h:612
static void cs_math_33_transform_r_to_a(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1087
const cs_real_t cs_math_5ov3
static cs_real_t cs_math_sq(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:222
static void cs_math_66_6_product_add(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t mv[restrict 6])
Compute the product of a matrix of 6x6 real values by a vector of 6 real values and add it to the vec...
Definition: cs_math.h:773
const cs_real_t cs_math_epzero
static cs_real_t cs_math_3_sym_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[6], const cs_real_t n2[3])
Compute the dot product of a symmetric tensor t with two vectors, n1 and n2.
Definition: cs_math.h:420
const cs_real_t cs_math_big_r
double cs_math_voltet(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3], const cs_real_t xc[3])
Compute the volume of the convex_hull generated by 4 points. This is equivalent to the computation of...
Definition: cs_math.c:466
void cs_math_33_eig_val_vec(const cs_real_t m_in[3][3], const cs_real_t tol_err, cs_real_t eig_val[restrict 3], cs_real_t eig_vec[restrict 3][3])
Evaluate eigenvalues and eigenvectors of a real symmetric matrix m1[3,3]: m1*m2 = lambda*m2.
Definition: cs_math.c:498
static int cs_math_binom(int n, int k)
Computes the binomial coefficient of n and k.
Definition: cs_math.h:113
static void cs_nvec3(const cs_real_3_t v, cs_nvec3_t *qv)
Define a cs_nvec3_t structure from a cs_real_3_t.
Definition: cs_math.h:1488
void cs_math_sym_44_factor_ldlt(cs_real_t ldlt[10])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.c:725
static cs_real_t cs_math_33_main_invariant_2(const cs_real_t m[3][3])
Compute the second main invariant of the symmetric part of a 3x3 tensor.
Definition: cs_math.h:1296
static void cs_math_reduce_sym_prod_33_to_66(const cs_real_t s[3][3], cs_real_t sout[restrict 6][6])
Compute a 6x6 matrix A, equivalent to a 3x3 matrix s, such as: A*R_6 = R*s^t + s*R.
Definition: cs_math.h:1381
const cs_real_t cs_math_pi
static void cs_math_66_6_product(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t mv[restrict 6])
Compute the product of a matrix of 6x6 real values by a vector of 6 real values.
Definition: cs_math.h:751
static const cs_real_33_t cs_math_33_identity
Definition: cs_math.h:92
static cs_real_t cs_math_pow4(cs_real_t x)
Compute the 4-th power of a real value.
Definition: cs_math.h:270
static const cs_real_6_t cs_math_sym_33_identity
Definition: cs_math.h:95
static void cs_math_3_normalise(const cs_real_t vin[3], cs_real_t vout[3])
Normalize a vector of 3 real values.
Definition: cs_math.h:475
static cs_real_t cs_math_33_determinant(const cs_real_t m[3][3])
Compute the determinant of a 3x3 matrix.
Definition: cs_math.h:794
static cs_real_t cs_math_sym_33_sym_33_product_trace(const cs_real_t m1[6], const cs_real_t m2[6])
Compute the product of two symmetric matrices of 3x3 real values and take the trace....
Definition: cs_math.h:699
static void cs_math_33_product(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t mout[3][3])
Compute the product of two 3x3 real valued matrices.
Definition: cs_math.h:1058
static cs_real_t cs_math_3_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[3][3], const cs_real_t n2[3])
Compute the dot product of a tensor t with two vectors, n1 and n2.
Definition: cs_math.h:392
const cs_real_t cs_math_zero_threshold
double precision, dimension(:,:,:), allocatable u
Definition: atimbr.f90:113
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:114
integer, save ik
turbulent kinetic energy
Definition: numvar.f90:75
Definition: cs_defs.h:372
double meas
Definition: cs_defs.h:374
double unitv[3]
Definition: cs_defs.h:375