1 #ifndef __CS_PROTOTYPES_H__ 2 #define __CS_PROTOTYPES_H__ 894 const char *syrthes_name,
982 const char *field_name,
983 const char *condition);
1011 const char *field_name);
1030 const char *source_type);
1048 const char *object_name,
void cs_user_finalize_setup(cs_domain_t *domain)
Define or modify output user parameters. For CDO schemes, specify the elements such as properties...
Definition: cs_user_parameters.c:180
void cs_user_partition(void)
Define advanced partitioning options.
Definition: cs_user_performance_tuning.c:87
cs_real_t * cs_meg_initialization(const cs_zone_t *zone, const char *field_name)
Evaluate GUI defined mathematical expressions over volume zones for initialization.
Definition: cs_meg_initialization.c:70
void cpthp1(const int *mode, cs_real_t *eh, cs_real_t *xesp, cs_real_t *f1mc, cs_real_t *f2mc, cs_real_t *tp)
void cs_user_internal_coupling_add_volumes(cs_mesh_t *mesh)
Define volumes as internal coupling zones.
Definition: cs_internal_coupling.c:3147
time step descriptor
Definition: cs_time_step.h:64
integer, save ncel
Definition: mesh.f90:50
#define restrict
Definition: cs_defs.h:142
void cs_user_extra_operations_finalize(cs_domain_t *domain)
This function is called at the end of the calculation.
Definition: cs_user_extra_operations.c:126
void initi1(void)
Definition: initi1.f90:29
void cs_user_internal_coupling(void)
Define internal coupling options.
Definition: cs_user_parameters.c:162
void cs_user_physical_properties(cs_domain_t *domain)
This function is called each time step to define physical properties.
Definition: cs_user_physical_properties.c:81
void cs_user_paramedmem_define_meshes(void)
Define coupled meshes.
Definition: cs_user_paramedmem_coupling.c:95
void cs_user_physical_properties_h_to_t(cs_domain_t *domain, const cs_zone_t *z, bool z_local, const cs_real_t h[restrict], cs_real_t t[restrict])
User definition of enthalpy to temperature conversion.
void cs_user_periodicity(void)
Define periodic faces.
Definition: cs_user_mesh.c:108
void cs_user_extra_operations(cs_domain_t *domain)
This function is called at the end of each time step.
Definition: cs_user_extra_operations.c:108
void cs_user_boundary_conditions_setup(cs_domain_t *domain)
Set boundary conditions to be applied.
Definition: cs_user_boundary_conditions.c:70
void cs_user_turbomachinery(void)
Define rotor/stator model.
Definition: cs_user_turbomachinery.c:77
Field descriptor.
Definition: cs_field.h:125
void cs_user_rad_transfer_absorption(const int bc_type[], cs_real_t ck[])
Absorption coefficient for radiative module.
Definition: cs_user_radiative_transfer.c:103
void cs_user_mesh_cartesian_define(void)
Define a cartesian mesh.
Definition: cs_user_mesh.c:233
void cs_hydrostatic_pressure_compute(int *indhyd, int iterns, cs_real_t fext[][3], cs_real_t dfext[][3], cs_real_t phydr[], cs_real_t flumas[], cs_real_t flumab[], cs_real_t viscf[], cs_real_t viscb[], cs_real_t dam[], cs_real_t xam[], cs_real_t dpvar[], cs_real_t rhs[])
void caltri(void)
Definition: caltri.f90:36
#define BEGIN_C_DECLS
Definition: cs_defs.h:510
void cs_user_parameters(cs_domain_t *domain)
Define or modify general numerical and physical user parameters.
Definition: cs_user_parameters.c:107
void cs_user_source_terms(cs_domain_t *domain, int f_id, cs_real_t *st_exp, cs_real_t *st_imp)
Additional user-defined source terms for variable equations (momentum, scalars, turbulence...).
Definition: cs_user_source_terms.c:155
void cs_user_postprocess_activate(int nt_max_abs, int nt_cur_abs, double t_cur_abs)
Definition: cs_user_postprocess.c:177
void haltyp(const int *ivoset)
void cs_user_postprocess_meshes(void)
Define post-processing meshes.
Definition: cs_user_postprocess.c:86
void cs_user_model(void)
Select physical model options, including user fields.
Definition: cs_user_parameters.c:84
double cs_tagms_s_metal(void)
Definition: cs_tagms.f90:124
void cs_user_rad_transfer_net_flux(const int itypfb[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t twall[], const cs_real_t qincid[], const cs_real_t xlam[], const cs_real_t epa[], const cs_real_t eps[], const cs_real_t ck[], cs_real_t net_flux[])
Compute the net radiation flux.
Definition: cs_user_radiative_transfer.c:141
void dvvpst(const int *nummai, const int *numtyp, const int *nvar, const cs_lnum_t *ncelps, const cs_lnum_t *nfbrps, const cs_lnum_t lstcel[], const cs_lnum_t lstfbr[], cs_real_t tracel[], cs_real_t trafbr[])
void cs_fuel_bt2h(cs_lnum_t n_faces, const cs_lnum_t face_ids[], const cs_real_t t[], cs_real_t h[])
Convert temperature to enthalpy at boundary for fuel combustion.
void cs_user_mesh_modify(cs_mesh_t *mesh)
Modify geometry and mesh.
Definition: cs_user_mesh.c:151
void cs_fuel_thfieldconv1(int location_id, const cs_real_t eh[], cs_real_t tp[])
Calculation of the gas temperature Function with the gas enthalpy and concentrations.
void cs_user_join(void)
Define mesh joinings.
Definition: cs_user_mesh.c:95
void cs_user_paramedmem_define_fields(void)
Define fields to couple with ParaMEDMEM.
Definition: cs_user_paramedmem_coupling.c:108
void cs_user_syrthes_coupling_volume_h(int coupling_id, const char *syrthes_name, cs_lnum_t n_elts, const cs_lnum_t elt_ids[], cs_real_t h_vol[])
Compute a volume exchange coefficient for SYRTHES couplings.
Definition: cs_user_coupling.c:114
void cs_user_postprocess_values(const char *mesh_name, int mesh_id, int cat_id, cs_probe_set_t *probes, cs_lnum_t n_cells, cs_lnum_t n_i_faces, cs_lnum_t n_b_faces, cs_lnum_t n_vertices, const cs_lnum_t cell_list[], const cs_lnum_t i_face_list[], const cs_lnum_t b_face_list[], const cs_lnum_t vertex_list[], const cs_time_step_t *ts)
User function for output of values on a post-processing mesh.
Definition: cs_user_postprocess.c:134
void cs_user_scaling_elec(const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities, cs_real_t *dt)
Define scaling parameter for electric model.
Definition: cs_user_electric_scaling.c:75
void cs_user_radiative_transfer_parameters(void)
User function for input of radiative transfer module options.
Definition: cs_user_radiative_transfer.c:77
double cs_real_t
Floating-point value.
Definition: cs_defs.h:322
void cs_user_numbering(void)
Define advanced mesh numbering options.
Definition: cs_user_performance_tuning.c:74
int * cs_atmo_get_auto_flag(void)
Return pointer to automatic face bc flag array.
Definition: atincl.f90:644
integer, save ncelet
Definition: mesh.f90:46
void cs_user_mesh_save(cs_mesh_t *mesh)
Enable or disable mesh saving.
Definition: cs_user_mesh.c:183
void csinit(const int *irgpar, const int *nrgpar)
double precision, dimension(:,:), pointer xyzcen
Definition: mesh.f90:110
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:114
void cs_user_extra_operations_initialize(cs_domain_t *domain)
Initialize variables.
Definition: cs_user_extra_operations.c:90
void cs_user_matrix_tuning(void)
Define sparse matrix tuning options.
Definition: cs_user_performance_tuning.c:113
void cs_user_mesh_warping(void)
Set options for cutting of warped faces.
Definition: cs_user_mesh.c:121
void cs_user_solver(const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities)
Main call to user solver.
Definition: cs_user_solver.c:92
void cs_meg_immersed_boundaries_inout(int *ipenal, const char *object_name, cs_real_t xyz[3], cs_real_t t)
void cs_user_postprocess_probes(void)
Define monitoring probes and profiles.
Definition: cs_user_postprocess.c:101
void cs_lagr_status(int *model_flag, int *restart_flag, int *frozen_flag)
int cs_user_solver_set(void)
Set user solver.
Definition: cs_user_solver.c:75
Definition: cs_field_pointer.h:91
Definition: cs_field_pointer.h:65
cs_real_t * cs_get_cavitation_gam(void)
Return pointer to cavitation "gamcav" array.
Definition: pointe.f90:741
void cs_meg_fsi_struct(const char *object_type, const char *name, const cs_real_t fluid_f[], cs_real_t val[])
This function is used to query FSI internal coupling structure values for a given boundary and struct...
Definition: cs_meg_fsi_struct.c:70
void cs_user_linear_solvers(void)
Define linear solver options.
Definition: cs_user_parameters.c:130
Definition: cs_mesh_quantities.h:89
void cs_user_internal_coupling_from_disjoint_meshes(cs_mesh_t *mesh)
Define volumesi from separated meshes as internal coupling zones.
Definition: cs_internal_coupling.c:3166
integer, dimension(:), pointer, save itypfb
Definition: pointe.f90:100
integer, save isuit1
Definition: optcal.f90:297
Structure storing the main features of the computational domain and pointers to the main geometrical ...
Definition: cs_domain.h:140
integer, save nvar
number of solved variables (must be lower than nvarmx)
Definition: dimens.f90:42
cs_real_t * cs_get_b_head_loss(void)
Return pointer to boundary head losses array.
Definition: pointe.f90:713
cs_real_t * cs_meg_boundary_function(const cs_zone_t *zone, const char *field_name, const char *condition)
Definition: cs_meg_boundary_function.c:71
void cs_meg_post_profiles(const char *name, int n_coords, cs_real_t coords[][3])
This function is used to define profile coordinates.
Definition: cs_meg_post_profile.c:68
void cs_user_time_moments(void)
Define time moments.
Definition: cs_user_parameters.c:147
void cs_user_radiative_transfer_bcs(int nvar, const int bc_type[], int icodcl[], int isothp[], cs_real_t *tmin, cs_real_t *tmax, cs_real_t *tx, const cs_real_t dt[], cs_real_t rcodcl[], const cs_real_t thwall[], const cs_real_t qincid[], cs_real_t hfcnvp[], cs_real_t flcnvp[], cs_real_t xlamp[], cs_real_t epap[], cs_real_t epsp[], cs_real_t textp[])
User definition of radiative transfer boundary conditions.
Definition: cs_user_radiative_transfer_bcs.c:130
Definition: cs_field_pointer.h:183
void cs_user_mesh_input(void)
Define mesh files to read and optional associated transformations.
Definition: cs_user_mesh.c:82
void cs_user_mesh_bad_cells_tag(cs_mesh_t *mesh, cs_mesh_quantities_t *mesh_quantities)
Tag bad cells within the mesh based on user-defined geometric criteria.
Definition: cs_user_mesh.c:199
void cs_user_postprocess_writers(void)
Define post-processing writers.
Definition: cs_user_postprocess.c:69
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:316
cs_real_t * cs_meg_source_terms(const cs_zone_t *zone, const char *name, const char *source_type)
Definition: cs_meg_source_terms.c:71
void cs_coal_bt2h(cs_lnum_t n_faces, const cs_lnum_t face_ids[], const cs_real_t t[], cs_real_t h[])
Convert temperature to enthalpy at boundary for coal combustion.
void cs_coal_thfieldconv1(int location_id, const cs_real_t eh[], cs_real_t tp[])
Calculation of the gas temperature Function with the gas enthalpy and concentrations.
int cs_add_model_field_indexes(int f_id)
#define END_C_DECLS
Definition: cs_defs.h:511
void cs_meg_volume_function(const cs_zone_t *zone, cs_field_t *f[])
This function is used to compute user defined values for fields over a given volume zone...
Definition: cs_meg_volume_function.c:68
void cs_meg_post_activate(void)
This function is used to activate postprocessing writers.
Definition: cs_meg_post_output.c:64
void cs_user_turbomachinery_set_rotation_velocity(void)
Define rotation velocity of rotor.
Definition: cs_user_turbomachinery.c:103
struct _cs_probe_set_t cs_probe_set_t
Definition: cs_probe.h:53
void cs_user_paramedmem_define_couplings(void)
Define ParaMEDMEM coupling(s)
Definition: cs_user_paramedmem_coupling.c:82
void cs_user_hgn_thermo_relax_time(const cs_mesh_t *mesh, const cs_real_t *alpha_eq, const cs_real_t *y_eq, const cs_real_t *z_eq, const cs_real_t *ei, const cs_real_t *v, cs_real_t *relax_tau)
Computation of the relaxation time-scale.
Definition: cs_user_hgn.c:82
#define CS_PROCF(x, y)
Definition: cs_defs.h:524
void cs_user_mesh_boundary(cs_mesh_t *mesh)
Insert boundaries into a mesh.
Definition: cs_user_mesh.c:136
void cs_user_syrthes_coupling(void)
Define couplings with SYRTHES code.
Definition: cs_user_coupling.c:95
Definition: cs_field_pointer.h:92
void cs_user_turbomachinery_rotor(void)
Define rotor axes, associated cells, and rotor/stator faces.
Definition: cs_user_turbomachinery.c:90
void findpt(const cs_lnum_t *ncelet, const cs_lnum_t *ncel, const cs_real_t *xyzcen, const cs_real_t *xx, const cs_real_t *yy, const cs_real_t *zz, cs_lnum_t *node, int *ndrang)
cs_real_t * cs_get_cavitation_dgdp_st(void)
Return pointer to cavitation "dgdpca" array.
Definition: pointe.f90:727
void cs_user_physical_properties_t_to_h(cs_domain_t *domain, const cs_zone_t *z, bool z_local, const cs_real_t t[restrict], cs_real_t h[restrict])
User definition of temperature to enthalpy conversion.
void cs_user_parallel_io(void)
Define parallel IO settings.
Definition: cs_user_performance_tuning.c:100
Definition: cs_field_pointer.h:71
void cs_user_head_losses(const cs_zone_t *zone, cs_real_t cku[][6])
Compute GUI-defined head losses for a given volume zone.
Definition: cs_user_head_losses.c:92
void cs_user_saturne_coupling(void)
Define couplings with other instances of Code_Saturne.
Definition: cs_user_coupling.c:79
void cs_user_mesh_smoothe(cs_mesh_t *mesh)
Mesh smoothing.
Definition: cs_user_mesh.c:166
void cs_user_1d_wall_thermal(int iappel, int isuit1)
Definition: cs_user_1d_wall_thermal.c:88
void cs_user_boundary_conditions(int nvar, int icodcl[], int bc_type[], cs_real_t rcodcl[])
User definition of boundary conditions.
Definition: cs_user_boundary_conditions.c:98
void cs_user_mesh_modify_partial(cs_mesh_t *mesh, cs_mesh_quantities_t *mesh_quantities)
Apply partial modifications to the mesh after the preprocessing and initial postprocessing mesh build...
Definition: cs_user_mesh.c:218
void distpr(const int *itypfb, cs_real_t *distpa)
void cs_user_porosity(cs_domain_t *domain)
Compute the porosity (volume factor when the porosity model is activated. (cs_glob_porous_model > 0)...
Definition: cs_user_porosity.c:80
void cs_user_initialization(cs_domain_t *domain)
This function is called one time step to initialize problem.
Definition: cs_user_initialization.c:88
Definition: cs_field_pointer.h:184
void cs_user_zones(void)
Define volume and surface zones.
Definition: cs_user_zones.c:65