9.0
general documentation
Loading...
Searching...
No Matches
cs_gradient_boundary.cpp File Reference

Gradient reconstruction at boundaries and associated functions. More...

#include "base/cs_defs.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "bft/bft_error.h"
#include "bft/bft_mem.h"
#include "bft/bft_printf.h"
#include "base/cs_ext_neighborhood.h"
#include "base/cs_field.h"
#include "base/cs_halo.h"
#include "alge/cs_gradient_priv.h"
#include "base/cs_math.h"
#include "mesh/cs_mesh.h"
#include "mesh/cs_mesh_adjacencies.h"
#include "mesh/cs_mesh_quantities.h"
#include "base/cs_parall.h"
#include "alge/cs_gradient_boundary.h"
Include dependency graph for cs_gradient_boundary.cpp:

Functions

void cs_gradient_boundary_iprime_lsq_s (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t c_weight[], const cs_real_t var[], cs_real_t *restrict var_iprime)
 Compute the values of a scalar at boundary face I' positions using least-squares interpolation.
void cs_gradient_boundary_iprime_lsq_s_ani (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, double clip_coeff, const cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t c_weight[][6], const cs_real_t var[], cs_real_t *restrict var_iprime)
 Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting.

Detailed Description

Gradient reconstruction at boundaries and associated functions.

Function Documentation

◆ cs_gradient_boundary_iprime_lsq_s()

void cs_gradient_boundary_iprime_lsq_s ( const cs_mesh_t * m,
const cs_mesh_quantities_t * fvq,
cs_lnum_t n_faces,
const cs_lnum_t * face_ids,
cs_halo_type_t halo_type,
double clip_coeff,
const cs_field_bc_coeffs_t * bc_coeffs,
const cs_real_t c_weight[],
const cs_real_t var[],
cs_real_t *restrict var_iprime )

Compute the values of a scalar at boundary face I' positions using least-squares interpolation.

This assumes ghost cell values for the variable (var) are up-to-date.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

Remarks

To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neumann BC for a given face.

We still use the provided BC's when possible, for the following cases:

  • Given a non-uniform Dirichlet condition and a non-orthogonal mesh, the Dirichlet values at face centers (shifted by II' relative to I') can convey a portion of the information of the gradient along II'.
  • For cells with multiple boundary faces, information from faces whose normals are not orthogonal to II' can also provide a significant contribution to the normal.
Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]halo_typehalo (cell neighborhood) type
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffsboundary condition structure, or nullptr
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations

◆ cs_gradient_boundary_iprime_lsq_s_ani()

void cs_gradient_boundary_iprime_lsq_s_ani ( const cs_mesh_t * m,
const cs_mesh_quantities_t * fvq,
cs_lnum_t n_faces,
const cs_lnum_t * face_ids,
double clip_coeff,
const cs_field_bc_coeffs_t * bc_coeffs,
const cs_real_t c_weight[][6],
const cs_real_t var[],
cs_real_t *restrict var_iprime )

Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting.

This assumes ghost cell values for the variable (var) are up-to-date.

A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).

Remarks
The same remark applies as for cs_gradient_boundary_iprime_lsq_s.
Parameters
[in]mpointer to associated mesh structure
[in]fvqpointer to associated finite volume quantities
[in]n_facesnumber of faces at which to compute values
[in]face_idsids of boundary faces at which to compute values, or nullptr for all
[in]clip_coeffclipping (limiter) coefficient (no limiter if < 0)
[in]bc_coeffsboundary condition structure
[in]c_weightcell variable weight, or nullptr
[in]varvariable values et cell centers
[out]var_iprimevariable values et face iprime locations