8.3
general documentation
cs_turbulence_kw.cpp File Reference
#include "cs_defs.h"
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include "bft_mem.h"
#include "cs_array.h"
#include "cs_balance.h"
#include "cs_blas.h"
#include "cs_halo.h"
#include "cs_base.h"
#include "cs_dispatch.h"
#include "cs_equation.h"
#include "cs_equation_iterative_solve.h"
#include "cs_face_viscosity.h"
#include "cs_field.h"
#include "cs_field_default.h"
#include "cs_field_pointer.h"
#include "cs_field_operator.h"
#include "cs_gradient.h"
#include "cs_lagr.h"
#include "cs_log.h"
#include "cs_log_iteration.h"
#include "cs_mass_source_terms.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_quantities.h"
#include "cs_physical_constants.h"
#include "cs_porous_model.h"
#include "cs_prototypes.h"
#include "cs_rotation.h"
#include "cs_thermal_model.h"
#include "cs_time_step.h"
#include "cs_turbulence_model.h"
#include "cs_turbulence_rotation.h"
#include "cs_volume_mass_injection.h"
#include "cs_velocity_pressure.h"
#include "cs_wall_functions.h"
#include "cs_turbulence_kw.h"
+ Include dependency graph for cs_turbulence_kw.cpp:

Functions

void cs_turbulence_kw (int phase_id)
 Solve the k-omega equations. More...
 
void cs_turbulence_kw_mu_t (int phase_id)
 Calculation of turbulent viscosity for the $ k - \omega $ SST model. More...
 

Detailed Description

Solve the $ k - \omega $ SST for incompressible flows or slightly compressible flows for one time step.

Function Documentation

◆ cs_turbulence_kw()

void cs_turbulence_kw ( int  phase_id)

Solve the k-omega equations.

Solve the $ k - \omega $ SST for incompressible flows or slightly compressible flows for one time step.

Parameters
[in]phase_idturbulent phase id (-1 for single phase flow)

◆ cs_turbulence_kw_mu_t()

void cs_turbulence_kw_mu_t ( int  phase_id)

Calculation of turbulent viscosity for the $ k - \omega $ SST model.

\[ \mu_T = \rho A1 \dfrac{k}{\max(A1 \omega; \; S f_2)} \]

with

\[ S = \sqrt{  2 S_{ij} S_{ij}} \]

\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]

and $ f_2 = \tanh(arg2^2) $

\[ arg2^2 = \max(2 \dfrac{\sqrt{k}}{C_\mu \omega y}; \;
                    500 \dfrac{\nu}{\omega y^2}) \]

where $ y $ is the distance to the wall.

$ \divs{\vect{u}} $ is calculated at the same time than $ S $ for use in cs_turbulence_kw.

Parameters
[in]phase_idturbulent phase id (-1 for single phase flow)

!