8.0
general documentation
Definition of the variables to post-process

Additional post-processing variables

For the mesh parts defined using the GUI or in cs_user_postprocess.c, the cs_user_postprocess_values function of the cs_user_postprocess.c file may be used to specify the variables to post-process (called for each postprocess output mesh, at every active time step of an associated writer).

The output of a given variable is generated by means of a call to the cs_post_write_var for cell or face values, cs_post_write_vertex_var for vertex values, cs_post_write_particle_values for particle or trajectory values, and cs_post_write_probe_values for probe or profile values.

The examples of post-processing given below use meshes defined in the examples for cs_user_postprocess_meshes above.

Output a given field or component with a given mesh

To output specific field values on a given postprocessing mesh, that field may be attached (associated) to that mesh.

In the following example, the pressure is output on mesh 4, for all associated writers:

cs_field_id_by_name("pressure"),
-1);
int cs_field_id_by_name(const char *name)
Return the id of a defined field based on its name.
Definition: cs_field.c:2460
void cs_post_mesh_attach_field(int mesh_id, int writer_id, int field_id, int comp_id)
Associate a field to a writer and postprocessing mesh combination.
Definition: cs_post.c:4969
#define CS_POST_WRITER_ALL_ASSOCIATED
Definition: cs_post.h:67

In this second example, the velocity's z component is ouput on mesh 4, only for writer 1:

1,
CS_F_(vel)->id,
2);
@ vel
Definition: cs_field_pointer.h:68
#define CS_F_(e)
Macro used to return a field pointer by its enumerated value.
Definition: cs_field_pointer.h:51

If the mesh has the auto_variables option enabled, and a field is already selected for "standard" postprocessing (i.e. selected for output in the GUI, or post_vis key value includes the CS_POST_ON_LOCATION bit), it will not be output an additional time, so this option should be safely usable even with limited precautions.

Output of the turbulent kinetic energy for the Rij-Epsilon model on the volume mesh

One can define, compute and post-process the turbulent kinetic energy for the Rij-Epsilon as shown in the following example:

if (cat_id == CS_POST_MESH_VOLUME) { /* filter: only for volume
postprocessing mesh */
cs_real_t *s_cell;
BFT_MALLOC(s_cell, n_cells, cs_real_t);
const cs_real_6_t *cvar_r = (const cs_real_6_t *)(CS_F_(rij)->val);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t cell_id = cell_list[i];
s_cell[i] = 0.5* ( cvar_r[cell_id][0]
+ cvar_r[cell_id][1]
+ cvar_r[cell_id][2]);
}
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
"Turb energy", /* var_name */
1, /* var_dim */
true, /* interlace, */
false, /* use_parent */
CS_POST_TYPE_cs_real_t, /* var_type */
s_cell, /* cel_vals */
NULL, /* i_face_vals */
NULL, /* b_face_vals */
ts);
BFT_FREE(s_cell);
}
}
#define BFT_MALLOC(_ptr, _ni, _type)
Allocate memory for _ni elements of type _type.
Definition: bft_mem.h:62
#define BFT_FREE(_ptr)
Free allocated memory.
Definition: bft_mem.h:101
double cs_real_t
Floating-point value.
Definition: cs_defs.h:319
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:334
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:313
@ rij
Definition: cs_field_pointer.h:73
void cs_post_write_var(int mesh_id, int writer_id, const char *var_name, int var_dim, bool interlace, bool use_parent, cs_datatype_t datatype, const void *cel_vals, const void *i_face_vals, const void *b_face_vals, const cs_time_step_t *ts)
Output a variable defined at cells or faces of a post-processing mesh using associated writers.
Definition: cs_post.c:5942
#define CS_POST_MESH_VOLUME
Definition: cs_post.h:79
#define CS_POST_TYPE_cs_real_t
Definition: cs_post.h:98
const cs_turb_model_t * cs_glob_turb_model
int itytur
Definition: cs_turbulence_model.h:139

Output of a variable on a surface mesh

Values can also be output on a surface mesh, possibly containing a mix of boundary and internal faces. In the following example, we simply average or project adjacent cell values on faces, but more precise techniques could be used:

if (strcmp(mesh_name, "pressure_surface") == 0) { /* Restrict to this mesh */
cs_real_t *cvar_p = CS_F_(p)->val; /* pressure */
/* Ensure variable is synchronized in parallel or periodic cases;
should already have been done before, repeated for safety */
const cs_mesh_t *m = cs_glob_mesh;
cs_real_t *s_i_faces = NULL, *s_b_faces = NULL;
/* Interior faces */
if (n_i_faces > 0) {
BFT_MALLOC(s_i_faces, n_i_faces, cs_real_t);
for (cs_lnum_t i = 0; i < n_i_faces; i++) {
cs_lnum_t face_id = i_face_list[i];
/* Use unweighted mean of adjacent cell values here */
cs_lnum_t c1 = m->i_face_cells[face_id][0];
cs_lnum_t c2 = m->i_face_cells[face_id][1];
s_i_faces[i] = 0.5 * (cvar_p[c1] + cvar_p[c2]);
}
}
/* Boundary faces */
if (n_b_faces > 0) {
BFT_MALLOC(s_b_faces, n_b_faces, cs_real_t);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
cs_lnum_t face_id = b_face_list[i];
/* Use adjacent cell value here */
cs_lnum_t cell_id = m->b_face_cells[face_id];
s_b_faces[i] = cvar_p[cell_id];
}
}
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
"Pressure", /* var_name */
1, /* var_dim */
true, /* interlace, */
false, /* use_parent */
CS_POST_TYPE_cs_real_t, /* var_type */
NULL, /* cel_vals */
s_i_faces, /* i_face_vals */
s_b_faces, /* b_face_vals */
ts);
BFT_FREE(s_i_faces);
BFT_FREE(s_b_faces);
}
@ p
Definition: cs_field_pointer.h:67
void cs_mesh_sync_var_scal(cs_real_t *var)
Definition: cs_mesh.c:3319
cs_mesh_t * cs_glob_mesh
double precision, dimension(ncharm), save c1
Definition: cpincl.f90:233
double precision, dimension(ncharm), save c2
Definition: cpincl.f90:233
Definition: cs_mesh.h:85
cs_lnum_t * b_face_cells
Definition: cs_mesh.h:112
cs_lnum_2_t * i_face_cells
Definition: cs_mesh.h:111

Simple output of an existing field or array

For fields or arrays already defined on the full mesh, the "use_parent" option of cs_post_write_var may be used to simply reference the values on the parent (i.e. full) mesh when requesting an output. Note that the example below can also be used with probes or profiles:

if ( cat_id == CS_POST_MESH_VOLUME
|| cat_id == CS_POST_MESH_PROBES) {
const cs_field_t *f = cs_field_by_name_try("my_field");
if (f != NULL)
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
f->name, /* var_name */
1, /* var_dim */
true, /* interlace, */
true, /* use_parent */
CS_POST_TYPE_cs_real_t, /* var_type */
f->val, /* cel_vals */
NULL, /* i_face_vals */
NULL, /* b_face_vals */
ts);
}
cs_field_t * cs_field_by_name_try(const char *name)
Return a pointer to a field based on its name if present.
Definition: cs_field.c:2366
#define CS_POST_MESH_PROBES
Definition: cs_post.h:83
Field descriptor.
Definition: cs_field.h:130
const char * name
Definition: cs_field.h:132
cs_real_t * val
Definition: cs_field.h:151

Single output of time-independent values

Finally, a minor modification f the above example shows how it is possible to output time-independent values to a writer also used for time-dependent fields without requiring multiple outputs of those values:

if (cat_id == CS_POST_MESH_VOLUME) {
const cs_field_t *f = cs_field_by_name_try("my_const_field");
if (f != NULL) {
if (ts->nt_cur == ts->nt_prev + 1) { /* before time loop */
cs_time_step_t ts0 = *ts;
ts0.nt_cur = 1; /* Negative time step value implies time-independent */
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
f->name, /* var_name */
1, /* var_dim */
true, /* interlace, */
true, /* use_parent */
CS_POST_TYPE_cs_real_t, /* var_type */
f->val, /* cel_vals */
NULL, /* i_face_vals */
NULL, /* b_face_vals */
&ts0);
}
}
}
time step descriptor
Definition: cs_time_step.h:64
int nt_cur
Definition: cs_time_step.h:74

Additional profile variables

The following examples match the advanced profile definitions given in Advanced profile definitions.

The first section is common to both profile series:

const cs_mesh_t *m = cs_glob_mesh;
const cs_real_3_t *cell_cen = (const cs_real_3_t *)mq->cell_cen;
const cs_real_3_t *vel = (const cs_real_3_t *)CS_F_(vel)->val;
const cs_real_t uref2 = uref*uref;
const char *name = cs_probe_set_get_name(probes);
bool is_profile = false;
NULL,
NULL,
&is_profile,
NULL,
NULL,
NULL,
NULL,
NULL);
const cs_time_step_t *ts_post = ts;
if (is_profile && ts->nt_cur == ts->nt_max)
ts = NULL;
/* Common variables */
const cs_real_t href = 1.;
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:332
cs_mesh_quantities_t * cs_glob_mesh_quantities
const char * cs_probe_set_get_name(cs_probe_set_t *pset)
Retrieve the name related to a cs_probe_set_t structure.
Definition: cs_probe.c:836
void cs_probe_set_get_post_info(const cs_probe_set_t *pset, bool *time_varying, bool *on_boundary, bool *on_curve, bool *auto_variables, bool *auto_curve_coo, bool *auto_cart_coo, int *n_writers, int *writer_ids[])
Retrieve information useful for the postprocessing step.
Definition: cs_probe.c:864
const cs_turb_ref_values_t * cs_glob_turb_ref_values
real(c_double), pointer, save uref
the characteristic flow velocity, used for the initialization of the turbulence. Negative value: not ...
Definition: cstphy.f90:440
Definition: cs_mesh_quantities.h:92
cs_real_t * cell_cen
Definition: cs_mesh_quantities.h:94
double uref
Definition: cs_turbulence_model.h:169

For the profiles along fixed x, the following code is used. Note that this code's complexity is mainly due to extracting Reynolds stresses for different turbulence models and options. Specific values are then computed for each colum, in the switch statement:

if (strncmp(name, "buicesat", strlen("buicesat")) == 0) {
cs_real_t *val;
BFT_MALLOC(val, n_cells, cs_real_t);
char var_name[64];
/* mean x */
cs_real_t x_sum[] = {0, 0};
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
x_sum[0] += cell_cen[c_id][0];
}
x_sum[1] = n_cells;
cs_real_t xpos = x_sum[0]/x_sum[1];
/* Reynolds stresses */
cs_real_6_t *rij = NULL;
if ( turb_mdl->itytur == 2
|| turb_mdl->itytur == 5
|| turb_mdl->itytur == 6) {
cs_post_evm_reynolds_stresses(interpolation_type,
n_cells,
cell_list,
NULL, /* coords */
rij);
}
else if (turb_mdl->itytur == 3) {
cs_real_6_t *cvar_rij = (cs_real_6_t *)CS_F_(rij)->val;
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
for (cs_lnum_t j = 0; j < 6; j++)
rij[i][j] = cvar_rij[c_id][j];
}
}
/* Reynolds stresses invariants:
* compute xsi and eta invariant of the Lumley triangle */
cs_real_2_t *inv = NULL;
BFT_MALLOC(inv, n_cells, cs_real_2_t);
cell_list,
NULL, /* coords */
inv);
/* Loop on columns */
for (int col = 0; col < 9; col++) {
switch(col) {
case 0:
{
strncpy(var_name, "U*10+x/h", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = vel[c_id][0]*10 + xpos;
}
}
break;
case 1:
{
strncpy(var_name, "Y/H", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = mq->cell_cen[c_id*3 + 1] / href;
}
}
break;
case 2:
{
strncpy(var_name, "U/Uc", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = vel[c_id][0] / uref;
}
}
break;
case 3:
{
strncpy(var_name, "uu/Uc^2", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
val[i] = rij[i][0] / uref2;
}
}
break;
case 4:
{
strncpy(var_name, "uv/Uc^2", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
val[i] = rij[i][3] / uref2;
}
}
break;
case 5:
{
strncpy(var_name, "vv/Uc^2", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
val[i] = rij[i][1] / uref2;
}
}
break;
case 6:
{
strncpy(var_name, "X", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = cell_cen[c_id][0];
}
}
break;
case 7:
{
strncpy(var_name, "eta", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = inv[c_id][0];
}
}
break;
case 8:
{
strncpy(var_name, "xsi", 64);
for (cs_lnum_t i = 0; i < n_cells; i++) {
cs_lnum_t c_id = cell_list[i];
val[i] = inv[c_id][1];
}
}
break;
}
(mesh_id,
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
var_name, /* var_name */
1, /* var_dim */
0, /* parent location id */
NULL, /* default interpolation */
NULL, /* interpolation input */
val,
ts_post);
}
BFT_FREE(inv);
BFT_FREE(val);
}
#define CS_REAL_TYPE
Definition: cs_defs.h:453
cs_real_t cs_real_2_t[2]
vector of 2 floating-point values
Definition: cs_defs.h:331
cs_field_interpolate_t
Definition: cs_field_operator.h:54
@ CS_FIELD_INTERPOLATE_MEAN
Definition: cs_field_operator.h:56
static void cs_parall_sum(int n, cs_datatype_t datatype, void *val)
Sum values of a given datatype on all default communicator processes.
Definition: cs_parall.h:160
void cs_post_write_probe_values(int mesh_id, int writer_id, const char *var_name, int var_dim, cs_datatype_t datatype, int parent_location_id, cs_interpolate_from_location_t *interpolate_func, void *interpolate_input, const void *vals, const cs_time_step_t *ts)
Output a variable defined at cells or faces of a post-processing mesh using associated writers.
Definition: cs_post.c:6790
void cs_post_anisotropy_invariant(cs_lnum_t n_cells, const cs_lnum_t cell_ids[], const cs_real_t coords[][3], cs_real_2_t inv[])
Compute the invariant of the anisotropy tensor.
Definition: cs_post_util.c:738
void cs_post_evm_reynolds_stresses(cs_field_interpolate_t interpolation_type, cs_lnum_t n_cells, const cs_lnum_t cell_ids[], const cs_real_3_t *coords, cs_real_6_t *rst)
Compute Reynolds stresses in case of Eddy Viscosity Models.
Definition: cs_post_util.c:652
const cs_turb_rans_model_t * cs_glob_turb_rans_model
double precision, dimension(:,:), allocatable xpos
Positions.
Definition: atimbr.f90:103
Turbulence model general options descriptor.
Definition: cs_turbulence_model.h:115
RANS turbulence model descriptor.
Definition: cs_turbulence_model.h:176

For the profile defined all around a foil, the following code is used to compute the pressure coefficient and output its values:

const cs_mesh_t *m = cs_glob_mesh;
const cs_real_3_t *b_face_cog = (const cs_real_3_t *)mq->b_face_cog;
cs_real_t * b_face_cog
Definition: cs_mesh_quantities.h:111
cs_real_t *val;
BFT_MALLOC(val, n_b_faces, cs_real_t);
/* x coordinate */
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
cs_lnum_t face_id = b_face_list[i];
val[i] = b_face_cog[face_id][0];
}
/* post-process x coordinate */
(mesh_id,
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
"X", /* var_name */
1, /* var_dim */
0, /* parent location id */
NULL, /* default interpolation */
NULL, /* interpolation input */
val,
ts);
/* compute pressure on selected boundary faces */
cs_post_b_pressure(n_b_faces, b_face_list, val);
cs_real_t p0 = phys_pro->p0; /* reference pressure */
cs_real_t ro0 = phys_pro->ro0; /* reference density */
const cs_real_t uref = cs_glob_turb_ref_values->uref; /*ref. velocity */
const cs_real_t uref2 = uref*uref;
/* reference values can be set in GUI */
/* 1/(1/2 rho U^2) */
cs_real_t div_half_ro0_uref2 = 1. / (0.5 * ro0 * uref2);
/* compute CP at each selected boundary face */
for (cs_lnum_t i = 0; i < n_b_faces; i++)
val[i] = (val[i] - p0) * div_half_ro0_uref2;
/* post-process CP */
(mesh_id,
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
"CP", /* var_name */
1, /* var_dim */
0, /* parent location id */
NULL, /* default interpolation */
NULL, /* interpolation input */
val,
ts);
BFT_FREE(val);
cs_fluid_properties_t * cs_get_glob_fluid_properties(void)
Definition: cs_physical_constants.c:617
void cs_post_b_pressure(cs_lnum_t n_b_faces, const cs_lnum_t b_face_ids[], cs_real_t pres[])
Compute pressure on a specific boundary region.
Definition: cs_post_util.c:534
real(c_double), pointer, save p0
reference pressure for the total pressure.
Definition: cstphy.f90:167
real(c_double), pointer, save ro0
reference density.
Definition: cstphy.f90:150
Fluid properties descriptor.
Definition: cs_physical_constants.h:61
double ro0
Definition: cs_physical_constants.h:72
double p0
Definition: cs_physical_constants.h:76

For the last profiles series, values for each column are also computed, requiring a reference pressure based on the mesh point closest to a given point, and computation of tangential stresses, so as to determine drag coefficients.

else if ( strcmp(name, "buicstr") == 0
|| strcmp(name, "buicinc") == 0) {
const cs_lnum_t *b_face_cells = m->b_face_cells;
const cs_real_3_t *face_cog = (const cs_real_3_t *)mq->b_face_cog;
const cs_real_t *distb = mq->b_dist;
const cs_real_t *pres = CS_F_(p)->val;
cs_real_t div_half_ro0_uref2 = 1. / (0.5 * phys_pro->ro0 * uref2);
cs_real_t *val;
BFT_MALLOC(val, n_b_faces, cs_real_t);
char var_name[64];
/* Reference pressure */
cs_real_t xyz_ref[3] = {-1.7, -0.5, 0.005};
cs_real_t pref = 0;
cs_lnum_t pref_id;
int pref_rank;
(const cs_real_3_t *)(mq->cell_cen),
xyz_ref,
&pref_id,
&pref_rank);
if (pref_rank == cs_glob_rank_id)
pref = pres[pref_id];
cs_parall_bcast(pref_rank, 1, CS_REAL_TYPE, &pref);
/* Stresses */
cs_real_3_t *stresses;
BFT_MALLOC(stresses, n_b_faces, cs_real_3_t);
cs_post_stress_tangential(n_b_faces, b_face_list, stresses);
/* Loop on columns */
for (int col = 0; col < 5; col++) {
switch(col) {
case 0:
{
strncpy(var_name, "X/H", 64);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
cs_lnum_t f_id = b_face_list[i];
val[i] = face_cog[f_id][0] / href;
}
}
break;
case 1:
{
strncpy(var_name, "CP", 64);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
cs_lnum_t f_id = b_face_list[i];
cs_lnum_t c_id = b_face_cells[f_id];
val[i] = (pres[c_id] - pref) * div_half_ro0_uref2;
}
}
break;
case 2:
{
strncpy(var_name, "CF", 64);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
val[i] = cs_math_3_norm(stresses[i]) * div_half_ro0_uref2;
}
}
break;
case 3:
{
strncpy(var_name, "U/UREF", 64);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
/* previous value in val[i] from case2:
norm(stresses[i])/(0.5.ro0.uref^2) */
val[i] = copysign(val[i], stresses[i][0]);
}
}
break;
case 4:
{
strncpy(var_name, "YPLUS", 64);
for (cs_lnum_t i = 0; i < n_b_faces; i++) {
cs_lnum_t f_id = b_face_list[i];
cs_lnum_t c_id = b_face_cells[f_id];
val[i] = sqrt(fabs(vel[c_id][0])*distb[f_id]*phys_pro->viscl0);
}
}
break;
}
(mesh_id,
CS_POST_WRITER_ALL_ASSOCIATED, /* writer id filter */
var_name, /* var_name */
1, /* var_dim */
0, /* parent location id */
NULL, /* default interpolation */
NULL, /* interpolation input */
val,
ts_post);
}
BFT_FREE(stresses);
BFT_FREE(val);
}
int cs_glob_rank_id
Definition: cs_defs.c:174
void cs_geom_closest_point(cs_lnum_t n_points, const cs_real_t point_coords[][3], const cs_real_t query_coords[3], cs_lnum_t *point_id, int *rank_id)
find the closest point of a set to a given point in space.
Definition: cs_geom.c:162
static cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:424
static void cs_parall_bcast(int root_rank, int n, cs_datatype_t datatype, void *val)
Broadcast values of a given datatype to all default communicator processes.
Definition: cs_parall.h:273
void cs_post_stress_tangential(cs_lnum_t n_b_faces, const cs_lnum_t b_face_ids[], cs_real_3_t stress[])
Compute tangential stress on a specific boundary.
Definition: cs_post_util.c:496
double precision, dimension(:), pointer distb
For every boundary face, dot product between the vectors and . I is the center of the neighboring ce...
Definition: mesh.f90:188
double viscl0
Definition: cs_physical_constants.h:73
cs_real_t * b_dist
Definition: cs_mesh_quantities.h:140
cs_lnum_t n_cells
Definition: cs_mesh.h:97