1 #ifndef __CS_CONVECTION_DIFFUSION_H__ 2 #define __CS_CONVECTION_DIFFUSION_H__ 128 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
130 if (nvf_p_c < beta_m) {
131 nvf_p_f = nvf_p_c*(1.+rfc*(1.-nvf_p_c)/beta_m);
133 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
135 nvf_p_f = r1f*nvf_p_c+rfc;
141 if (nvf_p_c < (nvf_r_c/3.)) {
142 r1 = nvf_r_f*(1.-3.*nvf_r_c+2.*nvf_r_f);
143 r2 = nvf_r_c*(1.-nvf_r_c);
145 nvf_p_f = nvf_p_c*r1/r2;
146 }
else if (nvf_p_c <= (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
147 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
148 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
150 nvf_p_f = nvf_r_f*(r1f*nvf_p_c/nvf_r_c + rfc);
158 if (nvf_p_c < (3.*nvf_r_c/4.)) {
159 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
161 nvf_p_f = nvf_r_f*(1.+rfc/3.)*nvf_p_c/nvf_r_c;
162 }
else if (nvf_p_c <= (nvf_r_c*(1.+2.*(nvf_r_f-nvf_r_c))/(2.*nvf_r_f-nvf_r_c))) {
163 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
164 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
166 nvf_p_f = nvf_r_f*(r1f*nvf_p_c/nvf_r_c+rfc);
168 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
170 nvf_p_f = 1.-.5*r1f*(1.-nvf_p_c);
176 if (nvf_p_c < (nvf_r_c/(2.-nvf_r_c))) {
177 nvf_p_f = (2.*nvf_r_f-nvf_r_c)*nvf_p_c/nvf_r_c;
178 }
else if (nvf_p_c < nvf_r_c) {
179 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
180 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
182 nvf_p_f = r1f*nvf_p_c+rfc;
183 }
else if (nvf_p_c < (nvf_r_c/nvf_r_f)) {
184 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
192 if (nvf_p_c < (.5*nvf_r_c)) {
193 nvf_p_f = (2.*nvf_r_f-nvf_r_c)*nvf_p_c/nvf_r_c;
194 }
else if (nvf_p_c < (1.+nvf_r_c-nvf_r_f)) {
195 nvf_p_f = nvf_p_c+nvf_r_f-nvf_r_c;
203 if (nvf_p_c < nvf_r_c) {
204 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
206 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
207 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
209 nvf_p_f = r1f*nvf_p_c+rfc;
215 r1 = nvf_r_c*nvf_r_c-nvf_r_f;
216 r2 = nvf_r_c*(nvf_r_c-1.);
217 r3 = nvf_r_f-nvf_r_c;
219 nvf_p_f = nvf_p_c*(r1+r3*nvf_p_c)/r2;
224 b1 = (nvf_r_c-nvf_r_f)*nvf_r_c;
225 b2 = nvf_r_c+nvf_r_f+2.*nvf_r_f*nvf_r_f-4.*nvf_r_f*nvf_r_c;
227 if (nvf_p_c < (b1/b2)) {
228 r1 = -nvf_r_f*(1.-3.*nvf_r_c+2.*nvf_r_f);
229 r2 = nvf_r_c*(nvf_r_c-1.);
231 nvf_p_f = nvf_p_c*r1/r2;
232 }
else if (nvf_p_c < nvf_r_c) {
233 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
234 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
236 nvf_p_f = r1f*nvf_p_c+rfc;
237 }
else if (nvf_p_c < (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
238 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
239 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
241 nvf_p_f = nvf_r_f*(nvf_p_c*r1f/nvf_r_c+rfc);
249 if (nvf_p_c < (nvf_r_c/nvf_r_f)) {
250 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
258 r1 = nvf_r_c*nvf_r_f*(nvf_r_f-nvf_r_c);
259 r2 = 2.*nvf_r_c*(1.-nvf_r_c)-nvf_r_f*(1.-nvf_r_f);
261 if (nvf_p_c < (r1/r2)) {
262 nvf_p_f = 2.*nvf_p_c;
263 }
else if (nvf_p_c <= (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
264 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
265 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
267 nvf_p_f = nvf_r_f*(nvf_p_c*r1f/nvf_r_c+rfc);
312 cs_real_t blend, high_order, low_order, ratio;
323 high_order = 2.*nvf_p_c;
339 blend =
CS_MIN(1., pow(ratio, .5));
343 nvf_p_f = blend*high_order + (1.-blend)*low_order;
346 if (c_courant < .7 && c_courant > .3) {
347 nvf_p_f = nvf_p_f + (nvf_p_f - low_order)*(.7 - c_courant )/.4;
348 }
else if (c_courant >= .7) {
353 if (c_courant <= .3) {
355 }
else if (c_courant <= .6) {
356 high_order =
CS_MIN(1., nvf_p_c/.3);
357 }
else if (c_courant <= .7) {
362 high_order = 10.*( (.7-c_courant)*
CS_MIN(1., nvf_p_c/.3)
363 + (c_courant-.6)*superbee);
383 blend =
CS_MIN(1., pow(ratio, 2.));
387 nvf_p_f = blend*high_order + (1.-blend)*low_order;
406 blend =
CS_MIN(1., pow(ratio, 4.));
410 nvf_p_f = blend*high_order + (1.-blend)*low_order;
454 testi = grdpai[0]*i_face_normal[0]
455 + grdpai[1]*i_face_normal[1]
456 + grdpai[2]*i_face_normal[2];
457 testj = grdpaj[0]*i_face_normal[0]
458 + grdpaj[1]*i_face_normal[1]
459 + grdpaj[2]*i_face_normal[2];
461 *testij = grdpai[0]*grdpaj[0]
462 + grdpai[1]*grdpaj[1]
463 + grdpai[2]*grdpaj[2];
466 dcc = gradi[0]*i_face_normal[0]
467 + gradi[1]*i_face_normal[1]
468 + gradi[2]*i_face_normal[2];
470 ddj = (pj-
pi)/distf *srfan;
472 dcc = gradj[0]*i_face_normal[0]
473 + gradj[1]*i_face_normal[1]
474 + gradj[2]*i_face_normal[2];
475 ddi = (pj-
pi)/distf *srfan;
522 for (
int i = 0; i < 3; i++) {
523 *testij += gradsti[i][0]*gradstj[i][0]
524 + gradsti[i][1]*gradstj[i][1]
525 + gradsti[i][2]*gradstj[i][2];
527 testi[i] = gradsti[i][0]*i_face_normal[0]
528 + gradsti[i][1]*i_face_normal[1]
529 + gradsti[i][2]*i_face_normal[2];
530 testj[i] = gradstj[i][0]*i_face_normal[0]
531 + gradstj[i][1]*i_face_normal[1]
532 + gradstj[i][2]*i_face_normal[2];
534 if (i_massflux > 0.) {
535 dcc[i] = gradi[i][0]*i_face_normal[0]
536 + gradi[i][1]*i_face_normal[1]
537 + gradi[i][2]*i_face_normal[2];
539 ddj[i] = (pj[i]-pi[i])/distf *srfan;
541 dcc[i] = gradj[i][0]*i_face_normal[0]
542 + gradj[i][1]*i_face_normal[1]
543 + gradj[i][2]*i_face_normal[2];
544 ddi[i] = (pj[i]-pi[i])/distf *srfan;
593 for (
int ij = 0; ij < 6; ij++) {
594 *testij += gradsti[ij][0]*gradstj[ij][0]
595 + gradsti[ij][1]*gradstj[ij][1]
596 + gradsti[ij][2]*gradstj[ij][2];
597 testi[ij] = gradsti[ij][0]*i_face_normal[0]
598 + gradsti[ij][1]*i_face_normal[1]
599 + gradsti[ij][2]*i_face_normal[2];
600 testj[ij] = gradstj[ij][0]*i_face_normal[0]
601 + gradstj[ij][1]*i_face_normal[1]
602 + gradstj[ij][2]*i_face_normal[2];
604 if (i_massflux > 0.) {
605 dcc[ij] = gradi[ij][0]*i_face_normal[0]
606 + gradi[ij][1]*i_face_normal[1]
607 + gradi[ij][2]*i_face_normal[2];
609 ddj[ij] = (pj[ij]-pi[ij])/distf *srfan;
612 dcc[ij] = gradj[ij][0]*i_face_normal[0]
613 + gradj[ij][1]*i_face_normal[1]
614 + gradj[ij][2]*i_face_normal[2];
615 ddi[ij] = (pj[ij]-pi[ij])/distf *srfan;
654 cs_real_t gradpf[3] = {0.5*(gradi[0] + gradj[0]),
655 0.5*(gradi[1] + gradj[1]),
656 0.5*(gradi[2] + gradj[2])};
700 for (
int isou = 0; isou < 3; isou++) {
702 for (
int jsou = 0; jsou < 3; jsou++)
703 dpvf[jsou] = 0.5*( gradi[isou][jsou]
704 + gradj[isou][jsou]);
711 pip[isou] = pi[isou] + recoi[isou];
712 pjp[isou] = pj[isou] + recoj[isou];
752 for (
int isou = 0; isou < 6; isou++) {
754 for (
int jsou = 0; jsou < 3; jsou++)
755 dpvf[jsou] = 0.5*( gradi[isou][jsou]
756 + gradj[isou][jsou]);
763 pip[isou] = pi[isou] + recoi[isou];
764 pjp[isou] = pj[isou] + recoj[isou];
800 *pir = pi/relaxp - (1.-relaxp)/relaxp * pia;
801 *pjr = pj/relaxp - (1.-relaxp)/relaxp * pja;
803 *pipr = *pir + recoi;
804 *pjpr = *pjr + recoj;
838 for (
int isou = 0; isou < 3; isou++) {
839 pir[isou] = pi[isou] /relaxp - (1.-relaxp)/relaxp * pia[isou];
840 pjr[isou] = pj[isou] /relaxp - (1.-relaxp)/relaxp * pja[isou];
842 pipr[isou] = pir[isou] + recoi[isou];
843 pjpr[isou] = pjr[isou] + recoj[isou];
878 for (
int isou = 0; isou < 6; isou++) {
879 pir[isou] = pi[isou] /relaxp - (1.-relaxp)/relaxp * pia[isou];
880 pjr[isou] = pj[isou] /relaxp - (1.-relaxp)/relaxp * pja[isou];
882 pipr[isou] = pir[isou] + recoi[isou];
883 pjpr[isou] = pjr[isou] + recoj[isou];
916 for (
int isou = 0; isou < 3; isou++)
933 for (
int isou = 0; isou < 6; isou++)
954 *pf = pnd*pip + (1.-pnd)*pjp;
974 for (
int isou = 0; isou < 3; isou++)
975 pf[isou] = pnd*pip[isou] + (1.-pnd)*pjp[isou];
995 for (
int isou = 0; isou < 6; isou++)
996 pf[isou] = pnd*pip[isou] + (1.-pnd)*pjp[isou];
1020 df[0] = i_face_cog[0] - cell_cen[0];
1021 df[1] = i_face_cog[1] - cell_cen[1];
1022 df[2] = i_face_cog[2] - cell_cen[2];
1048 for (
int jsou = 0; jsou < 3; jsou++)
1049 df[jsou] = i_face_cog[jsou] - cell_cen[jsou];
1051 for (
int isou = 0; isou < 3; isou++) {
1052 pf[isou] = p[isou] + df[0]*grad[isou][0]
1053 + df[1]*grad[isou][1]
1054 + df[2]*grad[isou][2];
1080 for (
int jsou = 0; jsou < 3; jsou++)
1081 df[jsou] = i_face_cog[jsou] - cell_cen[jsou];
1083 for (
int isou = 0; isou < 6; isou++) {
1084 pf[isou] = p[isou] + df[0]*grad[isou][0]
1085 + df[1]*grad[isou][1]
1086 + df[2]*grad[isou][2];
1107 *pf = blencp * (*pf) + (1. - blencp) * p;
1127 for (
int isou = 0; isou < 3; isou++)
1128 pf[isou] = blencp*(pf[isou])+(1.-blencp)*p[isou];
1148 for (
int isou = 0; isou < 6; isou++)
1149 pf[isou] = blencp*(pf[isou])+(1.-blencp)*p[isou];
1192 flui = 0.5*(i_massflux + fabs(i_massflux));
1193 fluj = 0.5*(i_massflux - fabs(i_massflux));
1195 fluxij[0] += iconvp*xcppi*(thetap*(flui*pifri + fluj*pjfri) - imasac*i_massflux*pi);
1196 fluxij[1] += iconvp*xcppj*(thetap*(flui*pifrj + fluj*pjfrj) - imasac*i_massflux*pj);
1235 flui = 0.5*(i_massflux + fabs(i_massflux));
1236 fluj = 0.5*(i_massflux - fabs(i_massflux));
1238 for (
int isou = 0; isou < 3; isou++) {
1240 fluxi[isou] += iconvp*( thetap*(flui*pifri[isou] + fluj*pjfri[isou])
1241 - imasac*i_massflux*pi[isou]);
1242 fluxj[isou] += iconvp*( thetap*(flui*pifrj[isou] + fluj*pjfrj[isou])
1243 - imasac*i_massflux*pj[isou]);
1283 flui = 0.5*(i_massflux + fabs(i_massflux));
1284 fluj = 0.5*(i_massflux - fabs(i_massflux));
1286 for (
int isou = 0; isou < 6; isou++) {
1287 fluxi[isou] += iconvp*( thetap*(flui*pifri[isou] + fluj*pjfri[isou])
1288 - imasac*i_massflux*pi[isou]);
1289 fluxj[isou] += iconvp*( thetap*(flui*pifrj[isou] + fluj*pjfrj[isou])
1290 - imasac*i_massflux*pj[isou]);
1319 fluxij[0] += idiffp*thetap*i_visc*(pipr -pjp);
1320 fluxij[1] += idiffp*thetap*i_visc*(pip -pjpr);
1350 for (
int isou = 0; isou < 3; isou++) {
1351 fluxi[isou] += idiffp*thetap*i_visc*(pipr[isou] -pjp[isou]);
1352 fluxj[isou] += idiffp*thetap*i_visc*(pip[isou] -pjpr[isou]);
1383 for (
int isou = 0; isou < 6; isou++) {
1384 fluxi[isou] += idiffp*thetap*i_visc*(pipr[isou] -pjp[isou]);
1385 fluxj[isou] += idiffp*thetap*i_visc*(pip[isou] -pjpr[isou]);
1827 const double relaxp,
1828 const double blencp,
1901 }
else if (ischcp == 0) {
2008 const double relaxp,
2009 const double blencp,
2161 const double relaxp,
2162 const double blencp,
2314 const double blencp,
2363 }
else if (ischcp == 0) {
2379 }
else if (ischcp == 3) {
2409 hybrid_blend_interp =
fmin(hybrid_blend_i,hybrid_blend_j);
2410 *pif = hybrid_blend_interp*(*pif) + (1. - hybrid_blend_interp)*pif_up;
2411 *pjf = hybrid_blend_interp*(*pjf) + (1. - hybrid_blend_interp)*pjf_up;
2474 const double blencp,
2520 }
else if (ischcp == 3) {
2550 hybrid_blend_interp =
fmin(hybrid_blend_i,hybrid_blend_j);
2551 for (
int isou = 0; isou < 3; isou++) {
2552 pif[isou] = hybrid_blend_interp *pif[isou]
2553 + (1. - hybrid_blend_interp)*pif_up[isou];
2554 pjf[isou] = hybrid_blend_interp *pjf[isou]
2555 + (1. - hybrid_blend_interp)*pjf_up[isou];
2616 const double blencp,
2742 const double relaxp,
2743 const double blencp,
2744 const double blend_st,
2778 *upwind_switch =
false;
2841 }
else if (ischcp == 0) {
2898 if (tesqck <= 0. || testij <= 0.) {
2913 *upwind_switch =
true;
2997 const double relaxp,
2998 const double blencp,
2999 const double blend_st,
3071 for (isou = 0; isou < 3; isou++) {
3127 if (tesqck <= 0. || testij <= 0.) {
3141 *upwind_switch =
true;
3162 for (isou = 0; isou < 3; isou++) {
3225 const double relaxp,
3226 const double blencp,
3227 const double blend_st,
3299 for (isou = 0; isou < 6; isou++) {
3355 if (tesqck <= 0. || testij <= 0.) {
3370 *upwind_switch =
true;
3393 for (isou = 0; isou < 6; isou++) {
3451 const double blencp,
3452 const double blend_st,
3481 *upwind_switch =
false;
3524 }
else if (ischcp == 0) {
3561 if (tesqck<=0. || testij<=0.) {
3570 *upwind_switch =
true;
3614 if (i_massflux >= 0.) {
3676 const cs_real_t dist_du = dist_dc + dist_cu;
3682 const cs_real_t grad2c = ((p_d - p_c)/dist_dc - gradc)/dist_dc;
3684 cs_real_t p_u = p_c + (grad2c*dist_cu - gradc)*dist_cu;
3688 const cs_real_t nvf_r_f = (dist_fc+dist_cu)/dist_du;
3689 const cs_real_t nvf_r_c = dist_cu/dist_du;
3696 if (
CS_ABS(p_d-p_u) <= _small) {
3700 const cs_real_t nvf_p_c = (p_c - p_u)/(p_d - p_u);
3702 if (nvf_p_c <= 0. || nvf_p_c >= 1.) {
3724 *pif = p_u + nvf_p_f*(p_d - p_u);
3778 const double blencp,
3779 const double blend_st,
3831 for (
int isou = 0; isou < 3; isou++) {
3869 if (tesqck <= 0. || testij <= 0.) {
3878 *upwind_switch =
true;
3895 for (
int isou = 0; isou < 3; isou++) {
3948 const double blencp,
3949 const double blend_st,
4002 for (isou = 0; isou < 6; isou++) {
4038 if (tesqck <= 0. || testij <= 0.) {
4050 *upwind_switch =
true;
4067 for (isou = 0; isou < 6; isou++) {
4093 *recoi = bldfrp * ( gradi[0]*diipb[0]
4095 + gradi[2]*diipb[2]);
4115 for (
int isou = 0; isou < 3; isou++) {
4116 recoi[isou] = bldfrp * ( gradi[isou][0]*diipb[0]
4117 + gradi[isou][1]*diipb[1]
4118 + gradi[isou][2]*diipb[2]);
4139 for (
int isou = 0; isou < 6; isou++) {
4140 recoi[isou] = bldfrp * ( gradi[isou][0]*diipb[0]
4141 + gradi[isou][1]*diipb[1]
4142 + gradi[isou][2]*diipb[2]);
4167 *pir = pi/relaxp - (1.-relaxp)/relaxp*pia;
4168 *pipr = *pir + recoi;
4192 for (
int isou = 0; isou < 3; isou++) {
4193 pir[isou] = pi[isou]/relaxp - (1.-relaxp)/relaxp*pia[isou];
4194 pipr[isou] = pir[isou] + recoi[isou];
4219 for (
int isou = 0; isou < 6; isou++) {
4220 pir[isou] = pi[isou]/relaxp - (1.-relaxp)/relaxp*pia[isou];
4221 pipr[isou] = pir[isou] + recoi[isou];
4280 flui = 0.5*(b_massflux +fabs(b_massflux));
4281 fluj = 0.5*(b_massflux -fabs(b_massflux));
4284 pfac = inc*coefap + coefbp*pipr;
4285 *flux += iconvp*xcpp*(thetap*(flui*pir + fluj*pfac) -imasac*( b_massflux*pi));
4291 pfac = inc*coface + cofbce*pipr;
4292 *flux += iconvp*xcpp*(-imasac*(b_massflux*
pi) + thetap*(pfac));
4349 flui = 0.5*(b_massflux +fabs(b_massflux));
4350 fluj = 0.5*(b_massflux -fabs(b_massflux));
4352 for (
int isou = 0; isou < 3; isou++) {
4353 pfac = inc*coefap[isou];
4354 for (
int jsou = 0; jsou < 3; jsou++) {
4355 pfac += coefbp[isou][jsou]*pipr[jsou];
4357 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4358 - imasac*b_massflux*
pi[isou]);
4365 for (
int isou = 0; isou < 3; isou++) {
4366 pfac = inc*coface[isou];
4367 for (
int jsou = 0; jsou < 3; jsou++) {
4368 pfac += cofbce[isou][jsou]*pipr[jsou];
4370 flux[isou] += iconvp*( thetap*pfac
4371 - imasac*b_massflux*
pi[isou]);
4421 flui = 0.5*(b_massflux +fabs(b_massflux));
4422 fluj = 0.5*(b_massflux -fabs(b_massflux));
4425 pfac = inc*coefap + coefbp*pipr;
4426 *flux += iconvp*xcpp*(thetap*(flui*pir + fluj*pfac) -imasac*( b_massflux*pi));
4472 flui = 0.5*(b_massflux +fabs(b_massflux));
4473 fluj = 0.5*(b_massflux -fabs(b_massflux));
4475 for (
int isou = 0; isou < 3; isou++) {
4476 pfac = inc*coefa[isou];
4477 for (
int jsou = 0; jsou < 3; jsou++) {
4478 pfac += coefb[isou][jsou]*pipr[jsou];
4480 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4481 - imasac*b_massflux*pi[isou]);
4528 flui = 0.5*(b_massflux +fabs(b_massflux));
4529 fluj = 0.5*(b_massflux -fabs(b_massflux));
4531 for (
int isou = 0; isou < 6; isou++) {
4532 pfac = inc*coefa[isou];
4533 for (
int jsou = 0; jsou < 6; jsou++) {
4534 pfac += coefb[isou][jsou]*pipr[jsou];
4536 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4537 - imasac*b_massflux*pi[isou]);
4566 cs_real_t pfacd = inc*cofafp + cofbfp*pipr;
4567 *flux += idiffp*thetap*b_visc*pfacd;
4596 for (
int isou = 0; isou < 3; isou++) {
4597 pfacd = inc*cofaf[isou];
4598 for (
int jsou = 0; jsou < 3; jsou++) {
4599 pfacd += cofbf[isou][jsou]*pipr[jsou];
4601 flux[isou] += idiffp*thetap*b_visc*pfacd;
4631 for (
int isou = 0; isou < 6; isou++) {
4632 pfacd = inc*cofaf[isou];
4633 for (
int jsou = 0; jsou < 6; jsou++) {
4634 pfacd += cofbf[isou][jsou]*pipr[jsou];
4636 flux[isou] += idiffp*thetap*b_visc*pfacd;
4658 const double relaxp,
4699 const double relaxp,
4740 const double relaxp,
4820 for (
int isou = 0; isou < 3; isou++)
4821 pip[isou] = pi[isou] + recoi[isou];
4851 for(
int isou = 0; isou< 6; isou++)
4852 pip[isou] = pi[isou] + recoi[isou];
4875 *fluxi += idiffp*b_visc*(pi - pj);
4898 for (
int k = 0;
k < 3;
k++)
4899 fluxi[
k] += idiffp*b_visc*(pi[
k] - pj[
k]);
4913 const int *
const f_id,
4914 const int *
const init,
4915 const int *
const inc,
4917 const int *
const nswrgp,
4918 const int *
const imligp,
4919 const int *
const iphydp,
4920 const int *
const iwgrp,
4921 const int *
const iwarnp,
4944 const int *
const f_id,
4945 const int *
const init,
4946 const int *
const inc,
4948 const int *
const nswrgp,
4949 const int *
const imligp,
4950 const int *
const ircflp,
4951 const int *
const iphydp,
4952 const int *
const iwgrp,
4953 const int *
const iwarnp,
4978 const int *
const f_id,
4979 const int *
const init,
4980 const int *
const inc,
4982 const int *
const nswrgp,
4983 const int *
const imligp,
4984 const int *
const iphydp,
4985 const int *
const iwgrp,
4986 const int *
const iwarnp,
5008 const int *
const f_id,
5009 const int *
const init,
5010 const int *
const inc,
5012 const int *
const nswrgp,
5013 const int *
const imligp,
5014 const int *
const ircflp,
5015 const int *
const iphydp,
5016 const int *
const iwgrp,
5017 const int *
const iwarnp,
Definition: cs_field_pointer.h:70
void itrmas(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t i_massflux[], cs_real_t b_massflux[])
Definition: cs_convection_diffusion.c:611
static void cs_i_cd_unsteady_tensor(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:2614
static void cs_sync_scalar_halo(const cs_mesh_t *m, cs_real_t pvar[])
Definition: cs_convection_diffusion.h:95
static void cs_upwind_f_val_vector(const cs_real_3_t p, cs_real_t pf[3])
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:913
void cs_convection_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int ivisep, int imasac, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const int icvfli[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t i_secvis[], const cs_real_t b_secvis[], cs_real_3_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a vector field ...
Definition: cs_convection_diffusion.c:4248
double precision, dimension(:,:), pointer diipb
Definition: mesh.f90:212
#define restrict
Definition: cs_defs.h:142
static cs_real_t cs_math_3_dot_product(const cs_real_t u[3], const cs_real_t v[3])
Compute the dot product of two vectors of 3 real values.
Definition: cs_math.h:332
static void cs_b_diff_flux_tensor(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_6_t pipr, const cs_real_6_t cofaf, const cs_real_66_t cofbf, const cs_real_t b_visc, cs_real_t flux[6])
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4621
static void cs_i_cd_steady_upwind_vector(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t pia[3], const cs_real_t pja[3], cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1499
cs_real_t cs_real_2_t[2]
vector of 2 floating-point values
Definition: cs_defs.h:334
static void cs_i_cd_unsteady_upwind_vector(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t pi[3], const cs_real_t pj[3], cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1708
static void cs_b_compute_quantities_tensor(const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_t bldfrp, cs_real_t recoi[6])
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4134
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:337
void cs_anisotropic_diffusion_tensor(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_6_t *restrict rhs)
Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equa...
Definition: cs_convection_diffusion.c:10197
static void cs_central_downwind_cells(const cs_lnum_t ii, const cs_lnum_t jj, const cs_real_t i_massflux, cs_lnum_t *ic, cs_lnum_t *id)
Determine the upwind and downwind sides of an internal face and matching cell indices.
Definition: cs_convection_diffusion.h:3608
static void cs_centered_f_val_tensor(const double pnd, const cs_real_6_t pip, const cs_real_6_t pjp, cs_real_t pf[6])
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:990
static void cs_slope_test_tensor(const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t gradsti[6][3], const cs_real_t gradstj[6][3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:572
cs_nvd_type_t
Definition: cs_convection_diffusion.h:59
void cs_cell_courant_number(const int f_id, cs_real_t *courant)
Definition: cs_convection_diffusion.c:877
static void cs_i_relax_c_val_tensor(const cs_real_t relaxp, const cs_real_t pia[6], const cs_real_t pja[6], const cs_real_t recoi[6], const cs_real_t recoj[6], const cs_real_t pi[6], const cs_real_t pj[6], cs_real_t pir[6], cs_real_t pjr[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:866
Set of parameters to handle an unsteady convection-diffusion-reaction equation with term sources...
Definition: cs_equation_param.h:186
static void cs_i_compute_quantities_vector(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t recoi[3], cs_real_t recoj[3], cs_real_t pip[3], cs_real_t pjp[3])
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:684
#define CS_ABS(a)
Definition: cs_defs.h:474
static void cs_upwind_f_val_tensor(const cs_real_6_t p, cs_real_t pf[6])
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:930
static void cs_b_cd_unsteady(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t pi, cs_real_t *pip)
Handle preparation of boundary face values for the flux computation in case of an unsteady algorithm...
Definition: cs_convection_diffusion.h:4777
static void cs_i_conv_flux_vector(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t pifri[3], const cs_real_t pifrj[3], const cs_real_t pjfri[3], const cs_real_t pjfrj[3], const cs_real_t i_massflux, cs_real_t fluxi[3], cs_real_t fluxj[3])
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij...
Definition: cs_convection_diffusion.h:1220
cs_real_t cs_real_66_t[6][6]
6x6 matrix of floating-point values
Definition: cs_defs.h:345
static void cs_b_compute_quantities(const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t bldfrp, cs_real_t *recoi)
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4088
void cs_face_convection_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const int icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], cs_real_2_t i_conv_flux[], cs_real_t b_conv_flux[])
Update face flux with convection contribution of a standard transport equation of a scalar field ...
Definition: cs_convection_diffusion.c:3148
static void cs_b_cd_steady(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t pi, const cs_real_t pia, cs_real_t *pir, cs_real_t *pipr)
Handle preparation of boundary face values for the flux computation in case of a steady algorithm...
Definition: cs_convection_diffusion.h:4657
Definition: cs_convection_diffusion.h:68
static void cs_b_cd_unsteady_tensor(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_6_t pi, cs_real_t pip[6])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm...
Definition: cs_convection_diffusion.h:4838
void cs_slope_test_gradient_tensor(const int inc, const cs_halo_type_t halo_type, const cs_real_63_t *grad, cs_real_63_t *grdpa, const cs_real_6_t *pvar, const cs_real_6_t *coefa, const cs_real_66_t *coefb, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1442
static cs_real_t cs_nvd_scheme_scalar(const cs_nvd_type_t limiter, const cs_real_t nvf_p_c, const cs_real_t nvf_r_f, const cs_real_t nvf_r_c)
Compute the normalized face scalar using the specified NVD scheme.
Definition: cs_convection_diffusion.h:116
double precision pi
value with 16 digits
Definition: cstnum.f90:48
#define BEGIN_C_DECLS
Definition: cs_defs.h:512
const cs_real_t cs_math_epzero
static void cs_b_imposed_conv_flux_vector(int iconvp, cs_real_t thetap, int imasac, int inc, int bc_type, int icvfli, const cs_real_t pi[restrict 3], const cs_real_t pir[restrict 3], const cs_real_t pipr[restrict 3], const cs_real_t coefap[restrict 3], const cs_real_t coefbp[restrict 3][3], const cs_real_t coface[restrict 3], const cs_real_t cofbce[restrict 3][3], cs_real_t b_massflux, cs_real_t flux[restrict 3])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face...
Definition: cs_convection_diffusion.h:4322
static void cs_i_diff_flux(const int idiffp, const cs_real_t thetap, const cs_real_t pip, const cs_real_t pjp, const cs_real_t pipr, const cs_real_t pjpr, const cs_real_t i_visc, cs_real_t fluxij[2])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1310
static void cs_i_cd_unsteady_slope_test_vector(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_33_t grdpai, const cs_real_33_t grdpaj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:3774
#define CS_UNUSED(x)
Definition: cs_defs.h:498
static void cs_i_cd_unsteady_vector(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_t hybrid_blend_i, const cs_real_t hybrid_blend_j, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:2472
static void cs_i_relax_c_val(const double relaxp, const cs_real_t pia, const cs_real_t pja, const cs_real_t recoi, const cs_real_t recoj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pir, cs_real_t *pjr, cs_real_t *pipr, cs_real_t *pjpr)
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:788
static void cs_i_conv_flux_tensor(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t pifri[6], const cs_real_t pifrj[6], const cs_real_t pjfri[6], const cs_real_t pjfrj[6], const cs_real_t i_massflux, cs_real_t fluxi[6], cs_real_t fluxj[6])
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij...
Definition: cs_convection_diffusion.h:1268
void cs_slope_test_gradient_vector(const int inc, const cs_halo_type_t halo_type, const cs_real_33_t *grad, cs_real_33_t *grdpa, const cs_real_3_t *pvar, const cs_real_3_t *coefa, const cs_real_33_t *coefb, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1290
double precision, dimension(ncharm), save beta
Definition: cpincl.f90:99
static void cs_centered_f_val(const double pnd, const cs_real_t pip, const cs_real_t pjp, cs_real_t *pf)
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:949
static void cs_i_cd_steady(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_t cell_ceni[3], const cs_real_t cell_cenj[3], const cs_real_t i_face_cog[3], const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t gradupi[3], const cs_real_t gradupj[3], const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1825
integer(c_int), pointer, save idtvar
option for a variable time step
Definition: optcal.f90:331
static void cs_i_cd_steady_slope_test(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_3_t gradsti, const cs_real_3_t gradstj, const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2738
void cs_anisotropic_left_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int ivisep, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_33_t i_visc[], const cs_real_t b_visc[], const cs_real_t i_secvis[], cs_real_3_t *restrict rhs)
Add explicit part of the terms of diffusion by a left-multiplying symmetric tensorial diffusivity for...
Definition: cs_convection_diffusion.c:8951
Definition: cs_field_pointer.h:67
void cs_math_3_length_unitv(const cs_real_t xa[3], const cs_real_t xb[3], cs_real_t *len, cs_real_3_t unitv)
Compute the length (Euclidean norm) between two points xa and xb in a Cartesian coordinate system of ...
Definition: cs_math.c:438
Definition: cs_convection_diffusion.h:63
void cs_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t *restrict diverg)
Update the cell mass flux divergence with the face pressure (or pressure increment, or pressure double increment) gradient.
Definition: cs_convection_diffusion.c:11611
Definition: cs_convection_diffusion.h:66
integer, dimension(:), allocatable icvfli
boundary convection flux indicator of a Rusanov or an analytical flux (some boundary contributions of...
Definition: cfpoin.f90:52
static void cs_blend_f_val_vector(const double blencp, const cs_real_3_t p, cs_real_t pf[3])
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1123
double cs_real_t
Floating-point value.
Definition: cs_defs.h:322
static void cs_solu_f_val_tensor(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_63_t grad, const cs_real_6_t p, cs_real_t pf[6])
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1072
static void cs_i_cd_steady_slope_test_tensor(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_63_t grdpai, const cs_real_63_t grdpaj, const cs_real_6_t pi, const cs_real_6_t pj, const cs_real_6_t pia, const cs_real_6_t pja, cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:3221
static cs_real_t cs_math_3_square_norm(const cs_real_t v[3])
Compute the square norm of a vector of 3 real values.
Definition: cs_math.h:417
static void cs_solu_f_val_vector(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_33_t grad, const cs_real_3_t p, cs_real_t pf[3])
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1040
static void cs_b_upwind_flux_vector(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_3_t pi, const cs_real_3_t pir, const cs_real_3_t pipr, const cs_real_3_t coefa, const cs_real_33_t coefb, const cs_real_t b_massflux, cs_real_t flux[3])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face...
Definition: cs_convection_diffusion.h:4452
static cs_real_t cs_math_sq(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:199
static void cs_i_cd_steady_slope_test_vector(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_33_t grdpai, const cs_real_33_t grdpaj, const cs_real_3_t pi, const cs_real_3_t pj, const cs_real_3_t pia, const cs_real_3_t pja, cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2993
void cs_convection_diffusion_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const int icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a standard transport equation of a scalar ...
Definition: cs_convection_diffusion.c:1730
void itrgrp(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t diverg[])
Definition: cs_convection_diffusion.c:741
static void cs_b_cd_steady_vector(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_3_t pi, const cs_real_3_t pia, cs_real_t pir[3], cs_real_t pipr[3])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm...
Definition: cs_convection_diffusion.h:4698
static void cs_blend_f_val_tensor(const double blencp, const cs_real_t p[6], cs_real_t pf[6])
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1144
static void cs_b_diff_flux_coupling(int idiffp, cs_real_t pi, cs_real_t pj, cs_real_t b_visc, cs_real_t *fluxi)
Add diffusive flux to flux at an internal coupling face.
Definition: cs_convection_diffusion.h:4869
cs_equation_param_t * var_cal_opt
Definition: keywords.h:135
void cs_halo_sync_var(const cs_halo_t *halo, cs_halo_type_t sync_mode, cs_real_t var[])
Definition: cs_halo.c:1915
static void cs_i_cd_steady_vector(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, const cs_real_3_t pia, const cs_real_3_t pja, cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2006
static void cs_b_diff_flux_vector(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_3_t pipr, const cs_real_3_t cofaf, const cs_real_33_t cofbf, const cs_real_t b_visc, cs_real_t flux[3])
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4586
double precision, dimension(ncharm), save b2
Definition: cpincl.f90:233
static void cs_i_diff_flux_vector(const int idiffp, const cs_real_t thetap, const cs_real_t pip[3], const cs_real_t pjp[3], const cs_real_t pipr[3], const cs_real_t pjpr[3], const cs_real_t i_visc, cs_real_t fluxi[3], cs_real_t fluxj[3])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1340
void cs_anisotropic_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int ircflp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict diverg)
Add the explicit part of the divergence of the mass flux due to the pressure gradient (routine analog...
Definition: cs_convection_diffusion.c:11976
static void cs_i_relax_c_val_vector(const double relaxp, const cs_real_3_t pia, const cs_real_3_t pja, const cs_real_3_t recoi, const cs_real_3_t recoj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pir[3], cs_real_t pjr[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:826
static void cs_i_cd_unsteady_slope_test_tensor(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_63_t grdpai, const cs_real_63_t grdpaj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:3944
static void cs_i_cd_unsteady_nvd(const cs_nvd_type_t limiter, const double beta, const cs_real_3_t cell_cen_c, const cs_real_3_t cell_cen_d, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t gradv_c, const cs_real_t p_c, const cs_real_t p_d, const cs_real_t local_max_c, const cs_real_t local_min_c, const cs_real_t courant_c, cs_real_t *pif, cs_real_t *pjf)
Handle preparation of internal face values for the convection flux computation in case of an unsteady...
Definition: cs_convection_diffusion.h:3647
Definition: cs_convection_diffusion.h:65
void cs_anisotropic_right_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_3_t *restrict rhs)
Add explicit part of the terms of diffusion by a right-multiplying symmetric tensorial diffusivity fo...
Definition: cs_convection_diffusion.c:9490
static void cs_b_relax_c_val_tensor(const double relaxp, const cs_real_6_t pi, const cs_real_6_t pia, const cs_real_6_t recoi, cs_real_t pir[6], cs_real_t pipr[6])
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4212
static void cs_b_relax_c_val(const double relaxp, const cs_real_t pi, const cs_real_t pia, const cs_real_t recoi, cs_real_t *pir, cs_real_t *pipr)
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4160
static void cs_b_diff_flux_coupling_vector(int idiffp, const cs_real_t pi[3], const cs_real_t pj[3], cs_real_t b_visc, cs_real_t fluxi[3])
Add diffusive flux to flux at an internal coupling face for a vector.
Definition: cs_convection_diffusion.h:4892
static void cs_b_imposed_conv_flux(int iconvp, cs_real_t thetap, int imasac, int inc, int bc_type, int icvfli, cs_real_t pi, cs_real_t pir, cs_real_t pipr, cs_real_t coefap, cs_real_t coefbp, cs_real_t coface, cs_real_t cofbce, cs_real_t b_massflux, cs_real_t xcpp, cs_real_t *flux)
Add convective flux (substracting the mass accumulation from it) to flux at boundary face...
Definition: cs_convection_diffusion.h:4252
static void cs_solu_f_val(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_3_t grad, const cs_real_t p, cs_real_t *pf)
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1012
Definition: cs_mesh_quantities.h:89
#define CS_MIN(a, b)
Definition: cs_defs.h:475
static void cs_i_cd_unsteady(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_t hybrid_blend_i, const cs_real_t hybrid_blend_j, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:2312
cs_halo_type_t
Definition: cs_halo.h:56
static void cs_b_upwind_flux(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_t pi, const cs_real_t pir, const cs_real_t pipr, const cs_real_t coefap, const cs_real_t coefbp, const cs_real_t b_massflux, const cs_real_t xcpp, cs_real_t *flux)
Add convective flux (substracting the mass accumulation from it) to flux at boundary face...
Definition: cs_convection_diffusion.h:4400
static void cs_b_cd_steady_tensor(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_6_t pi, const cs_real_6_t pia, cs_real_t pir[6], cs_real_t pipr[6])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm...
Definition: cs_convection_diffusion.h:4739
Definition: cs_convection_diffusion.h:62
static cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:401
void itrmav(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const ircflp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t i_massflux[], cs_real_t b_massflux[])
Definition: cs_convection_diffusion.c:673
static void cs_i_conv_flux(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi, const cs_real_t pj, const cs_real_t pifri, const cs_real_t pifrj, const cs_real_t pjfri, const cs_real_t pjfrj, const cs_real_t i_massflux, const cs_real_t xcppi, const cs_real_t xcppj, cs_real_2_t fluxij)
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij...
Definition: cs_convection_diffusion.h:1176
static void cs_i_compute_quantities_tensor(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t recoi[6], cs_real_t recoj[6], cs_real_t pip[6], cs_real_t pjp[6])
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:736
static void cs_centered_f_val_vector(const double pnd, const cs_real_3_t pip, const cs_real_3_t pjp, cs_real_t pf[3])
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:969
static cs_real_t cs_nvd_vof_scheme_scalar(const cs_nvd_type_t limiter, const cs_real_3_t i_face_normal, const cs_real_t nvf_p_c, const cs_real_t nvf_r_f, const cs_real_t nvf_r_c, const cs_real_3_t gradv_c, const cs_real_t c_courant)
Compute the normalised face scalar using the specified NVD scheme for the case of a Volume-of-Fluid (...
Definition: cs_convection_diffusion.h:301
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:335
static void cs_i_cd_steady_upwind(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1416
static void cs_i_compute_quantities(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_t pi, const cs_real_t pj, cs_real_t *recoi, cs_real_t *recoj, cs_real_t *pip, cs_real_t *pjp)
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:642
static void cs_b_upwind_flux_tensor(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_6_t pi, const cs_real_6_t pir, const cs_real_6_t pipr, const cs_real_6_t coefa, const cs_real_66_t coefb, const cs_real_t b_massflux, cs_real_t flux[6])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face...
Definition: cs_convection_diffusion.h:4508
Definition: cs_convection_diffusion.h:74
void cs_slope_test_gradient(int f_id, int inc, cs_halo_type_t halo_type, const cs_real_3_t *grad, cs_real_3_t *grdpa, const cs_real_t *pvar, const cs_real_t *coefap, const cs_real_t *coefbp, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1024
static void cs_slope_test_vector(const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t gradsti[3][3], const cs_real_t gradstj[3][3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:502
void cs_convection_diffusion_tensor(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a vector field ...
Definition: cs_convection_diffusion.c:5929
double precision, save fmin
Definition: coincl.f90:182
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:316
void itrgrv(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const ircflp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t diverg[])
Definition: cs_convection_diffusion.c:801
Definition: cs_convection_diffusion.h:70
static cs_real_t cs_math_3_square_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the squared distance between two points xa and xb in a Cartesian coordinate system of dimensi...
Definition: cs_math.h:310
static void cs_i_cd_steady_tensor(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, const cs_real_6_t pia, const cs_real_6_t pja, cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2159
#define END_C_DECLS
Definition: cs_defs.h:513
Definition: cs_convection_diffusion.h:67
Definition: cs_convection_diffusion.h:72
static void cs_i_cd_steady_upwind_tensor(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t pia[6], const cs_real_t pja[6], cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1582
void cs_face_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t *restrict visel, cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
Update the face mass flux with the face pressure (or pressure increment, or pressure double increment...
Definition: cs_convection_diffusion.c:10803
#define CS_PROCF(x, y)
Definition: cs_defs.h:526
#define CS_MAX(a, b)
Definition: cs_defs.h:476
Definition: cs_parameters.h:99
cs_real_t cs_real_33_t[3][3]
3x3 matrix of floating-point values
Definition: cs_defs.h:344
static void cs_b_cd_unsteady_vector(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_3_t pi, cs_real_t pip[3])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm...
Definition: cs_convection_diffusion.h:4807
Definition: cs_convection_diffusion.h:71
Definition: cs_convection_diffusion.h:61
Definition: cs_convection_diffusion.h:64
void cs_face_anisotropic_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int ircflp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
Add the explicit part of the pressure gradient term to the mass flux in case of anisotropic diffusion...
Definition: cs_convection_diffusion.c:11139
cs_real_t cs_real_63_t[6][3]
Definition: cs_defs.h:352
static void cs_i_diff_flux_tensor(const int idiffp, const cs_real_t thetap, const cs_real_t pip[6], const cs_real_t pjp[6], const cs_real_t pipr[6], const cs_real_t pjpr[6], const cs_real_t i_visc, cs_real_t fluxi[6], cs_real_t fluxj[6])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1373
void cs_convection_diffusion_thermal(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t xcpp[], cs_real_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a scalar field su...
Definition: cs_convection_diffusion.c:6884
static void cs_b_compute_quantities_vector(const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_t bldfrp, cs_real_t recoi[3])
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4110
static void cs_slope_test(const cs_real_t pi, const cs_real_t pj, const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t grdpai[3], const cs_real_t grdpaj[3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:436
static void cs_upwind_f_val(const cs_real_t p, cs_real_t *pf)
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:897
void cs_beta_limiter_building(int f_id, int inc, const cs_real_t rovsdt[])
Compute the beta blending coefficient of the beta limiter (ensuring preservation of a given min/max p...
Definition: cs_convection_diffusion.c:1585
double precision, dimension(ncharm), save b1
Definition: cpincl.f90:233
static void cs_b_diff_flux(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_t pipr, const cs_real_t cofafp, const cs_real_t cofbfp, const cs_real_t b_visc, cs_real_t *flux)
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4557
void cs_upwind_gradient(const int f_id, const int inc, const cs_halo_type_t halo_type, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t *restrict pvar, cs_real_3_t *restrict grdpa)
Compute the upwind gradient in order to cope with SOLU schemes observed in the litterature.
Definition: cs_convection_diffusion.c:1163
cs_real_t * cs_get_v_slope_test(int f_id, const cs_var_cal_opt_t var_cal_opt)
Definition: cs_convection_diffusion.c:965
Definition: cs_convection_diffusion.h:69
static void cs_i_cd_unsteady_upwind_tensor(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t pi[6], const cs_real_t pj[6], cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1758
integer(c_int), pointer, save imrgra
type of gradient reconstruction
Definition: optcal.f90:208
static void cs_i_cd_unsteady_slope_test(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_3_t gradsti, const cs_real_3_t gradstj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:3447
cs_halo_t * halo
Definition: cs_mesh.h:156
static void cs_b_relax_c_val_vector(const double relaxp, const cs_real_3_t pi, const cs_real_3_t pia, const cs_real_3_t recoi, cs_real_t pir[3], cs_real_t pipr[3])
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4185
static void cs_blend_f_val(const double blencp, const cs_real_t p, cs_real_t *pf)
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1103
Definition: cs_convection_diffusion.h:73
void cs_anisotropic_diffusion_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict rhs)
Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equa...
Definition: cs_convection_diffusion.c:8206
static void cs_i_cd_unsteady_upwind(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1658