1 #ifndef __CS_SLES_IT_PRIV_H__ 2 #define __CS_SLES_IT_PRIV_H__ 86 #if !defined(HUGE_VAL) 87 #define HUGE_VAL 1.E+12 125 typedef struct _cs_sles_it_setup_t {
127 double initial_residue;
138 } cs_sles_it_setup_t;
143 typedef struct _cs_sles_it_add_t {
152 struct _cs_sles_it_t {
159 bool ignore_convergence;
163 int restart_interval;
168 cs_sles_it_solve_t *solve;
180 unsigned n_iterations_last;
182 unsigned n_iterations_min;
184 unsigned n_iterations_max;
186 unsigned long long n_iterations_tot;
202 # if defined(HAVE_MPI) 204 MPI_Comm caller_comm;
210 const struct _cs_sles_it_t *shared;
214 cs_sles_it_add_t *add_data;
216 cs_sles_it_setup_t *setup_data;
229 struct _cs_sles_it_convergence_t {
235 unsigned n_iterations;
236 unsigned n_iterations_max;
265 double s =
cs_dot(c->setup_data->n_rows, x, y);
267 #if defined(HAVE_MPI) 269 if (c->comm != MPI_COMM_NULL) {
271 MPI_Allreduce(&s, &_sum, 1, MPI_DOUBLE, MPI_SUM, c->comm);
299 #if defined(HAVE_MPI) 301 if (c->comm != MPI_COMM_NULL) {
303 MPI_Allreduce(&s, &_sum, 1, MPI_DOUBLE, MPI_SUM, c->comm);
334 #if defined(HAVE_MPI) 336 if (c->comm != MPI_COMM_NULL) {
338 MPI_Allreduce(s, _sum, 2, MPI_DOUBLE, MPI_SUM, c->comm);
373 #if defined(HAVE_MPI) 375 if (c->comm != MPI_COMM_NULL) {
377 MPI_Allreduce(s, _sum, 2, MPI_DOUBLE, MPI_SUM, c->comm);
414 #if defined(HAVE_MPI) 416 if (c->comm != MPI_COMM_NULL) {
419 MPI_Allreduce(s, _sum, 3, MPI_DOUBLE, MPI_SUM, c->comm);
462 #if defined(HAVE_MPI) 464 if (c->comm != MPI_COMM_NULL) {
466 MPI_Allreduce(s, _sum, 5, MPI_DOUBLE, MPI_SUM, c->comm);
467 memcpy(s, _sum, 5*
sizeof(
double));
512 #if defined(HAVE_MPI) 514 if (c->comm != MPI_COMM_NULL) {
516 MPI_Allreduce(s, _sum, 4, MPI_DOUBLE, MPI_SUM, c->comm);
517 memcpy(s, _sum, 4*
sizeof(
double));
547 aux[0] = (c[0] -
b[0]);
548 aux[1] = (c[1] -
b[1]) - aux[0]*mat[3];
549 aux[2] = (c[2] -
b[2]) - aux[0]*mat[6] - aux[1]*mat[7];
551 x[2] = aux[2]/mat[8];
552 x[1] = (aux[1] - mat[5]*x[2])/mat[4];
553 x[0] = (aux[0] - mat[1]*x[1] - mat[2]*x[2])/mat[0];
575 assert(db_size <= DB_SIZE_MAX);
579 for (
int ii = 0; ii < db_size; ii++) {
580 aux[ii] = (c[ii] -
b[ii]);
581 for (
int jj = 0; jj < ii; jj++) {
582 aux[ii] -= aux[jj]*mat[ii*db_size + jj];
587 for (
int ii = db_size - 1; ii >= 0; ii-=1) {
589 for (
int jj = db_size - 1; jj > ii; jj-=1) {
590 x[ii] -= x[jj]*mat[ii*db_size + jj];
592 x[ii] /= mat[ii*(db_size + 1)];
613 assert(db_size <= DB_SIZE_MAX);
616 for (
int ii = 0; ii < db_size; ii++) {
618 for (
int jj = 0; jj < ii; jj++)
619 x[ii] -= x[jj]*mat[ii*db_size + jj];
623 for (
int ii = db_size - 1; ii >= 0; ii--) {
624 for (
int jj = db_size - 1; jj > ii; jj--)
625 x[ii] -= x[jj]*mat[ii*db_size + jj];
626 x[ii] /= mat[ii*(db_size + 1)];
652 const char *solver_name,
680 bool block_nn_inverse);
#define restrict
Definition: cs_defs.h:142
void cs_dot_xx_xy_yz(cs_lnum_t n, const cs_real_t *restrict x, const cs_real_t *restrict y, const cs_real_t *restrict z, double *xx, double *xy, double *yz)
Return 3 dot products of 3 vectors: x.x, x.y, and y.z.
Definition: cs_blas.c:1622
void cs_dot_xy_yz(cs_lnum_t n, const cs_real_t *restrict x, const cs_real_t *restrict y, const cs_real_t *restrict z, double *xy, double *yz)
Return 2 dot products of 3 vectors: x.y, and y.z.
Definition: cs_blas.c:1593
cs_sles_it_type_t
Definition: cs_sles_it.h:55
double cs_dot(cs_lnum_t n, const cs_real_t *x, const cs_real_t *y)
Return the dot product of 2 vectors: x.y.
Definition: cs_blas.c:1465
#define BEGIN_C_DECLS
Definition: cs_defs.h:510
struct _cs_sles_pc_t cs_sles_pc_t
Definition: cs_sles_pc.h:66
struct _cs_sles_it_t cs_sles_it_t
Definition: cs_sles_it.h:86
double cs_real_t
Floating-point value.
Definition: cs_defs.h:322
void cs_dot_xx_xy(cs_lnum_t n, const cs_real_t *restrict x, const cs_real_t *restrict y, double *xx, double *xy)
Return 2 dot products of 2 vectors: x.x, and x.y.
Definition: cs_blas.c:1566
cs_sles_pc_state_t() cs_sles_pc_apply_t(void *context, const cs_real_t *x_in, cs_real_t *x_out)
Function pointer for application of a preconditioner.
Definition: cs_sles_pc.h:143
struct _cs_matrix_t cs_matrix_t
Definition: cs_matrix.h:93
struct _cs_time_plot_t cs_time_plot_t
Definition: cs_time_plot.h:48
cs_sles_convergence_state_t
Convergence status indicator.
Definition: cs_sles.h:56
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:114
void cs_dot_xx_yy_xy_xz_yz(cs_lnum_t n, const cs_real_t *restrict x, const cs_real_t *restrict y, const cs_real_t *restrict z, double *xx, double *yy, double *xy, double *xz, double *yz)
Return 5 dot products of 3 vectors: x.x, y.y, x.y, x.z, and y.z.
Definition: cs_blas.c:1654
struct _cs_sles_it_convergence_t cs_sles_it_convergence_t
Definition: cs_sles_it.h:90
double precision, save a
Definition: cs_fuel_incl.f90:146
double cs_dot_xx(cs_lnum_t n, const cs_real_t *x)
Return dot products of a vector with itself: x.x.
Definition: cs_blas.c:1486
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:316
#define END_C_DECLS
Definition: cs_defs.h:511
Definition: cs_timer.h:55
double precision, save b
Definition: cs_fuel_incl.f90:146