8.3
general documentation
cs_wall_distance.h File Reference
#include "cs_defs.h"
+ Include dependency graph for cs_wall_distance.h:

Go to the source code of this file.

Data Structures

struct  cs_wall_distance_options_t
 

Functions

void cs_wall_distance (int iterns)
 Compute distance to wall by solving a 3d diffusion equation. Solve. More...
 
void cs_wall_distance_yplus (cs_real_t visvdr[])
 Compute the dimensionless distance to the wall solving a steady transport equation. More...
 
void cs_wall_distance_geometric (void)
 Compute distance to wall by a brute force geometric approach (serial only) More...
 
cs_wall_distance_options_tcs_get_glob_wall_distance_options (void)
 Provide read/write access to cs_glob_wall_distance. More...
 

Variables

const cs_wall_distance_options_tcs_glob_wall_distance_options
 

Function Documentation

◆ cs_get_glob_wall_distance_options()

cs_wall_distance_options_t * cs_get_glob_wall_distance_options ( void  )

Provide read/write access to cs_glob_wall_distance.

Returns
pointer to global wall distance structure

◆ cs_wall_distance()

void cs_wall_distance ( int  iterns)

Compute distance to wall by solving a 3d diffusion equation. Solve.

\[ -\divs ( \grad \varia ) = 1 \]

with:

  • $ \varia_|b = 0 $ at the wall
  • $ \grad \varia \cdot \vect{n} = 0 $ elsewhere The wall distance is then equal to:

    \[
 d \simeq -|\grad \varia |
 + \sqrt{ \grad \varia \cdot \grad \varia +2 \varia }
 \]

Parameters
[in]iternsiteration number on Navier-Stokes equations

◆ cs_wall_distance_geometric()

void cs_wall_distance_geometric ( void  )

Compute distance to wall by a brute force geometric approach (serial only)

Compute distance to wall by a brute force geometric approach (serial only)

◆ cs_wall_distance_yplus()

void cs_wall_distance_yplus ( cs_real_t  visvdr[])

Compute the dimensionless distance to the wall solving a steady transport equation.

This function solves the following steady pure convection equation on $ \varia $:

\[
\divs \left( \varia \vect{V} \right)
    - \divs \left( \vect{V} \right) \varia = 0
\]

where the vector field $ \vect{V} $ is defined by:

\[
 \vect{V} = \dfrac{ \grad y }{\norm{\grad y} }
\]

The boundary conditions on $ \varia $ read:

\[
 \varia = \dfrac{u_\star}{\nu} \textrm{ on walls}
\]

\[
 \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere}
\]

Then the dimensionless distance is deduced by:

\[
 y^+ = y \varia
\]

Then, Imposition of an amortization of Van Driest type for the LES. $ \nu_T $ is absorbed by $ (1-\exp(\dfrac{-y^+}{d^+}))^2 $ where $ d^+ $ is set at 26.

Parameters
[in]visvdrdynamic viscosity in edge cells after driest velocity amortization

Variable Documentation

◆ cs_glob_wall_distance_options

const cs_wall_distance_options_t* cs_glob_wall_distance_options
extern