8.3
general documentation
cs_face_viscosity.h File Reference
#include "cs_base.h"
#include "cs_halo.h"
#include "cs_mesh.h"
#include "cs_mesh_quantities.h"
+ Include dependency graph for cs_face_viscosity.h:

Go to the source code of this file.

Functions

void cs_face_viscosity_secondary (cs_real_t secvif[], cs_real_t secvib[])
 Computes the secondary viscosity contribution $\kappa
  -\dfrac{2}{3} \mu$ in order to compute: More...
 
void cs_face_viscosity (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, const int visc_mean_type, cs_real_t *c_visc, cs_real_t *i_visc, cs_real_t *b_visc)
 Compute the diffusion velocity at faces. i_visc,b_visc = viscosity*surface/distance, homogeneous to a rate of flow in kg/s. More...
 
void cs_face_anisotropic_viscosity_vector (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, const int visc_mean_type, cs_real_6_t *c_visc, cs_real_33_t *i_visc, cs_real_t *b_visc)
 Compute the equivalent tensor viscosity at faces for a 3x3 symetric tensor. More...
 
void cs_face_anisotropic_viscosity_scalar (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_real_6_t *c_visc, const int iwarnp, cs_real_2_t *weighf, cs_real_t *weighb, cs_real_t *i_visc, cs_real_t *b_visc)
 Compute the equivalent viscosity at faces for a 3x3 symetric tensor, always using a harmonic mean. More...
 

Function Documentation

◆ cs_face_anisotropic_viscosity_scalar()

void cs_face_anisotropic_viscosity_scalar ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
cs_real_6_t c_visc,
const int  iwarnp,
cs_real_2_t weighf,
cs_real_t weighb,
cs_real_t i_visc,
cs_real_t b_visc 
)

Compute the equivalent viscosity at faces for a 3x3 symetric tensor, always using a harmonic mean.

Parameters
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]c_visccell viscosity symmetric tensor
[in]iwarnpverbosity
[out]weighfinner face weight between cells i and j $ \frac{\vect{IF} \cdot \tens{K}_\celli}
                              {\norm{\tens{K}_\celli \cdot \vect{S}}^2} $ and $ \frac{\vect{FJ} \cdot \tens{K}_\cellj}
                              {\norm{\tens{K}_\cellj \cdot \vect{S}}^2} $
[out]weighbboundary face weight $ \frac{\vect{IF} \cdot \tens{K}_\celli}
                              {\norm{\tens{K}_\celli \cdot \vect{S}}^2} $
[out]i_viscinner face viscosity (times surface divided by distance)
[out]b_viscboundary face viscosity (surface, must be consistent with flux BCs)

◆ cs_face_anisotropic_viscosity_vector()

void cs_face_anisotropic_viscosity_vector ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
const int  visc_mean_type,
cs_real_6_t c_visc,
cs_real_33_t i_visc,
cs_real_t b_visc 
)

Compute the equivalent tensor viscosity at faces for a 3x3 symetric tensor.

Parameters
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]visc_mean_typemethod to compute the viscosity at faces:
  • 0: arithmetic
  • 1: harmonic
[in]c_visccell viscosity symmetric tensor
[out]i_viscinner face tensor viscosity (times surface divided by distance)
[out]b_viscboundary face viscosity (surface, must be consistent with flux BCs)

◆ cs_face_viscosity()

void cs_face_viscosity ( const cs_mesh_t m,
const cs_mesh_quantities_t fvq,
const int  visc_mean_type,
cs_real_t c_visc,
cs_real_t i_visc,
cs_real_t b_visc 
)

Compute the diffusion velocity at faces. i_visc,b_visc = viscosity*surface/distance, homogeneous to a rate of flow in kg/s.

Remark: a priori, no need of reconstruction techniques (to improve if necessary).

Parameters
[in]mpointer to mesh
[in]fvqpointer to finite volume quantities
[in]visc_mean_typemethod to compute the viscosity at faces:
  • 0 arithmetical
  • 1 harmonic
[in]c_visccell viscosity (scalar)
[out]i_viscinner face viscosity (times surface divided by distance)
[out]b_viscboundary face viscosity (surface, must be consistent with flux BCs)

◆ cs_face_viscosity_secondary()

void cs_face_viscosity_secondary ( cs_real_t  secvif[],
cs_real_t  secvib[] 
)

Computes the secondary viscosity contribution $\kappa
  -\dfrac{2}{3} \mu$ in order to compute:

\[
  \grad\left( (\kappa -\dfrac{2}{3} \mu) \trace( \gradt(\vect{u})) \right)
  \]

with:

  • $ \mu = \mu_{laminar} + \mu_{turbulent} $
  • $ \kappa $ is the volume viscosity (generally zero)
Remarks
In LES, the tensor $\overline{\left(\vect{u}-\overline{\vect{u}}\right)\otimes\left(\vect{u}
*-\overline{\vect{u}}\right)}$ is modeled by $\mu_t \overline{\tens{S}}$ and not by $\mu_t\overline{\tens{S}}-\dfrac{2}{3}\mu_t
  \trace\left(\overline{\tens{S}}\right)\tens{1}+\dfrac{2}{3}k\tens{1}$ so that no term $\mu_t \dive \left(\overline{\vect{u}}\right)$ is needed.

Please refer to the visecv section of the theory guide for more informations.

Parameters
[in,out]secviflambda*surface at interior faces
[in,out]secviblambda*surface at boundary faces