8.3
general documentation
cs_boundary_conditions_set_coeffs_turb.h File Reference
#include "cs_defs.h"
+ Include dependency graph for cs_boundary_conditions_set_coeffs_turb.h:

Go to the source code of this file.

Functions

void cs_boundary_conditions_set_coeffs_turb (int isvhb, cs_real_t velipb[][3], cs_real_t rijipb[][6], cs_real_t visvdr[], cs_real_t hbord[], cs_real_t theipb[])
 Boundary conditions for smooth walls (icodcl = 5). More...
 

Function Documentation

◆ cs_boundary_conditions_set_coeffs_turb()

void cs_boundary_conditions_set_coeffs_turb ( int  isvhb,
cs_real_t  velipb[][3],
cs_real_t  rijipb[][6],
cs_real_t  visvdr[],
cs_real_t  hbord[],
cs_real_t  theipb[] 
)

Boundary conditions for smooth walls (icodcl = 5).

file cs_boundary_conditions_set_coeffs_turb.c

The wall functions may change the value of the diffusive flux.

The values at a boundary face $ \fib $ stored in the face center $ \centf $ of the variable $ P $ and its diffusive flux $ Q $ are written as:

\[
P_{\face} = A_P^g + B_P^g P_{\centi}
\]

and

\[
Q_{\face} = A_P^f + B_P^f P_{\centi}
\]

where $ P_\centi $ is the value of the variable $ P $ at the neighboring cell.

Warning:

  • For a vector field such as the velocity $ \vect{u} $ the boundary conditions may read:

    \[
  \vect{u}_{\face} = \vect{A}_u^g + \tens{B}_u^g \vect{u}_{\centi}
  \]

    and

    \[
  \vect{Q}_{\face} = \vect{A}_u^f + \tens{B}_u^f \vect{u}_{\centi}
  \]

    where $ \tens{B}_u^g $ and $ \tens{B}_u^f $ are 3x3 tensor matrix which coupled velocity components next to a boundary.

Please refer to the wall boundary conditions section of the theory guide for more informations, as well as the clptur section.

Parameters
[in]isvhbid of field whose exchange coeffient should be saved at the walls, or -1.
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells
[out]visvdrdynamic viscosity after V. Driest damping in boundary cells
[out]hbordexchange coefficient at boundary
[in]theipbvalue of thermal scalar at $ \centip $ of boundary cells