8.2
general documentation
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cs_wall_distance.h File Reference
#include "cs_defs.h"
+ Include dependency graph for cs_wall_distance.h:

Go to the source code of this file.

Data Structures

struct  cs_wall_distance_options_t
 

Functions

void cs_wall_distance (int iterns)
 Compute distance to wall by solving a 3d diffusion equation. Solve. More...
 
void cs_wall_distance_yplus (cs_real_t visvdr[])
 This subroutine computes the dimensionless distance to the wall solving a steady transport equation. More...
 
cs_wall_distance_options_tcs_get_glob_wall_distance_options (void)
 Provide read/write access to cs_glob_wall_distance. More...
 

Variables

const cs_wall_distance_options_tcs_glob_wall_distance_options
 

Function Documentation

◆ cs_get_glob_wall_distance_options()

cs_wall_distance_options_t* cs_get_glob_wall_distance_options ( void  )

Provide read/write access to cs_glob_wall_distance.

Returns
pointer to global wall distance structure

◆ cs_wall_distance()

void cs_wall_distance ( int  iterns)

Compute distance to wall by solving a 3d diffusion equation. Solve.

\[ -\divs ( \grad \varia ) = 1 \]

with:

  • $ \varia_|b = 0 $ at the wall
  • $ \grad \varia \cdot \vect{n} = 0 $ elsewhere The wall distance is then equal to:

    \[ d \simeq -|\grad \varia | + \sqrt{ \grad \varia \cdot \grad \varia +2 \varia } \]

Parameters
[in]iternsiteration number on Navier-Stokes equations

◆ cs_wall_distance_yplus()

void cs_wall_distance_yplus ( cs_real_t  visvdr[])

This subroutine computes the dimensionless distance to the wall solving a steady transport equation.

This function solves the following steady pure convection equation on $ \varia $:

\[ \divs \left( \varia \vect{V} \right) - \divs \left( \vect{V} \right) \varia = 0 \]

where the vector field $ \vect{V} $ is defined by:

\[ \vect{V} = \dfrac{ \grad y }{\norm{\grad y} } \]

The boundary conditions on $ \varia $ read:

\[ \varia = \dfrac{u_\star}{\nu} \textrm{ on walls} \]

\[ \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere} \]

Then the dimensionless distance is deduced by:

\[ y^+ = y \varia \]

Then, Imposition of an amortization of Van Driest type for the LES. $ \nu_T $ is absorbed by $ (1-\exp(\dfrac{-y^+}{d^+}))^2 $ where $ d^+ $ is set at 26.

Parameters
[in]visvdrdynamic viscosity in edge cells after driest velocity amortization

Variable Documentation

◆ cs_glob_wall_distance_options

const cs_wall_distance_options_t* cs_glob_wall_distance_options
extern