8.1
general documentation
Examples of data settings for radiative transfers

Activation of the module

The module can be activated in the usppmo routine in cs_user_parameters.f90. The corresponding keyword is iirayo in the cs_glob_rad_transfer_params structure.

This member can take the values:

  • iirayo = 0: module desactivated.
  • iirayo = 1: the module is activated and the Discrete Ordinates Method is used.
  • iirayo = 2: the module is activated and the P1 model is used.

Radiation module specific parameters.

When the module is activated, its specific input parameters should be set in the cs_user_radiative_transfer_parameters function of the cs_user_radiative_transfer.c file.

Calculation options for the radiative transfer module.

Radiative transfer parameters may be defined using the cs_user_radiative_transfer_parameters function.

/* indicate whether the radiation variables should be
initialized (=0) or read from a restart file (=1) */
/* Update period of the radiation module */
- 1, /* nt_start */
-1, /* nt_end */
5, /* interval */
true, /* at start */
false); /* at end */
/* Quadrature Sn (n(n+2) directions)
1: S4 (24 directions)
2: S6 (48 directions)
3: S8 (80 directions)
Quadrature Tn (8n^2 directions)
4: T2 (32 directions)
5: T4 (128 directions)
6: Tn (8*ndirec^2 directions)
*/
/* Number of directions, only for Tn quadrature */
/* Method used to calculate the radiative source term:
- 0: semi-analytic calculation (required with transparent media)
- 1: conservative calculation
- 2: semi-analytic calculation corrected
in order to be globally conservative
(If the medium is transparent, the choice has no effect) */
/* Verbosity level in the log concerning the calculation of
the wall temperatures (0, 1 or 2) */
/* Verbosity mode for the radiance (0, 1 or 2) */
/* Compute the absorption coefficient through a model (if different from 0),
or use a constant absorption coefficient (if 0).
Useful ONLY when gas or coal combustion is activated
- imodak = 1: ADF model with 8 wave length intervals
- imodak = 2: Magnussen et al. and Kent and Honnery models */
/* Compute the absorption coefficient via ADF model
Useful ONLY when coal combustion is activated
imoadf = 0: switch off the ADF model
imoadf = 1: switch on the ADF model (with 8 bands ADF08)
imoadf = 2: switch on the ADF model (with 50 bands ADF50) */
/* Compute the absorption coefficient through FSCK model (if 1)
Useful ONLY when coal combustion is activated
imfsck = 1: activated
imfsck = 0: not activated */
/* Activate 3D radiative models for atmospheric flows
atmo_model |= CS_RAD_ATMO_3D_DIRECT_SOLAR: direct solar
atmo_model |= CS_RAD_ATMO_3D_DIRECT_SOLAR_O3BAND: direct solar
atmo_model |= CS_RAD_ATMO_3D_DIFFUSE_SOLAR: diffuse solar
atmo_model |= CS_RAD_ATMO_3D_DIFFUSE_SOLAR_O3BAND: diffuse solar
atmo_model |= CS_RAD_ATMO_3D_INFRARED: Infrared
*/
cs_rad_transfer_params_t * cs_glob_rad_transfer_params
@ CS_RAD_ATMO_3D_DIFFUSE_SOLAR
Definition: cs_rad_transfer.h:115
@ CS_RAD_ATMO_3D_DIFFUSE_SOLAR_O3BAND
Definition: cs_rad_transfer.h:116
@ CS_RAD_ATMO_3D_INFRARED
Definition: cs_rad_transfer.h:118
@ CS_RAD_ATMO_3D_DIRECT_SOLAR
Definition: cs_rad_transfer.h:112
@ CS_RAD_ATMO_3D_DIRECT_SOLAR_O3BAND
Definition: cs_rad_transfer.h:113
int cs_restart_present(void)
Check if we have a restart directory.
Definition: cs_restart.c:2097
void cs_time_control_init_by_time_step(cs_time_control_t *tc, int nt_start, int nt_end, int nt_interval, bool at_start, bool at_end)
Definition: cs_time_control.c:232
int restart
Definition: cs_rad_transfer.h:161
int imfsck
Definition: cs_rad_transfer.h:147
int i_quadrature
Definition: cs_rad_transfer.h:156
int idiver
Definition: cs_rad_transfer.h:149
int imodak
Definition: cs_rad_transfer.h:139
int iimpar
Definition: cs_rad_transfer.h:137
cs_time_control_t time_control
Definition: cs_rad_transfer.h:207
int atmo_model
Definition: cs_rad_transfer.h:172
int verbosity
Definition: cs_rad_transfer.h:138
int ndirec
Definition: cs_rad_transfer.h:157
int imoadf
Definition: cs_rad_transfer.h:142

Radiative transfer boundary conditions

Sketch of thermal flux in boundary walls

The radiative boundary condition is based on the calculation of a new wall temperature. This temperature is computed with a thermal flux balance:

\[{ Q_{conduction} = Q_{convection} + (Q_{rayt_{absorption}} - Q_{rayt_{emission}}}) \]

Therefore :

\[ \dfrac{xlamp}{epap} (T_{fluid} - T_{wall}) = h_{fluid} (T_{fluid} - T_{wall}) + epsp (Q_{incid} - \sigma * T_{wall}) \]

Note
In code_saturne the flux is positive when it is oriented from inside to outside.
Body Emissivity
polished steel 0.06
oxidized steel 0.80
steel rough 0.94
polished aluminium 0.04
oxidiezd aluminium (inside) 0.09
oxidized aluminium (wet air) 0.90
brick 0.93
concrete 0.93
paper 0.8 to 0.9
water 0.96

Boundary faces identification

Boundary faces may be identified using the getfbr function, or preferrably, through boundary zones, defined using the GUI or the cs_user_zones function..

Initialization and finalization

The following declaration and initialization block needs to be added for the following examples:

const cs_zone_t *zone = NULL;
int * cs_boundary_zone_face_class_id(void)
Get pointer to optional boundary face class ids.
Definition: cs_boundary_zone.c:1026
double cs_real_t
Floating-point value.
Definition: cs_defs.h:319
const double cs_physical_constants_celsius_to_kelvin
Definition: cs_physical_constants.c:408
double precision tkelvi
Temperature in Kelvin correponding to 0 degrees Celsius (= +273,15)
Definition: cstphy.f90:44
Definition: cs_zone.h:55

Remaining initialization

ivar: number of the thermal variable

cs_field_t * cs_thermal_model_field(void)
Definition: cs_thermal_model.c:216
Field descriptor.
Definition: cs_field.h:131

Min and Max values for the wall temperatures (clipping otherwise)

$ T_{min} $ and $T_{max} $ are given in Kelvin.

*tmin = 0.0;
*tmax = cs_math_big_r + tkelvi;
const cs_real_t cs_math_big_r

Assign boundary conditions to boundary wall

Zone definitions

For each boundary face face_id, a specific output (logging and postprocessing) zone id may be assigned. This allows realizing balance sheets by treating them separately for each zone. By default, the output zone id is set to the general (input) zone id associated to a face.

To access output zone ids (both for reading and modifying), use the cs_boundary_zone_face_zone_id function.

Wall characteristics

Warning
The unit of the temperature is the Kelvin

Mandatory data

  • isothp(ifac) boundary face type
    • CS_BOUNDARY_RAD_WALL_GRAY: Gray wall with temperature based on fluid BCs
    • CS_BOUNDARY_RAD_WALL_GRAY_EXTERIOR_T: Gray wall with fixed exterior temperature
    • CS_BOUNDARY_RAD_WALL_REFL_EXTERIOR_T: Reflecting wall with fixed outside temperature (same as Gray wall with zero emissivity)
    • CS_BOUNDARY_RAD_WALL_GRAY_COND_FLUX: Gray wall with fixed conduction flux
    • CS_BOUNDARY_RAD_WALL_GRAY_REFL_FLUX: Reflecting wall with fixed conduction flux

Other data (depending of the isothp)

  • rcodcl = conduction flux
  • epsp = emissivity
  • xlamp = conductivity ( $W.m^{-1}.K^{-1}$)
  • epap = thickness ( $m$)
  • textp = outside temperature ( $K$)

Examples of boundary conditions

Here is a list of examples:

Gray or black wall with profil of fixed inside temperature

For wall boundary faces, selection criteria: color 1

zone = cs_boundary_zone_by_name("wall_1");
for (cs_lnum_t ilelt = 0; ilelt < zone->n_elts; ilelt++) {
cs_lnum_t face_id = zone->elt_ids[ilelt];
if (bc_type[face_id] == CS_SMOOTHWALL) {
/* logging zone number */
izfrdp[face_id] = 51;
/* Type of condition: gray or black wall with fixed interior
temperature (based on main temperature BC's) */
isothp[face_id] = CS_BOUNDARY_RAD_WALL_GRAY;
/* Emissivity */
epsp[face_id] = 0.1;
}
}
const cs_zone_t * cs_boundary_zone_by_name(const char *name)
Return a pointer to a boundary zone based on its name if present.
Definition: cs_boundary_zone.c:711
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:313
@ CS_SMOOTHWALL
Definition: cs_parameters.h:87
@ CS_BOUNDARY_RAD_WALL_GRAY
Definition: cs_rad_transfer.h:82
const cs_lnum_t * elt_ids
Definition: cs_zone.h:65
cs_lnum_t n_elts
Definition: cs_zone.h:64

Gray or black wall with fixed outside temperature \f$ T_{ext} \f$

For wall boundary faces, selection criteria: color 2

zone = cs_boundary_zone_by_name("wall_2");
for (cs_lnum_t ilelt = 0; ilelt < zone->n_elts; ilelt++) {
cs_lnum_t face_id = zone->elt_ids[ilelt];
if (bc_type[face_id] == CS_ROUGHWALL) {
/* logging zone number */
izfrdp[face_id] = 52;
/* Gray or black wall with fixed exterior temperature */
/* Emissivity */
epsp[face_id] = 0.9;
/* Conductivity (W/m/K)*/
xlamp[face_id] = 3.0;
/* Thickness (m)*/
epap[face_id] = 0.1;
/* Fixed exterior temperature: 473.15 K */
textp[face_id] = 200. + tkelvi;
}
}
@ CS_ROUGHWALL
Definition: cs_parameters.h:88
@ CS_BOUNDARY_RAD_WALL_GRAY_EXTERIOR_T
Definition: cs_rad_transfer.h:89

Reflecting wall (\f$ epsp = 0 \f$) with fixed outside temperature \f$ T_{ext} \f$

For wall boundary faces, selection criteria: color 3

zone = cs_boundary_zone_by_name("wall_3");
for (cs_lnum_t ilelt = 0; ilelt < zone->n_elts; ilelt++) {
cs_lnum_t face_id = zone->elt_ids[ilelt];
if (bc_type[face_id] == CS_SMOOTHWALL) {
/* log zone number */
izfrdp[face_id] = 53;
/* Type of condition: reflecting wall with fixed outside temperature */
/* Conductivity (W/m/K) */
xlamp[face_id] = 3.0;
/* Thickness (m)*/
epap[face_id] = 0.10;
/* Fixed outside temperature: 473.15 K */
textp[face_id] = 200.0 + tkelvi;
}
}
@ CS_BOUNDARY_RAD_WALL_REFL_EXTERIOR_T
Definition: cs_rad_transfer.h:95

Gray or black wall and fixed conduction flux through the wall

For wall boundary faces which have the color 4:

\[ \begin{array}{rcl} \frac{\texttt{xlamp}}{\texttt{epap}} \cdot (T_{wall} - T_{ext}) &=& \text{fixed conduction flux in } W.m^{-2} \\ &=& \texttt{rodcl(ifac,ivar,3)} \end{array} \]

If the conduction flux is zero then the wall is adiabatic. The array $ \texttt{rcodcl(ifac,ivar,3)}$ has the value of the flux.
Flux density (< 0 if gain for the fluid)

  • For temperature $T$, in $ W.m^{-2}$:

\[ rcodcl(ifac,ivar,3)=C_p (viscls+\frac{visct}{\sigma})\cdot \grad{T}\cdot \vect{n} \]

  • For enthalpy $h$, in $ W.m^{-2} $:

    \[ RCODC(IFAC,IVAR,3)=(viscls+\frac{visct}{\sigma})\cdot \grad{H} \cdot \vect{n}\]

zone = cs_boundary_zone_by_name("wall_4");
for (cs_lnum_t ilelt = 0; ilelt < zone->n_elts; ilelt++) {
cs_lnum_t face_id = zone->elt_ids[ilelt];
if (bc_type[face_id] == CS_SMOOTHWALL) {
/* log zone number */
izfrdp[face_id] = 54;
/* Type of condition: gray or black wall with fixed conduction
flux through the wall */
/* Emissivity */
epsp[face_id] = 0.9;
/* Conduction flux (W/m2) */
f_th->bc_coeffs->rcodcl3[face_id] = 0.0;
}
}
@ CS_BOUNDARY_RAD_WALL_GRAY_COND_FLUX
Definition: cs_rad_transfer.h:99
cs_real_t * rcodcl3
Definition: cs_field.h:111
cs_field_bc_coeffs_t * bc_coeffs
Definition: cs_field.h:163

Reflecting wall and fixed conduction flux through the wall

For wall boundary faces which have the color 5:

\[ \frac{xlamp}{epap} \cdot (T_{wall} - T_{ext}) = \text{fixed conduction flux} \]

and $ epsp = 0 $

If the conduction flux is zero then the wall is adiabatic. Flux density (< 0 if gain for the fluid)

  • For temperatures $T$, in $ W.m^{-2} $:

    \[ rcodcl(ifac,ivar,3) = C_p (viscls+\frac{visct}{\sigma}) \cdot \grad{T}\cdot \vect{n} \]

  • For enthalpies $h$, in $ W.m^{-2} $:

    \[ rcodcl(ifac,ivar,3) = (viscls+\frac{visct}{\sigma}) \cdot \grad{H} \cdot \vect{n} \]

zone = cs_boundary_zone_by_name("wall_5");
for (cs_lnum_t ilelt = 0; ilelt < zone->n_elts; ilelt++) {
cs_lnum_t face_id = zone->elt_ids[ilelt];
if (bc_type[face_id] == CS_SMOOTHWALL) {
/* log zone number */
izfrdp[face_id] = 55;
/* Type of condition: reflecting wall with fixed conduction
flux through the wall */
/* Conduction flux (W/m2)*/
f_th->bc_coeffs->rcodcl3[face_id] = 0.0;
}
}
@ CS_BOUNDARY_RAD_WALL_REFL_COND_FLUX
Definition: cs_rad_transfer.h:103

Absorption coefficient and net radiation flux

The absorption coefficient and the net radiation flux for the radiative module can be defined in cs_user_radiative_transfer.c through the cs_user_rad_transfer_absorption and Net radiation flux subroutines.

Absorption coefficient

The absorption coefficient is defined in cs_user_rad_transfer_absorption.

Computation of the absorption coefficient

/*
* Absorption coefficient of the medium (m-1).
*/
for (cs_lnum_t cell_id = 0; cell_id < cs_glob_mesh->n_cells; cell_id++)
ck[cell_id] = 0.;
cs_mesh_t * cs_glob_mesh
cs_lnum_t n_cells
Definition: cs_mesh.h:97

Net radiation flux

The net radiation flux is computed in Net radiation flux.

Local variables to be added

const double cs_physical_constants_stephan
Definition: cs_physical_constants.c:413
double precision stephn
Stephan constant for the radiative module in .
Definition: cstphy.f90:53

Initialization

At the end of the subroutine, if iok is different from zero, some faces have been forgotten and the calculation stops.

/* Initializations */

Computation of the net radiation flux

/* Net flux dendity for the boundary faces
* The provided examples are sufficient in most of cases.*/
/* If the boundary conditions given above have been modified
* it is necessary to change the way in which density is calculated from
* the net radiative flux consistently.*/
/* The rule is:
* the density of net flux is a balance between the emitting energy from a
* boundary face (and not the reflecting energy) and the absorbing radiative
* energy. Therefore if a wall heats the fluid by radiative transfer, the
* net flux is negative */
for (cs_lnum_t ifac = 0; ifac < cs_glob_mesh->n_b_faces; ifac++) {
/* Wall faces */
if ( bc_type[ifac] == CS_SMOOTHWALL
|| bc_type[ifac] == CS_ROUGHWALL)
net_flux[ifac] = eps[ifac] * (qincid[ifac] - stephn * pow(twall[ifac], 4));
/* Symmetry */
else if (bc_type[ifac] == CS_SYMMETRY)
net_flux[ifac] = 0.0;
/* Inlet/Outlet */
else if ( bc_type[ifac] == CS_INLET
|| bc_type[ifac] == CS_CONVECTIVE_INLET
|| bc_type[ifac] == CS_OUTLET
|| bc_type[ifac] == CS_FREE_INLET) {
net_flux[ifac] = qincid[ifac] - cs_math_pi * coefap[ifac];
net_flux[ifac] = 0.0;
}
/* Stop if there are forgotten faces */
else
(__FILE__, __LINE__, 0,
"In %s:\n"
" non-handled boundary faces for net flux calculation\n\n"
" Last face: %10ld; zone = %d; nature = %d\n",
__func__,
(long)ifac,
bc_type[ifac]);
}
void bft_error(const char *const file_name, const int line_num, const int sys_error_code, const char *const format,...)
Calls the error handler (set by bft_error_handler_set() or default).
Definition: bft_error.c:193
const int * cs_boundary_zone_face_zone_id(void)
Return pointer to zone id associated with each boundary face.
Definition: cs_boundary_zone.c:845
@ eps
Definition: cs_field_pointer.h:71
const cs_real_t cs_math_pi
@ CS_OUTLET
Definition: cs_parameters.h:84
@ CS_INLET
Definition: cs_parameters.h:83
@ CS_CONVECTIVE_INLET
Definition: cs_parameters.h:103
@ CS_FREE_INLET
Definition: cs_parameters.h:100
@ CS_SYMMETRY
Definition: cs_parameters.h:85
@ CS_RAD_TRANSFER_P1
Definition: cs_rad_transfer.h:56
@ CS_RAD_TRANSFER_DOM
Definition: cs_rad_transfer.h:55
cs_lnum_t n_b_faces
Definition: cs_mesh.h:99
cs_rad_transfer_model_t type
Definition: cs_rad_transfer.h:134