8.1
general documentation
cs_turbulence_kw.h File Reference
#include "cs_defs.h"
+ Include dependency graph for cs_turbulence_kw.h:

Go to the source code of this file.

Functions

void cs_turbulence_kw (int phase_id, cs_lnum_t ncesmp, cs_lnum_t icetsm[], int itypsm[], const cs_real_t dt[], cs_real_t smacel[])
 Solve the k-omega equations. More...
 
void cs_turbulence_kw_mu_t (int phase_id)
 Calculation of turbulent viscosity for the $ k - \omega $ SST model. More...
 

Function Documentation

◆ cs_turbulence_kw()

void cs_turbulence_kw ( int  phase_id,
cs_lnum_t  ncesmp,
cs_lnum_t  icetsm[],
int  itypsm[],
const cs_real_t  dt[],
cs_real_t  smacel[] 
)

Solve the k-omega equations.

Solve the $ k - \omega $ SST for incompressible flows or slightly compressible flows for one time step.

Parameters
[in]phase_idturbulent phase id (-1 for single phase flow)
[in]ncesmpnumber of cells with mass source term
[in]icetsmindex of cells with mass source term
[in]itypsmmass source type for the variables size: [nvar][ncesmp]
[in]dttime step (per cell)
[in]smacelvalues of the variables associated to the mass source (for the pressure variable, smacel is the mass flux) size: [nvar][ncesmp]

◆ cs_turbulence_kw_mu_t()

void cs_turbulence_kw_mu_t ( int  phase_id)

Calculation of turbulent viscosity for the $ k - \omega $ SST model.

\[ \mu_T = \rho A1 \dfrac{k}{\max(A1 \omega; \; S f_2)} \]

with

\[ S = \sqrt{ 2 S_{ij} S_{ij}} \]

\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]

and $ f_2 = \tanh(arg2^2) $

\[ arg2^2 = \max(2 \dfrac{\sqrt{k}}{C_\mu \omega y}; \; 500 \dfrac{\nu}{\omega y^2}) \]

where $ y $ is the distance to the wall.

$ \divs{\vect{u}} $ is calculated at the same time than $ S $ for use in cs_turbulence_kw.

Parameters
[in]phase_idturbulent phase id (-1 for single phase flow)

\[ \mu_T = \rho A1 \dfrac{k}{\max(A1 \omega; \; S f_2)} \]

with

\[ S = \sqrt{ 2 S_{ij} S_{ij}} \]

\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]

and $ f_2 = \tanh(arg2^2) $

\[ arg2^2 = \max(2 \dfrac{\sqrt{k}}{C_\mu \omega y}; \; 500 \dfrac{\nu}{\omega y^2}) \]

where $ y $ is the distance to the wall.

$ \divs{\vect{u}} $ is calculated at the same time than $ S $ for use in cs_turbulence_kw.

Parameters
[in]phase_idturbulent phase id (-1 for single phase flow)

!