8.0
general documentation
pthrbm.f90 File Reference

Functions/Subroutines

subroutine pthrbm (nvar, ncesmp, nfbpcd, ncmast, dt, smacel, spcond, svcond)
 Update the density $ \rho^{n+1}$ with the $ \rho^{n-\frac{1}{2}} $ density with the state law and a thermodynamic pressure $ p_{ther}^{n+1} $ estimated from the integral over the total fluid domain of the mass conservation equation. More...
 
subroutine compute_td_pressure_perfect_gas (nvar, ncesmp, nfbpcd, ncmast, dt, smacel, spcond, svcond, new_pther)
 Compute the thermodynamic pressure for a perfect gas. More...
 

Function/Subroutine Documentation

◆ compute_td_pressure_perfect_gas()

subroutine compute_td_pressure_perfect_gas ( integer, intent(in)  nvar,
integer, intent(in)  ncesmp,
integer, intent(in)  nfbpcd,
integer, intent(in)  ncmast,
double precision, dimension(ncelet), intent(in)  dt,
double precision, dimension(ncesmp,nvar), intent(in)  smacel,
double precision, dimension(nfbpcd,nvar), intent(in)  spcond,
double precision, dimension(ncelet,nvar), intent(in)  svcond,
double precision, intent(out)  new_pther 
)

Compute the thermodynamic pressure for a perfect gas.

Parameters
[in]nvartotal number of variables
[in]ncesmpnumber of cells with mass source term
[in]nfbpcdnumber of faces with condensation source terms
[in]ncmastnumber of cells with condensation source terms
[in]dttime step (per cell)
[in]smacelvariable value associated to the mass source term (for ivar=ipr, smacel is the mass flux $ \Gamma^n $)
[in]spcondvariable value associated to the condensation source term (for ivar=ipr, spcond is the flow rate $ \Gamma_{s, cond}^n $)
[in]svcondvariable value associated to the condensation source term (for ivar=ipr, svcond is the flow rate $ \Gamma_{v, cond}^n $)

◆ pthrbm()

subroutine pthrbm ( integer  nvar,
integer  ncesmp,
integer  nfbpcd,
integer  ncmast,
double precision, dimension(ncelet)  dt,
double precision, dimension(ncesmp,nvar)  smacel,
double precision, dimension(nfbpcd,nvar)  spcond,
double precision, dimension(ncelet,nvar)  svcond 
)

Update the density $ \rho^{n+1}$ with the $ \rho^{n-\frac{1}{2}} $ density with the state law and a thermodynamic pressure $ p_{ther}^{n+1} $ estimated from the integral over the total fluid domain of the mass conservation equation.

Parameters
[in]nvartotal number of variables
[in]ncesmpnumber of cells with mass source term
[in]nfbpcdnumber of faces with condensation source terms
[in]ncmastnumber of cells with condensation source terms
[in]dttime step (per cell)
[in]smacelvariable value associated to the mass source term (for ivar=ipr, smacel is the mass flux $ \Gamma^n $)
[in]spcondvariable value associated to the condensation source term (for ivar=ipr, spcond is the flow rate $ \Gamma_{s, cond}^n $)
[in]svcondvariable value associated to the condensation source term (for ivar=ipr, svcond is the flow rate $ \Gamma_{v, cond}^n $)