7.1
general documentation
turbulence_bc_inlet_hyd_diam Interface Reference

Set inlet boundary condition values for turbulence variables based on a diameter $ D_H $ and the reference velocity $ U_{ref} $ for a circular duct flow with smooth wall. More...

+ Collaboration diagram for turbulence_bc_inlet_hyd_diam:

Public Member Functions

subroutine turbulence_bc_inlet_hyd_diam (face_num, uref2, dh, rho, mu, rcodcl)
 

Detailed Description

Set inlet boundary condition values for turbulence variables based on a diameter $ D_H $ and the reference velocity $ U_{ref} $ for a circular duct flow with smooth wall.

We use the laws from Idel'Cik, i.e. the head loss coefficient $ \lambda $ is defined by:

\[ |\dfrac{\Delta P}{\Delta x}| = \dfrac{\lambda}{D_H} \frac{1}{2} \rho U_{ref}^2 \]

then the relation reads $u^\star = U_{ref} \sqrt{\dfrac{\lambda}{8}}$. $\lambda $ depends on the hydraulic Reynolds number $ Re = \dfrac{U_{ref} D_H}{ \nu} $ and is given by:

  • for $ Re < 2000 $

    \[ \lambda = \dfrac{64}{Re} \]

  • for $ Re > 4000 $

    \[ \lambda = \dfrac{1}{( 1.8 \log_{10}(Re)-1.64 )^2} \]

  • for $ 2000 < Re < 4000 $, we complete by a straight line

    \[ \lambda = 0.021377 + 5.3115. 10^{-6} Re \]

From $ u^\star $, we can estimate $ k $ and $ \varepsilon$ from the well known formulae of developped turbulence

\[ k = \dfrac{u^{\star 2}}{\sqrt{C_\mu}} \]

\[ \varepsilon = \dfrac{ u^{\star 3}}{(\kappa D_H /10)} \]

Parameters
[in]face_numboundary face number
[in]uref2square of the reference flow velocity
[in]dhhydraulic diameter $ D_H $
[in]rhomass density $ \rho $
[in]mudynamic viscosity $ \nu $
[out]rcodclboundary condition values

Constructor & Destructor Documentation

◆ turbulence_bc_inlet_hyd_diam()

subroutine turbulence_bc_inlet_hyd_diam ( integer(c_int), value  face_num,
real(c_double), value  uref2,
real(c_double), value  dh,
real(c_double), value  rho,
real(c_double), value  mu,
real(kind=c_double), dimension(*)  rcodcl 
)

The documentation for this interface was generated from the following file: