1 #ifndef __CS_WALL_FUNCTIONS_H__ 2 #define __CS_WALL_FUNCTIONS_H__ 130 cs_wall_functions_1scale_power(
cs_real_t l_visc,
144 const double ydvisc = y / l_visc;
150 *yplus = *ustar * ydvisc;
153 if (*yplus <= ypluli) {
155 *ustar = sqrt(vel / ydvisc);
156 *yplus = *ustar * ydvisc;
201 cs_wall_functions_1scale_log(
cs_lnum_t ifac,
216 double ustarwer, ustarmin, ustaro, ydvisc;
225 reynolds =
vel * ydvisc;
232 if (reynolds <= ypluli * ypluli) {
234 *ustar = sqrt(
vel / ydvisc);
235 *
yplus = *ustar * ydvisc;
251 ustaro =
CS_MAX(ustarwer, ustarmin);
252 *ustar = (cs_turb_xkappa *
vel + ustaro)
256 for (iter = 0; iter < niter_max
257 && fabs(*ustar - ustaro) >= eps * ustaro; iter++) {
259 *ustar = (cs_turb_xkappa *
vel + ustaro)
263 if (iter >= niter_max) {
264 bft_printf(
_(
"WARNING: non-convergence in the computation\n" 265 "******** of the friction velocity\n\n" 267 "friction vel: %f \n" ), (
long)ifac, *ustar);
271 *
yplus = *ustar * ydvisc;
273 *cofimp = 1. - *ypup / cs_turb_xkappa * 1.5 / *
yplus;
302 f_blend = exp(-0.25*cuv*pow(yp,3));
303 uplus = f_blend*yp + (log(yp)/
ka +B)*(1.-exp(-pow(yp/y0,n)))*(1-f_blend);
326 dupdyp = exp(-0.25*cuv*pow(yp,3))
327 - 0.75*cuv*pow(yp,3.)*exp(-0.25*cuv*pow(yp,3.))
328 + n*(1.-exp(-0.25*cuv*pow(yp,3.)))*(pow(yp,n-1.)/pow(y0,n))
329 *exp(-pow(yp/y0,n))*((1./
ka)*log(yp)+B)
330 + 0.75*cuv*pow(yp,2.)*exp(-0.25*cuv*pow(yp,3.))
331 *(1.-exp(-pow(yp/y0,n)))*((1./
ka)*log(yp)+B)
332 + (1./
ka/yp)*(1.-exp(-pow(yp/y0,n)))*(1-exp(-0.25*cuv*pow(yp,3.)));
363 cs_wall_functions_2scales_continuous(
cs_real_t rnnb,
379 double Re, g, t_visc_durb;
389 Re = sqrt(kinetic_en) * y / l_visc;
394 + g * l_visc *
vel/y);
397 *
yplus = *uk * y / l_visc;
400 *ustar =
vel / uplus;
402 if (*
yplus < 1.e-1) {
415 cstcuv, csty0, cstN);
420 *ypup = *
yplus / uplus;
434 assert(turb_model != NULL);
435 if (turb_model->
itytur == 3)
436 t_visc_durb = t_visc / (kinetic_en *
cs_turb_cmu ) * rnnb * 0.22;
438 t_visc_durb = t_visc;
441 = 1. - *ypup * (2. * sqrt(l_visc / t_visc_durb * dup1 * (1. - dup1))
445 if (*
yplus > ypluli) {
478 cs_wall_functions_2scales_log(
cs_real_t l_visc,
494 double rcprod, ml_visc, Re, g;
499 Re = sqrt(kinetic_en) * y / l_visc;
503 + g * l_visc *
vel / y);
505 *
yplus = *uk * y / l_visc;
508 if (*
yplus > ypluli) {
522 if (*
yplus > 1.e-12) {
561 cs_wall_functions_2scales_scalable(
cs_real_t l_visc,
580 double rcprod, ml_visc, Re, g;
584 Re = sqrt(kinetic_en) * y / l_visc;
588 + g * l_visc *
vel / y);
590 *
yplus = *uk * y / l_visc;
594 *
yplus = *uk * y / l_visc;
597 if (*
yplus > ypluli) {
606 *dplus = ypluli - *
yplus;
639 static double aa[11] = {-0.0091921, 3.9577, 0.031578,
640 -0.51013, -2.3254, -0.72665,
641 2.969, 0.48506, -1.5944,
644 cs_real_t y1,y2,y3,y4,y5,y6,y7,y8,y9,y10, uplus;
646 y1 = 0.25 * log(yplus);
710 cs_wall_functions_2scales_vdriest(
cs_real_t rnnb,
727 double urplus, d_up, lmk15;
740 cs_real_t dyrp = 0.9 * (sqrt(krp) - krp * exp(-krp / 6.));
745 else if (dyrp <= 200.)
746 d_up = _vdriest_dupdyp_integral(dyrp);
750 if (yrplus <= 1.e-1) {
765 }
else if (yrplus <= 200.) {
767 urplus = _vdriest_dupdyp_integral(yrplus);
772 *ypup = *
yplus / (urplus-d_up);
781 *cofimp = 1. - (2. / (1. + *lmk) - 1. / (1. + lmk15)) * *ypup;
791 *ypup = *
yplus / (urplus-d_up);
800 *cofimp = 1. - (2. / *lmk - 1. / lmk15) * *ypup;
805 *ustar =
vel / (urplus-d_up);
844 cs_wall_functions_2scales_smooth_rough(
cs_real_t l_visc,
864 double rcprod, ml_visc, Re, g;
887 Re = sqrt(kinetic_en) * (y + y0) / l_visc;
891 + g * l_visc *
vel / (y + y0));
894 *
yplus = *uk * y / l_visc;
897 *dplus = *uk * y0 / l_visc;
904 if (*
yplus > ypluli) {
913 *dplus = ypluli - *
yplus;
920 *ustar =
vel / uplus;
922 bft_printf(
"uet=%f, u=%f, uplus=%f, yk=%f, duplus=%f\n", *ustar,
vel, uplus, *
yplus, 1./uplus);
924 *ypup = *
yplus / uplus;
930 * ( 2. * rcprod - 1. / (2. * *
yplus + *dplus));
957 cs_wall_functions_disabled(
cs_real_t l_visc,
979 *ustar = sqrt(
vel * l_visc / y);
980 *
yplus = *ustar * y / l_visc;
986 if (*
yplus <= ypluli) {
1032 cs_wall_functions_s_arpaci_larsen(
cs_real_t l_visc,
1078 if (
yplus > (*yplim)) {
1080 (*htur) = prl *
yplus / tplus;
1089 (*yplim) = pow(1000./prl, 1./3.);
1091 a2 = 15.*pow(prl, 2./3.);
1094 tplus = a2 - 500./((
yplus+dplus)*(
yplus+dplus));
1095 (*htur) = prl *
yplus / tplus;
1101 (*htur) = prl *
yplus / tplus;
1134 cs_wall_functions_s_vdriest(
cs_real_t prl,
1142 const int ninter_max = 100;
1154 int npeff =
CS_MAX((
int)(ypint / ypmax * (
double)(ninter_max)), 1);
1156 double dy = ypint / (double)(npeff);
1161 for (
int ip = 1; ip <= npeff; ip++) {
1162 double yp = ypint * (double)(ip) / (double)(npeff);
1164 stplus += dy / (1. + prlrat * 0.5 * (nut1 + nut2));
1168 if (
yplus > ypint) {
1170 stplus += log( (1. + r*
yplus) / (1. + r*ypint)) / r;
1173 if (stplus >= 1.e-6)
1174 *htur =
yplus / stplus;
1199 cs_wall_functions_s_smooth_rough(
cs_real_t l_visc,
1228 if (
yplus > ypluli) {
1230 (*htur) = prl *
yplus / tplus;
const double cs_turb_xkappa
Definition: cs_turbulence_model.c:387
int itytur
Definition: cs_turbulence_model.h:138
double precision epzero
epsilon
Definition: cstnum.f90:40
Definition: cs_wall_functions.h:75
cs_wall_f_type_t iwallf
Definition: cs_wall_functions.h:89
cs_turb_model_t * cs_get_glob_turb_model(void)
Provide write access to turbulence model structure.
Definition: cs_turbulence_model.c:1422
#define BEGIN_C_DECLS
Definition: cs_defs.h:510
integer(c_int), pointer, save iwalfs
Wall functions for scalar.
Definition: optcal.f90:576
const cs_real_t cs_math_epzero
Turbulence model general options descriptor.
Definition: cs_turbulence_model.h:114
#define CS_UNUSED(x)
Definition: cs_defs.h:496
double cs_turb_cmu025
Definition: cs_turbulence_model.c:448
cs_wall_functions_t * cs_get_glob_wall_functions(void)
Definition: cs_wall_functions.c:297
Definition: cs_wall_functions.h:76
Definition: cs_wall_functions.h:63
double precision, dimension(ncharm), save a2
Definition: cpincl.f90:233
double cs_turb_cmu
Definition: cs_turbulence_model.c:445
Definition: cs_wall_functions.h:79
Definition: cs_wall_functions.h:62
double cs_turb_dpow
Definition: cs_turbulence_model.c:438
double cs_real_t
Floating-point value.
Definition: cs_defs.h:322
const double cs_turb_bpow
Definition: cs_turbulence_model.c:435
Definition: cs_field_pointer.h:68
Definition: cs_wall_functions.h:64
void hturbp(const int *const iwalfs, const cs_real_t *const l_visc, const cs_real_t *const prl, const cs_real_t *const prt, const cs_real_t *const rough_t, const cs_real_t *const uk, const cs_real_t *const yplus, const cs_real_t *const dplus, cs_real_t *htur, cs_real_t *yplim)
Definition: cs_wall_functions.c:261
double cs_turb_crij2
Definition: cs_turbulence_model.c:485
cs_wall_f_s_type_t
Definition: cs_wall_functions.h:73
Definition: cs_wall_functions.h:66
const double cs_turb_vdriest
Definition: cs_turbulence_model.c:396
Definition: cs_wall_functions.h:61
Definition: cs_wall_functions.h:78
#define CS_MIN(a, b)
Definition: cs_defs.h:473
real(c_double), pointer, save ypluli
limit value of for the viscous sublayer. ypluli depends on the chosen wall function: it is initializ...
Definition: cstphy.f90:303
integer(c_int), pointer, save iwallf
Wall functions Indicates the type of wall function used for the velocity boundary conditions on a fri...
Definition: optcal.f90:571
Definition: cs_wall_functions.h:65
double cs_turb_crij1
Definition: cs_turbulence_model.c:479
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:316
Definition: cs_wall_functions.h:69
#define END_C_DECLS
Definition: cs_defs.h:511
wall functions descriptor.
Definition: cs_wall_functions.h:87
#define _(String)
Definition: cs_defs.h:66
void cs_wall_functions_scalar(cs_wall_f_s_type_t iwalfs, cs_real_t l_visc, cs_real_t prl, cs_real_t prt, cs_real_t rough_t, cs_real_t uk, cs_real_t yplus, cs_real_t dplus, cs_real_t *htur, cs_real_t *yplim)
Compute the correction of the exchange coefficient between the fluid and the wall for a turbulent flo...
Definition: cs_wall_functions.c:531
Definition: cs_wall_functions.h:80
Definition: cs_wall_functions.h:68
const double cs_turb_cstlog
Definition: cs_turbulence_model.c:407
#define CS_PROCF(x, y)
Definition: cs_defs.h:524
#define CS_MAX(a, b)
Definition: cs_defs.h:474
int bft_printf(const char *const format,...)
Replacement for printf() with modifiable behavior.
Definition: bft_printf.c:140
cs_wall_f_s_type_t iwalfs
Definition: cs_wall_functions.h:91
double precision, dimension(4, npot), save ka
Definition: ppcpfu.f90:159
Definition: cs_field_pointer.h:71
double ypluli
Definition: cs_wall_functions.h:93
cs_wall_f_type_t
Definition: cs_wall_functions.h:59
Definition: cs_wall_functions.h:77
void cs_wall_functions_velocity(cs_wall_f_type_t iwallf, cs_lnum_t ifac, cs_real_t l_visc, cs_real_t t_visc, cs_real_t vel, cs_real_t y, cs_real_t rough_d, cs_real_t rnnb, cs_real_t kinetic_en, int *iuntur, cs_lnum_t *nsubla, cs_lnum_t *nlogla, cs_real_t *ustar, cs_real_t *uk, cs_real_t *yplus, cs_real_t *ypup, cs_real_t *cofimp, cs_real_t *dplus)
Compute the friction velocity and / .
Definition: cs_wall_functions.c:331
const cs_wall_functions_t * cs_glob_wall_functions
void wallfunctions(const int *const iwallf, const cs_lnum_t *const ifac, const cs_real_t *const viscosity, const cs_real_t *const t_visc, const cs_real_t *const vel, const cs_real_t *const y, const cs_real_t *const rough_d, const cs_real_t *const rnnb, const cs_real_t *const kinetic_en, int *iuntur, cs_lnum_t *nsubla, cs_lnum_t *nlogla, cs_real_t *ustar, cs_real_t *uk, cs_real_t *yplus, cs_real_t *ypup, cs_real_t *cofimp, cs_real_t *dplus)
Definition: cs_wall_functions.c:213
Definition: cs_field_pointer.h:236
Definition: cs_wall_functions.h:67
const double cs_turb_apow
Definition: cs_turbulence_model.c:432