Go to the source code of this file.
Functions | |
void | cs_gradient_boundary_iprime_lsq_s (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_real_t *bc_coeff_a, const cs_real_t *bc_coeff_b, const cs_real_t c_weight[], const cs_real_t var[], cs_real_t *restrict var_iprime) |
Compute the values of a scalar at boundary face I' positions using least-squares interpolation. More... | |
void | cs_gradient_boundary_iprime_lsq_s_ani (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, double clip_coeff, const cs_real_t *bc_coeff_a, const cs_real_t *bc_coeff_b, const cs_real_t c_weight[][6], const cs_real_t var[], cs_real_t *restrict var_iprime) |
Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting. More... | |
void | cs_gradient_boundary_iprime_lsq_v (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_real_t bc_coeff_a[][3], const cs_real_t bc_coeff_b[][3][3], const cs_real_t c_weight[], const cs_real_t var[][3], cs_real_t var_iprime[restrict][3]) |
Compute the values of a vector at boundary face I' positions using least-squares interpolation. More... | |
void | cs_gradient_boundary_iprime_lsq_t (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, cs_lnum_t n_faces, const cs_lnum_t *face_ids, cs_halo_type_t halo_type, double clip_coeff, const cs_real_t bc_coeff_a[][6], const cs_real_t bc_coeff_b[][6][6], const cs_real_t c_weight[], const cs_real_t var[][6], cs_real_t var_iprime[restrict][6]) |
Compute the values of a symmetric tensor at boundary face I' positions using least-squares interpolation. More... | |
void cs_gradient_boundary_iprime_lsq_s | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | fvq, | ||
cs_lnum_t | n_faces, | ||
const cs_lnum_t * | face_ids, | ||
cs_halo_type_t | halo_type, | ||
double | clip_coeff, | ||
const cs_real_t * | bc_coeff_a, | ||
const cs_real_t * | bc_coeff_b, | ||
const cs_real_t | c_weight[], | ||
const cs_real_t | var[], | ||
cs_real_t *restrict | var_iprime | ||
) |
Compute the values of a scalar at boundary face I' positions using least-squares interpolation.
This assumes ghost cell values for the variable (var) are up-to-date.
A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).
To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neumann BC for a given face.
We still use the provided BC's when possible, for the following cases:
[in] | m | pointer to associated mesh structure |
[in] | fvq | pointer to associated finite volume quantities |
[in] | n_faces | number of faces at which to compute values |
[in] | face_ids | ids of boundary faces at which to compute values, or NULL for all |
[in] | halo_type | halo (cell neighborhood) type |
[in] | clip_coeff | clipping (limiter) coefficient (no limiter if < 0) |
[in] | bc_coeff_a | boundary condition term a, or NULL |
[in] | bc_coeff_b | boundary condition term b, or NULL |
[in] | c_weight | cell variable weight, or NULL |
[in] | var | variable values et cell centers |
[out] | var_iprime | variable values et face iprime locations |
void cs_gradient_boundary_iprime_lsq_s_ani | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | fvq, | ||
cs_lnum_t | n_faces, | ||
const cs_lnum_t * | face_ids, | ||
double | clip_coeff, | ||
const cs_real_t * | bc_coeff_a, | ||
const cs_real_t * | bc_coeff_b, | ||
const cs_real_t | c_weight[][6], | ||
const cs_real_t | var[], | ||
cs_real_t *restrict | var_iprime | ||
) |
Compute the values of a scalar at boundary face I' positions using least-squares interpolation with anisotropic weighting.
This assumes ghost cell values for the variable (var) are up-to-date.
A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).
[in] | m | pointer to associated mesh structure |
[in] | fvq | pointer to associated finite volume quantities |
[in] | n_faces | number of faces at which to compute values |
[in] | face_ids | ids of boundary faces at which to compute values, or NULL for all |
[in] | clip_coeff | clipping (limiter) coefficient (no limiter if < 0) |
[in] | bc_coeff_a | boundary condition term a, or NULL |
[in] | bc_coeff_b | boundary condition term b, or NULL |
[in] | c_weight | cell variable weight, or NULL |
[in] | var | variable values et cell centers |
[out] | var_iprime | variable values et face iprime locations |
void cs_gradient_boundary_iprime_lsq_t | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | fvq, | ||
cs_lnum_t | n_faces, | ||
const cs_lnum_t * | face_ids, | ||
cs_halo_type_t | halo_type, | ||
double | clip_coeff, | ||
const cs_real_t | bc_coeff_a[][6], | ||
const cs_real_t | bc_coeff_b[][6][6], | ||
const cs_real_t | c_weight[], | ||
const cs_real_t | var[][6], | ||
cs_real_t | var_iprime[restrict][6] | ||
) |
Compute the values of a symmetric tensor at boundary face I' positions using least-squares interpolation.
This assumes ghost cell values which might be used are already synchronized.
A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).
This function uses a local iterative approach to compute the cell gradient, as handling of the boundary condition terms b in higher dimensions would otherwise require solving higher-dimensional systems, often at a higher cost.
To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neuman BC.
The same logic is applied as for cs_gradient_boundary_iprime_lsq_s.
[in] | m | pointer to associated mesh structure |
[in] | fvq | pointer to associated finite volume quantities |
[in] | n_faces | number of faces at which to compute values |
[in] | face_ids | ids of boundary faces at which to compute values, or NULL for all |
[in] | halo_type | halo (cell neighborhood) type |
[in] | clip_coeff | clipping (limiter) coefficient (no limiter if < 0) |
[in] | bc_coeff_a | boundary condition term a, or NULL |
[in] | bc_coeff_b | boundary condition term b, or NULL |
[in] | c_weight | cell variable weight, or NULL |
[in] | var | variable values et cell centers |
[out] | var_iprime | variable values et face iprime locations |
void cs_gradient_boundary_iprime_lsq_v | ( | const cs_mesh_t * | m, |
const cs_mesh_quantities_t * | fvq, | ||
cs_lnum_t | n_faces, | ||
const cs_lnum_t * | face_ids, | ||
cs_halo_type_t | halo_type, | ||
double | clip_coeff, | ||
const cs_real_t | bc_coeff_a[][3], | ||
const cs_real_t | bc_coeff_b[][3][3], | ||
const cs_real_t | c_weight[], | ||
const cs_real_t | var[][3], | ||
cs_real_t | var_iprime[restrict][3] | ||
) |
Compute the values of a vector at boundary face I' positions using least-squares interpolation.
This assumes ghost cell values which might be used are already synchronized.
A simple limiter is applied to ensure the maximum principle is preserved (using non-reconstructed values in case of non-homogeneous Neumann conditions).
This function uses a local iterative approach to compute the cell gradient, as handling of the boundary condition terms b in higher dimensions would otherwise require solving higher-dimensional systems, often at a higher cost.
To compute the values at I', we only need the gradient along II', so in most cases, we could simply assume a Neuman BC.
The same logic is applied as for cs_gradient_boundary_iprime_lsq_s.
[in] | m | pointer to associated mesh structure |
[in] | fvq | pointer to associated finite volume quantities |
[in] | n_faces | number of faces at which to compute values |
[in] | face_ids | ids of boundary faces at which to compute values, or NULL for all |
[in] | halo_type | halo (cell neighborhood) type |
[in] | clip_coeff | clipping (limiter) coefficient (no limiter if < 0) |
[in] | bc_coeff_a | boundary condition term a, or NULL |
[in] | bc_coeff_b | boundary condition term b, or NULL |
[in] | c_weight | cell variable weight, or NULL |
[in] | var | variable values et cell centers |
[out] | var_iprime | variable values et face iprime locations |