Macros | |
#define | CS_CDO_BC_NEUMANN (1 << 0) |
#define | CS_CDO_BC_FULL_NEUMANN (1 << 1) |
#define | CS_CDO_BC_HMG_NEUMANN (1 << 2) |
#define | CS_CDO_BC_DIRICHLET (1 << 3) |
#define | CS_CDO_BC_HMG_DIRICHLET (1 << 4) |
#define | CS_CDO_BC_ROBIN (1 << 5) |
#define | CS_CDO_BC_SLIDING (1 << 6) |
#define | CS_CDO_BC_TANGENTIAL_DIRICHLET (1 << 7) |
#define | CS_CDO_BC_WALL_PRESCRIBED (1 << 8) |
associated to an element
Homogeneous conditions are defined separately since a flag CS_CDO_BC_HOMOGENEOUS would not enable to identify if it is associated to a Dirichlet or a Neumann boundary condition
#define CS_CDO_BC_DIRICHLET (1 << 3) |
8: Dirichlet boundary conditions
#define CS_CDO_BC_FULL_NEUMANN (1 << 1) |
2: Neumann boundary conditions (vector/tenors-valued)
#define CS_CDO_BC_HMG_DIRICHLET (1 << 4) |
16: Homogeneous Dirichlet boundary conditions
#define CS_CDO_BC_HMG_NEUMANN (1 << 2) |
4: Homogeneous Neumann boundary conditions
#define CS_CDO_BC_NEUMANN (1 << 0) |
1: Neumann boundary conditions (scalar/vector-valued)
#define CS_CDO_BC_ROBIN (1 << 5) |
32: Robin boundary conditions
#define CS_CDO_BC_SLIDING (1 << 6) |
64: Apply a sliding condition (for vector-valued equations)
#define CS_CDO_BC_TANGENTIAL_DIRICHLET (1 << 7) |
128: Apply a Dirichlet on the tangential part of a vector-valued quantity
#define CS_CDO_BC_WALL_PRESCRIBED (1 << 8) |
256: Apply a wall function/law to prescribe the value at a wall