43 #if defined(DEBUG) && !defined(NDEBUG)
119 const int n_iter = (
k > n-
k) ? n-
k :
k;
120 for (
int j = 1; j <= n_iter; j++, n--) {
123 else if (ret % j == 0)
293 v[0] = xb[0] - xa[0];
294 v[1] = xb[1] - xa[1];
295 v[2] = xb[2] - xa[2];
297 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
317 return ((xb[0] - xa[0])*xc[0]+(xb[1] - xa[1])*xc[1]+(xb[2] - xa[2])*xc[2]);
340 return (
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
381 = ( n1[0]*
t[0][0]*n2[0] + n1[1]*
t[1][0]*n2[0] + n1[2]*
t[2][0]*n2[0]
382 + n1[0]*
t[0][1]*n2[1] + n1[1]*
t[1][1]*n2[1] + n1[2]*
t[2][1]*n2[1]
383 + n1[0]*
t[0][2]*n2[2] + n1[1]*
t[1][2]*n2[2] + n1[2]*
t[2][2]*n2[2]);
408 return ( n1[0] * (
t[0]*n2[0] +
t[3]*n2[1] +
t[5]*n2[2])
409 + n1[1] * (
t[3]*n2[0] +
t[1]*n2[1] +
t[4]*n2[2])
410 + n1[2] * (
t[5]*n2[0] +
t[4]*n2[1] +
t[2]*n2[2]));
426 return sqrt(
v[0]*
v[0] +
v[1]*
v[1] +
v[2]*
v[2]);
466 vout[0] = inv_norm * vin[0];
467 vout[1] = inv_norm * vin[1];
468 vout[2] = inv_norm * vin[2];
490 vout[0] = inv_norm * vin[0];
491 vout[1] = inv_norm * vin[1];
492 vout[2] = inv_norm * vin[2];
511 vout[0] =
v[0]*(1.-n[0]*n[0])-
v[1]* n[1]*n[0] -
v[2]* n[2]*n[0];
512 vout[1] = -
v[0]* n[0]*n[1] +
v[1]*(1.-n[1]*n[1])-
v[2]* n[2]*n[1];
513 vout[2] = -
v[0]* n[0]*n[2] -
v[1]* n[1]*n[2] +
v[2]*(1.-n[2]*n[2]);
533 for (
int i = 0; i < 3; i++)
534 v[i] += v_dot_n * n[i];
555 ( n[0] *
t[0][0] * n[0] + n[1] *
t[1][0] * n[0] + n[2] *
t[2][0] * n[0]
556 + n[0] *
t[0][1] * n[1] + n[1] *
t[1][1] * n[1] + n[2] *
t[2][1] * n[1]
557 + n[0] *
t[0][2] * n[2] + n[1] *
t[1][2] * n[2] + n[2] *
t[2][2] * n[2]);
558 for (
int i = 0; i < 3; i++) {
559 for (
int j = 0; j < 3; j++)
560 t[i][j] += n_t_n * n[i] * n[j];
579 mv[0] = m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
580 mv[1] = m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
581 mv[2] = m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
600 mv[0] += m[0][0]*
v[0] + m[0][1]*
v[1] + m[0][2]*
v[2];
601 mv[1] += m[1][0]*
v[0] + m[1][1]*
v[1] + m[1][2]*
v[2];
602 mv[2] += m[2][0]*
v[0] + m[2][1]*
v[1] + m[2][2]*
v[2];
621 mv[0] = m[0][0]*
v[0] + m[1][0]*
v[1] + m[2][0]*
v[2];
622 mv[1] = m[0][1]*
v[0] + m[1][1]*
v[1] + m[2][1]*
v[2];
623 mv[2] = m[0][2]*
v[0] + m[1][2]*
v[1] + m[2][2]*
v[2];
643 mv[0] = m[0]*
v[0] + m[3]*
v[1] + m[5]*
v[2];
644 mv[1] = m[3]*
v[0] + m[1]*
v[1] + m[4]*
v[2];
645 mv[2] = m[5]*
v[0] + m[4]*
v[1] + m[2]*
v[2];
665 mv[0] += m[0] *
v[0] + m[3] *
v[1] + m[5] *
v[2];
666 mv[1] += m[3] *
v[0] + m[1] *
v[1] + m[4] *
v[2];
667 mv[2] += m[5] *
v[0] + m[4] *
v[1] + m[2] *
v[2];
683 return (
t[0] +
t[1] +
t[2]);
702 for (
int i = 0; i < 6; i++) {
703 for (
int j = 0; j < 6; j++)
704 mv[i] = m[i][j] *
v[j];
724 for (
int i = 0; i < 6; i++) {
725 for (
int j = 0; j < 6; j++)
726 mv[i] += m[i][j] *
v[j];
743 const cs_real_t com0 = m[1][1]*m[2][2] - m[2][1]*m[1][2];
744 const cs_real_t com1 = m[2][1]*m[0][2] - m[0][1]*m[2][2];
745 const cs_real_t com2 = m[0][1]*m[1][2] - m[1][1]*m[0][2];
747 return m[0][0]*com0 + m[1][0]*com1 + m[2][0]*com2;
763 const cs_real_t com0 = m[1]*m[2] - m[4]*m[4];
764 const cs_real_t com1 = m[4]*m[5] - m[3]*m[2];
765 const cs_real_t com2 = m[3]*m[4] - m[1]*m[5];
767 return m[0]*com0 + m[3]*com1 + m[5]*com2;
780 #if defined(__INTEL_COMPILER)
781 #pragma optimization_level 0
789 uv[0] =
u[1]*
v[2] -
u[2]*
v[1];
790 uv[1] =
u[2]*
v[0] -
u[0]*
v[2];
791 uv[2] =
u[0]*
v[1] -
u[1]*
v[0];
806 #if defined(__INTEL_COMPILER)
807 #pragma optimization_level 0
815 return (
u[1]*
v[2] -
u[2]*
v[1]) * w[0]
816 + (
u[2]*
v[0] -
u[0]*
v[2]) * w[1]
817 + (
u[0]*
v[1] -
u[1]*
v[0]) * w[2];
873 out[0][0] = in[1][1]*in[2][2] - in[2][1]*in[1][2];
874 out[0][1] = in[2][1]*in[0][2] - in[0][1]*in[2][2];
875 out[0][2] = in[0][1]*in[1][2] - in[1][1]*in[0][2];
877 out[1][0] = in[2][0]*in[1][2] - in[1][0]*in[2][2];
878 out[1][1] = in[0][0]*in[2][2] - in[2][0]*in[0][2];
879 out[1][2] = in[1][0]*in[0][2] - in[0][0]*in[1][2];
881 out[2][0] = in[1][0]*in[2][1] - in[2][0]*in[1][1];
882 out[2][1] = in[2][0]*in[0][1] - in[0][0]*in[2][1];
883 out[2][2] = in[0][0]*in[1][1] - in[1][0]*in[0][1];
885 const double det = in[0][0]*out[0][0]+in[1][0]*out[0][1]+in[2][0]*out[0][2];
886 const double invdet = 1./det;
888 out[0][0] *= invdet, out[0][1] *= invdet, out[0][2] *= invdet;
889 out[1][0] *= invdet, out[1][1] *= invdet, out[1][2] *= invdet;
890 out[2][0] *= invdet, out[2][1] *= invdet, out[2][2] *= invdet;
914 double det_inv = 1. / (
a[0][0]*a00 +
a[1][0]*a01 +
a[2][0]*a02);
916 a[0][0] = a00 * det_inv;
917 a[0][1] = a01 * det_inv;
918 a[0][2] = a02 * det_inv;
919 a[1][0] = a10 * det_inv;
920 a[1][1] = a11 * det_inv;
921 a[1][2] = a12 * det_inv;
922 a[2][0] = a20 * det_inv;
923 a[2][1] = a21 * det_inv;
924 a[2][2] = a22 * det_inv;
946 double det_inv = 1. / (
a[0][0]*a00 +
a[1][0]*a01 +
a[2][0]*a02);
948 a[0][0] = a00 * det_inv;
949 a[0][1] = a01 * det_inv;
950 a[0][2] = a02 * det_inv;
951 a[1][0] = a01 * det_inv;
952 a[1][1] = a11 * det_inv;
953 a[1][2] = a12 * det_inv;
954 a[2][0] = a02 * det_inv;
955 a[2][1] = a12 * det_inv;
956 a[2][2] = a22 * det_inv;
977 sout[0] = s[1]*s[2] - s[4]*s[4];
978 sout[1] = s[0]*s[2] - s[5]*s[5];
979 sout[2] = s[0]*s[1] - s[3]*s[3];
980 sout[3] = s[4]*s[5] - s[3]*s[2];
981 sout[4] = s[3]*s[5] - s[0]*s[4];
982 sout[5] = s[3]*s[4] - s[1]*s[5];
984 detinv = 1. / (s[0]*sout[0] + s[3]*sout[3] + s[5]*sout[5]);
1009 mout[0][0] = m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1010 mout[0][1] = m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1011 mout[0][2] = m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1013 mout[1][0] = m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1014 mout[1][1] = m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1015 mout[1][2] = m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1017 mout[2][0] = m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1018 mout[2][1] = m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1019 mout[2][2] = m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1040 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[1][0] + m[0][2]*q[2][0];
1041 _m[0][1] = m[0][0]*q[0][1] + m[0][1]*q[1][1] + m[0][2]*q[2][1];
1042 _m[0][2] = m[0][0]*q[0][2] + m[0][1]*q[1][2] + m[0][2]*q[2][2];
1044 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[1][0] + m[1][2]*q[2][0];
1045 _m[1][1] = m[1][0]*q[0][1] + m[1][1]*q[1][1] + m[1][2]*q[2][1];
1046 _m[1][2] = m[1][0]*q[0][2] + m[1][1]*q[1][2] + m[1][2]*q[2][2];
1048 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[1][0] + m[2][2]*q[2][0];
1049 _m[2][1] = m[2][0]*q[0][1] + m[2][1]*q[1][1] + m[2][2]*q[2][1];
1050 _m[2][2] = m[2][0]*q[0][2] + m[2][1]*q[1][2] + m[2][2]*q[2][2];
1053 mout[0][0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1054 mout[0][1] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1055 mout[0][2] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1057 mout[1][0] = q[0][1]*_m[0][0] + q[1][1]*_m[1][0] + q[2][1]*_m[2][0];
1058 mout[1][1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1059 mout[1][2] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1061 mout[2][0] = q[0][2]*_m[0][0] + q[1][2]*_m[1][0] + q[2][2]*_m[2][0];
1062 mout[2][1] = q[0][2]*_m[0][1] + q[1][2]*_m[1][1] + q[2][2]*_m[2][1];
1063 mout[2][2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1084 _m[0][0] = m[0]*q[0][0] + m[3]*q[1][0] + m[5]*q[2][0];
1085 _m[0][1] = m[0]*q[0][1] + m[3]*q[1][1] + m[5]*q[2][1];
1086 _m[0][2] = m[0]*q[0][2] + m[3]*q[1][2] + m[5]*q[2][2];
1088 _m[1][0] = m[3]*q[0][0] + m[1]*q[1][0] + m[4]*q[2][0];
1089 _m[1][1] = m[3]*q[0][1] + m[1]*q[1][1] + m[4]*q[2][1];
1090 _m[1][2] = m[3]*q[0][2] + m[1]*q[1][2] + m[4]*q[2][2];
1092 _m[2][0] = m[5]*q[0][0] + m[4]*q[1][0] + m[2]*q[2][0];
1093 _m[2][1] = m[5]*q[0][1] + m[4]*q[1][1] + m[2]*q[2][1];
1094 _m[2][2] = m[5]*q[0][2] + m[4]*q[1][2] + m[2]*q[2][2];
1097 mout[0] = q[0][0]*_m[0][0] + q[1][0]*_m[1][0] + q[2][0]*_m[2][0];
1098 mout[1] = q[0][1]*_m[0][1] + q[1][1]*_m[1][1] + q[2][1]*_m[2][1];
1099 mout[2] = q[0][2]*_m[0][2] + q[1][2]*_m[1][2] + q[2][2]*_m[2][2];
1101 mout[3] = q[0][0]*_m[0][1] + q[1][0]*_m[1][1] + q[2][0]*_m[2][1];
1102 mout[4] = q[0][1]*_m[0][2] + q[1][1]*_m[1][2] + q[2][1]*_m[2][2];
1103 mout[5] = q[0][0]*_m[0][2] + q[1][0]*_m[1][2] + q[2][0]*_m[2][2];
1125 _m[0][0] = m[0][0]*q[0][0] + m[0][1]*q[0][1] + m[0][2]*q[0][2];
1126 _m[0][1] = m[0][0]*q[1][0] + m[0][1]*q[1][1] + m[0][2]*q[1][2];
1127 _m[0][2] = m[0][0]*q[2][0] + m[0][1]*q[2][1] + m[0][2]*q[2][2];
1129 _m[1][0] = m[1][0]*q[0][0] + m[1][1]*q[0][1] + m[1][2]*q[0][2];
1130 _m[1][1] = m[1][0]*q[1][0] + m[1][1]*q[1][1] + m[1][2]*q[1][2];
1131 _m[1][2] = m[1][0]*q[2][0] + m[1][1]*q[2][1] + m[1][2]*q[2][2];
1133 _m[2][0] = m[2][0]*q[0][0] + m[2][1]*q[0][1] + m[2][2]*q[0][2];
1134 _m[2][1] = m[2][0]*q[1][0] + m[2][1]*q[1][1] + m[2][2]*q[1][2];
1135 _m[2][2] = m[2][0]*q[2][0] + m[2][1]*q[2][1] + m[2][2]*q[2][2];
1138 mout[0][0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1139 mout[0][1] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1140 mout[0][2] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1142 mout[1][0] = q[1][0]*_m[0][0] + q[1][1]*_m[1][0] + q[1][2]*_m[2][0];
1143 mout[1][1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1144 mout[1][2] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1146 mout[2][0] = q[2][0]*_m[0][0] + q[2][1]*_m[1][0] + q[2][2]*_m[2][0];
1147 mout[2][1] = q[2][0]*_m[0][1] + q[2][1]*_m[1][1] + q[2][2]*_m[2][1];
1148 mout[2][2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1169 _m[0][0] = m[0]*q[0][0] + m[3]*q[0][1] + m[5]*q[0][2];
1170 _m[0][1] = m[0]*q[1][0] + m[3]*q[1][1] + m[5]*q[1][2];
1171 _m[0][2] = m[0]*q[2][0] + m[3]*q[2][1] + m[5]*q[2][2];
1173 _m[1][0] = m[3]*q[0][0] + m[1]*q[0][1] + m[4]*q[0][2];
1174 _m[1][1] = m[3]*q[1][0] + m[1]*q[1][1] + m[4]*q[1][2];
1175 _m[1][2] = m[3]*q[2][0] + m[1]*q[2][1] + m[4]*q[2][2];
1177 _m[2][0] = m[5]*q[0][0] + m[4]*q[0][1] + m[2]*q[0][2];
1178 _m[2][1] = m[5]*q[1][0] + m[4]*q[1][1] + m[2]*q[1][2];
1179 _m[2][2] = m[5]*q[2][0] + m[4]*q[2][1] + m[2]*q[2][2];
1182 mout[0] = q[0][0]*_m[0][0] + q[0][1]*_m[1][0] + q[0][2]*_m[2][0];
1183 mout[1] = q[1][0]*_m[0][1] + q[1][1]*_m[1][1] + q[1][2]*_m[2][1];
1184 mout[2] = q[2][0]*_m[0][2] + q[2][1]*_m[1][2] + q[2][2]*_m[2][2];
1187 mout[3] = q[0][0]*_m[0][1] + q[0][1]*_m[1][1] + q[0][2]*_m[2][1];
1188 mout[4] = q[1][0]*_m[0][2] + q[1][1]*_m[1][2] + q[1][2]*_m[2][2];
1189 mout[5] = q[0][0]*_m[0][2] + q[0][1]*_m[1][2] + q[0][2]*_m[2][2];
1209 m_sym[0][0] = 0.5 * (m[0][0] + m[0][0]);
1210 m_sym[0][1] = 0.5 * (m[0][1] + m[1][0]);
1211 m_sym[0][2] = 0.5 * (m[0][2] + m[2][0]);
1212 m_sym[1][0] = 0.5 * (m[1][0] + m[0][1]);
1213 m_sym[1][1] = 0.5 * (m[1][1] + m[1][1]);
1214 m_sym[1][2] = 0.5 * (m[1][2] + m[2][1]);
1215 m_sym[2][0] = 0.5 * (m[2][0] + m[0][2]);
1216 m_sym[2][1] = 0.5 * (m[2][1] + m[1][2]);
1217 m_sym[2][2] = 0.5 * (m[2][2] + m[2][2]);
1220 m_ant[0][0] = 0.5 * (m[0][0] - m[0][0]);
1221 m_ant[0][1] = 0.5 * (m[0][1] - m[1][0]);
1222 m_ant[0][2] = 0.5 * (m[0][2] - m[2][0]);
1223 m_ant[1][0] = 0.5 * (m[1][0] - m[0][1]);
1224 m_ant[1][1] = 0.5 * (m[1][1] - m[1][1]);
1225 m_ant[1][2] = 0.5 * (m[1][2] - m[2][1]);
1226 m_ant[2][0] = 0.5 * (m[2][0] - m[0][2]);
1227 m_ant[2][1] = 0.5 * (m[2][1] - m[1][2]);
1228 m_ant[2][2] = 0.5 * (m[2][2] - m[2][2]);
1246 mout[0][0] += m1[0][0]*m2[0][0] + m1[0][1]*m2[1][0] + m1[0][2]*m2[2][0];
1247 mout[0][1] += m1[0][0]*m2[0][1] + m1[0][1]*m2[1][1] + m1[0][2]*m2[2][1];
1248 mout[0][2] += m1[0][0]*m2[0][2] + m1[0][1]*m2[1][2] + m1[0][2]*m2[2][2];
1250 mout[1][0] += m1[1][0]*m2[0][0] + m1[1][1]*m2[1][0] + m1[1][2]*m2[2][0];
1251 mout[1][1] += m1[1][0]*m2[0][1] + m1[1][1]*m2[1][1] + m1[1][2]*m2[2][1];
1252 mout[1][2] += m1[1][0]*m2[0][2] + m1[1][1]*m2[1][2] + m1[1][2]*m2[2][2];
1254 mout[2][0] += m1[2][0]*m2[0][0] + m1[2][1]*m2[1][0] + m1[2][2]*m2[2][0];
1255 mout[2][1] += m1[2][0]*m2[0][1] + m1[2][1]*m2[1][1] + m1[2][2]*m2[2][1];
1256 mout[2][2] += m1[2][0]*m2[0][2] + m1[2][1]*m2[1][2] + m1[2][2]*m2[2][2];
1281 sout[0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1283 sout[1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1285 sout[2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1287 sout[3] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1289 sout[4] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1291 sout[5] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1308 const int t2v[3][3] = {{0, 3, 5},
1312 const int iv2t[6] = {0, 1, 2, 0, 1, 0};
1313 const int jv2t[6] = {0, 1, 2, 1, 2, 2};
1315 for (
int i = 0; i < 6; i++) {
1316 for (
int j = 0; j < 6; j++)
1329 for (
int ij = 0; ij < 6; ij++) {
1332 for (
int k = 0;
k < 3;
k++) {
1336 sout[ij][
ik] += s[j][
k];
1337 sout[ij][jk] += s[i][
k];
1365 _sout[0][0] = s1[0]*s2[0] + s1[3]*s2[3] + s1[5]*s2[5];
1367 _sout[1][1] = s1[3]*s2[3] + s1[1]*s2[1] + s1[4]*s2[4];
1369 _sout[2][2] = s1[5]*s2[5] + s1[4]*s2[4] + s1[2]*s2[2];
1371 _sout[0][1] = s1[0]*s2[3] + s1[3]*s2[1] + s1[5]*s2[4];
1373 _sout[1][0] = s2[0]*s1[3] + s2[3]*s1[1] + s2[5]*s1[4];
1375 _sout[1][2] = s1[3]*s2[5] + s1[1]*s2[4] + s1[4]*s2[2];
1377 _sout[2][1] = s2[3]*s1[5] + s2[1]*s1[4] + s2[4]*s1[2];
1379 _sout[0][2] = s1[0]*s2[5] + s1[3]*s2[4] + s1[5]*s2[2];
1381 _sout[2][0] = s2[0]*s1[5] + s2[3]*s1[4] + s2[5]*s1[2];
1383 sout[0][0] = _sout[0][0]*s3[0] + _sout[0][1]*s3[3] + _sout[0][2]*s3[5];
1385 sout[1][1] = _sout[1][0]*s3[3] + _sout[1][1]*s3[1] + _sout[1][2]*s3[4];
1387 sout[2][2] = _sout[2][0]*s3[5] + _sout[2][1]*s3[4] + _sout[2][2]*s3[2];
1389 sout[0][1] = _sout[0][0]*s3[3] + _sout[0][1]*s3[1] + _sout[0][2]*s3[4];
1391 sout[1][0] = s3[0]*_sout[1][0] + s3[3]*_sout[1][1] + s3[5]*_sout[1][2];
1393 sout[1][2] = _sout[1][0]*s3[5] + _sout[1][1]*s3[4] + _sout[1][2]*s3[2];
1395 sout[2][1] = s3[3]*_sout[2][0] + s3[1]*_sout[2][1] + s3[4]*_sout[2][2];
1397 sout[0][2] = _sout[0][0]*s3[5] + _sout[0][1]*s3[4] + _sout[0][2]*s3[2];
1399 sout[2][0] = s3[0]*_sout[2][0] + s3[3]*_sout[2][1] + s3[5]*_sout[2][2];
1417 qv->
meas = magnitude;
1421 qv->
unitv[0] = inv *
v[0];
1422 qv->
unitv[1] = inv *
v[1];
1423 qv->
unitv[2] = inv *
v[2];
#define restrict
Definition: cs_defs.h:139
#define BEGIN_C_DECLS
Definition: cs_defs.h:509
double cs_real_t
Floating-point value.
Definition: cs_defs.h:319
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:332
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:334
#define END_C_DECLS
Definition: cs_defs.h:510
cs_real_t cs_real_33_t[3][3]
3x3 matrix of floating-point values
Definition: cs_defs.h:341
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:313
@ t
Definition: cs_field_pointer.h:92
@ k
Definition: cs_field_pointer.h:70
static cs_real_t cs_math_fabs(cs_real_t x)
Compute the absolute value of a real value.
Definition: cs_math.h:143
static cs_real_t cs_math_sym_33_determinant(const cs_real_6_t m)
Compute the determinant of a 3x3 symmetric matrix.
Definition: cs_math.h:761
static cs_real_t cs_math_3_square_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the squared distance between two points xa and xb in a Cartesian coordinate system of dimensi...
Definition: cs_math.h:333
void cs_math_3_length_unitv(const cs_real_t xa[3], const cs_real_t xb[3], cs_real_t *len, cs_real_3_t unitv)
Compute the length (Euclidean norm) between two points xa and xb in a Cartesian coordinate system of ...
Definition: cs_math.c:403
static cs_real_t cs_math_fmax(cs_real_t x, cs_real_t y)
Compute the max value of two real values.
Definition: cs_math.h:180
static void cs_math_3_normal_scaling(const cs_real_t n[3], cs_real_t factor, cs_real_t v[3])
Add the dot product with a normal vector to the normal direction to a vector.
Definition: cs_math.h:528
static void cs_math_sym_33_double_product(const cs_real_t s1[6], const cs_real_t s2[6], const cs_real_t s3[6], cs_real_t sout[restrict 3][3])
Compute the product of three symmetric matrices.
Definition: cs_math.h:1357
const cs_real_t cs_math_1ov6
static void cs_math_33_normal_scaling_add(const cs_real_t n[3], cs_real_t factor, cs_real_t t[3][3])
Add the dot product with a normal vector to the normal,normal component of a tensor: t += factor * n....
Definition: cs_math.h:550
static cs_real_t cs_math_fmin(cs_real_t x, cs_real_t y)
Compute the min value of two real values.
Definition: cs_math.h:161
static void cs_math_sym_33_3_product(const cs_real_t m[6], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values....
Definition: cs_math.h:639
static cs_real_t cs_math_clamp(cs_real_t x, cs_real_t xmin, cs_real_t xmax)
Clamp function for a given scalar value.
Definition: cs_math.h:202
static cs_real_t cs_math_3_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the (euclidean) distance between two points xa and xb in a Cartesian coordinate system of dim...
Definition: cs_math.h:288
static void cs_math_sym_33_3_product_add(const cs_real_t m[6], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a symmetric matrix of 3x3 real values by a vector of 3 real values and add it ...
Definition: cs_math.h:661
static cs_real_t cs_math_6_trace(const cs_real_t t[6])
Compute the trace of a symmetric tensor.
Definition: cs_math.h:681
static void cs_math_3_orthonormal_basis(const cs_real_t vect[3], cs_real_t axes[3][3])
Build an orthonormal basis based on a first vector "vect". axes[0] is vect normalized,...
Definition: cs_math.h:833
double cs_math_surftri(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3])
Compute the area of the convex_hull generated by 3 points. This corresponds to the computation of the...
Definition: cs_math.c:436
const cs_real_t cs_math_infinite_r
static cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:424
static cs_real_t cs_math_3_square_norm(const cs_real_t v[3])
Compute the square norm of a vector of 3 real values.
Definition: cs_math.h:440
const cs_real_t cs_math_4ov3
static void cs_math_33_transform_a_to_r(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1119
static cs_real_t cs_math_pow2(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:238
static void cs_math_33_product_add(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t mout[restrict 3][3])
Add the product of two 3x3 real matrices to a matrix.
Definition: cs_math.h:1242
static void cs_math_33_inv_cramer_in_place(cs_real_t a[3][3])
Inverse a 3x3 matrix in place, using Cramer's rule.
Definition: cs_math.h:902
void cs_math_sym_33_eigen(const cs_real_t m[6], cs_real_t eig_vals[3])
Compute all eigenvalues of a 3x3 symmetric matrix with symmetric storage.
Definition: cs_math.c:230
const cs_real_t cs_math_2ov3
static void cs_math_3_normalize(const cs_real_t vin[3], cs_real_t vout[3])
Normalise a vector of 3 real values.
Definition: cs_math.h:483
static void cs_math_sym_33_transform_a_to_r(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from absolute to relative reference frame Q M Q^t.
Definition: cs_math.h:1163
void cs_math_fw_and_bw_lu(const cs_real_t a_lu[], const int n, cs_real_t x[], const cs_real_t b[])
Block Jacobi utilities. Compute forward and backward to solve an LU P*P system.
Definition: cs_math.c:680
const cs_real_t cs_math_1ov12
static cs_real_t cs_math_pow3(cs_real_t x)
Compute the cube of a real value.
Definition: cs_math.h:254
void cs_math_fact_lu(cs_lnum_t n_blocks, const int b_size, const cs_real_t *a, cs_real_t *a_lu)
Compute LU factorization of an array of dense matrices of identical size.
Definition: cs_math.c:622
static void cs_math_sym_33_product(const cs_real_t s1[6], const cs_real_t s2[6], cs_real_t sout[restrict 6])
Compute the product of two symmetric matrices.
Definition: cs_math.h:1276
static void cs_math_33_extract_sym_ant(const cs_real_t m[3][3], cs_real_t m_sym[3][3], cs_real_t m_ant[3][3])
Extract from the given matrix its symmetric and anti-symmetric part.
Definition: cs_math.h:1204
static void cs_math_33t_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of the transpose of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:617
static void cs_math_33_inv_cramer_sym_in_place(cs_real_t a[3][3])
Inverse a 3x3 symmetric matrix (with non-symmetric storage) in place, using Cramer's rule.
Definition: cs_math.h:937
void cs_math_33_eigen(const cs_real_t m[3][3], cs_real_t *eig_ratio, cs_real_t *eig_max)
Compute max/min eigenvalues ratio and max. eigenvalue of a 3x3 symmetric matrix with non-symmetric st...
Definition: cs_math.c:316
static void cs_math_33_inv_cramer(const cs_real_t in[3][3], cs_real_t out[3][3])
Inverse a 3x3 matrix.
Definition: cs_math.h:870
const cs_real_t cs_math_1ov24
cs_real_t cs_math_sym_44_partial_solve_ldlt(const cs_real_t ldlt[10], const cs_real_t rhs[4])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.c:784
static cs_real_t cs_math_3_dot_product(const cs_real_t u[3], const cs_real_t v[3])
Compute the dot product of two vectors of 3 real values.
Definition: cs_math.h:355
static cs_real_t cs_math_3_triple_product(const cs_real_t u[3], const cs_real_t v[3], const cs_real_t w[3])
Compute the triple product.
Definition: cs_math.h:811
static void cs_math_3_cross_product(const cs_real_t u[3], const cs_real_t v[3], cs_real_t uv[restrict 3])
Compute the cross product of two vectors of 3 real values.
Definition: cs_math.h:785
cs_math_sym_tensor_component_t
Definition: cs_math.h:61
@ ZZ
Definition: cs_math.h:65
@ XY
Definition: cs_math.h:66
@ XZ
Definition: cs_math.h:68
@ YZ
Definition: cs_math.h:67
@ YY
Definition: cs_math.h:64
@ XX
Definition: cs_math.h:63
static void cs_math_3_orthogonal_projection(const cs_real_t n[3], const cs_real_t v[3], cs_real_t vout[restrict 3])
Orthogonal projection of a vector with respect to a normalised vector.
Definition: cs_math.h:507
static void cs_math_sym_33_inv_cramer(const cs_real_t s[6], cs_real_t sout[restrict 6])
Compute the inverse of a symmetric matrix using Cramer's rule.
Definition: cs_math.h:972
static void cs_math_33_3_product(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a matrix of 3x3 real values by a vector of 3 real values.
Definition: cs_math.h:575
const cs_real_t cs_math_1ov3
static cs_real_t cs_math_3_distance_dot_product(const cs_real_t xa[3], const cs_real_t xb[3], const cs_real_t xc[3])
Compute .
Definition: cs_math.h:313
static void cs_math_sym_33_transform_r_to_a(const cs_real_t m[6], const cs_real_t q[3][3], cs_real_t mout[6])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1078
static void cs_math_33_3_product_add(const cs_real_t m[3][3], const cs_real_t v[3], cs_real_t mv[restrict 3])
Compute the product of a matrix of 3x3 real values by a vector of 3 real values add.
Definition: cs_math.h:596
static void cs_math_33_transform_r_to_a(const cs_real_t m[3][3], const cs_real_t q[3][3], cs_real_t mout[3][3])
Compute transformation from relative to absolute reference frame Q^t M Q.
Definition: cs_math.h:1034
const cs_real_t cs_math_5ov3
static cs_real_t cs_math_sq(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:222
static void cs_math_66_6_product_add(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t mv[restrict 6])
Compute the product of a matrix of 6x6 real values by a vector of 6 real values and add it to the vec...
Definition: cs_math.h:720
const cs_real_t cs_math_epzero
static cs_real_t cs_math_3_sym_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[6], const cs_real_t n2[3])
Compute the dot product of a symmetric tensor t with two vectors, n1 and n2.
Definition: cs_math.h:404
const cs_real_t cs_math_big_r
double cs_math_voltet(const cs_real_t xv[3], const cs_real_t xe[3], const cs_real_t xf[3], const cs_real_t xc[3])
Compute the volume of the convex_hull generated by 4 points. This is equivalent to the computation of...
Definition: cs_math.c:466
void cs_math_33_eig_val_vec(const cs_real_t m_in[3][3], const cs_real_t tol_err, cs_real_t eig_val[restrict 3], cs_real_t eig_vec[restrict 3][3])
Evaluate eigenvalues and eigenvectors of a real symmetric matrix m1[3,3]: m1*m2 = lambda*m2.
Definition: cs_math.c:498
static int cs_math_binom(int n, int k)
Computes the binomial coefficient of n and k.
Definition: cs_math.h:113
static void cs_nvec3(const cs_real_3_t v, cs_nvec3_t *qv)
Define a cs_nvec3_t structure from a cs_real_3_t.
Definition: cs_math.h:1412
void cs_math_sym_44_factor_ldlt(cs_real_t ldlt[10])
LDL^T: Modified Cholesky decomposition of a 4x4 SPD matrix. For more reference, see for instance http...
Definition: cs_math.c:725
static void cs_math_reduce_sym_prod_33_to_66(const cs_real_t s[3][3], cs_real_t sout[restrict 6][6])
Compute a 6x6 matrix A, equivalent to a 3x3 matrix s, such as: A*R_6 = R*s^t + s*R.
Definition: cs_math.h:1305
const cs_real_t cs_math_pi
static void cs_math_66_6_product(const cs_real_t m[6][6], const cs_real_t v[6], cs_real_t mv[restrict 6])
Compute the product of a matrix of 6x6 real values by a vector of 6 real values.
Definition: cs_math.h:698
static const cs_real_33_t cs_math_33_identity
Definition: cs_math.h:92
static cs_real_t cs_math_pow4(cs_real_t x)
Compute the 4-th power of a real value.
Definition: cs_math.h:270
static const cs_real_6_t cs_math_sym_33_identity
Definition: cs_math.h:95
static void cs_math_3_normalise(const cs_real_t vin[3], cs_real_t vout[3])
Normalize a vector of 3 real values.
Definition: cs_math.h:459
static cs_real_t cs_math_33_determinant(const cs_real_t m[3][3])
Compute the determinant of a 3x3 matrix.
Definition: cs_math.h:741
static void cs_math_33_product(const cs_real_t m1[3][3], const cs_real_t m2[3][3], cs_real_t mout[3][3])
Compute the product of two 3x3 real valued matrices.
Definition: cs_math.h:1005
static cs_real_t cs_math_3_33_3_dot_product(const cs_real_t n1[3], const cs_real_t t[3][3], const cs_real_t n2[3])
Compute the dot product of a tensor t with two vectors, n1 and n2.
Definition: cs_math.h:376
const cs_real_t cs_math_zero_threshold
double precision, dimension(:,:,:), allocatable u
Definition: atimbr.f90:113
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:114
integer, save ik
turbulent kinetic energy
Definition: numvar.f90:75
double precision, save a
Definition: cs_fuel_incl.f90:148
double precision, save b
Definition: cs_fuel_incl.f90:148
Definition: cs_defs.h:367
double meas
Definition: cs_defs.h:369
double unitv[3]
Definition: cs_defs.h:370