1 #ifndef __CS_CONVECTION_DIFFUSION_H__
2 #define __CS_CONVECTION_DIFFUSION_H__
130 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
132 if (nvf_p_c < beta_m) {
133 nvf_p_f = nvf_p_c*(1.+rfc*(1.-nvf_p_c)/beta_m);
135 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
137 nvf_p_f = r1f*nvf_p_c+rfc;
143 if (nvf_p_c < (nvf_r_c/3.)) {
144 r1 = nvf_r_f*(1.-3.*nvf_r_c+2.*nvf_r_f);
145 r2 = nvf_r_c*(1.-nvf_r_c);
147 nvf_p_f = nvf_p_c*r1/r2;
148 }
else if (nvf_p_c <= (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
149 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
150 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
152 nvf_p_f = nvf_r_f*(r1f*nvf_p_c/nvf_r_c + rfc);
160 if (nvf_p_c < (3.*nvf_r_c/4.)) {
161 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
163 nvf_p_f = nvf_r_f*(1.+rfc/3.)*nvf_p_c/nvf_r_c;
164 }
else if (nvf_p_c <= (nvf_r_c*(1.+2.*(nvf_r_f-nvf_r_c))/(2.*nvf_r_f-nvf_r_c))) {
165 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
166 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
168 nvf_p_f = nvf_r_f*(r1f*nvf_p_c/nvf_r_c+rfc);
170 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
172 nvf_p_f = 1.-.5*r1f*(1.-nvf_p_c);
178 if (nvf_p_c < (nvf_r_c/(2.-nvf_r_c))) {
179 nvf_p_f = (2.*nvf_r_f-nvf_r_c)*nvf_p_c/nvf_r_c;
180 }
else if (nvf_p_c < nvf_r_c) {
181 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
182 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
184 nvf_p_f = r1f*nvf_p_c+rfc;
185 }
else if (nvf_p_c < (nvf_r_c/nvf_r_f)) {
186 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
194 if (nvf_p_c < (.5*nvf_r_c)) {
195 nvf_p_f = (2.*nvf_r_f-nvf_r_c)*nvf_p_c/nvf_r_c;
196 }
else if (nvf_p_c < (1.+nvf_r_c-nvf_r_f)) {
197 nvf_p_f = nvf_p_c+nvf_r_f-nvf_r_c;
205 if (nvf_p_c < nvf_r_c) {
206 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
208 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
209 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
211 nvf_p_f = r1f*nvf_p_c+rfc;
217 r1 = nvf_r_c*nvf_r_c-nvf_r_f;
218 r2 = nvf_r_c*(nvf_r_c-1.);
219 r3 = nvf_r_f-nvf_r_c;
221 nvf_p_f = nvf_p_c*(r1+r3*nvf_p_c)/r2;
226 b1 = (nvf_r_c-nvf_r_f)*nvf_r_c;
227 b2 = nvf_r_c+nvf_r_f+2.*nvf_r_f*nvf_r_f-4.*nvf_r_f*nvf_r_c;
229 if (nvf_p_c < (
b1/
b2)) {
230 r1 = -nvf_r_f*(1.-3.*nvf_r_c+2.*nvf_r_f);
231 r2 = nvf_r_c*(nvf_r_c-1.);
233 nvf_p_f = nvf_p_c*r1/r2;
234 }
else if (nvf_p_c < nvf_r_c) {
235 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
236 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
238 nvf_p_f = r1f*nvf_p_c+rfc;
239 }
else if (nvf_p_c < (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
240 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
241 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
243 nvf_p_f = nvf_r_f*(nvf_p_c*r1f/nvf_r_c+rfc);
251 if (nvf_p_c < (nvf_r_c/nvf_r_f)) {
252 nvf_p_f = nvf_r_f*nvf_p_c/nvf_r_c;
260 r1 = nvf_r_c*nvf_r_f*(nvf_r_f-nvf_r_c);
261 r2 = 2.*nvf_r_c*(1.-nvf_r_c)-nvf_r_f*(1.-nvf_r_f);
263 if (nvf_p_c < (r1/r2)) {
264 nvf_p_f = 2.*nvf_p_c;
265 }
else if (nvf_p_c <= (nvf_r_c*(1.+nvf_r_f-nvf_r_c)/nvf_r_f)) {
266 rfc = (nvf_r_f-nvf_r_c)/(1.-nvf_r_c);
267 r1f = (1.-nvf_r_f)/(1.-nvf_r_c);
269 nvf_p_f = nvf_r_f*(nvf_p_c*r1f/nvf_r_c+rfc);
314 cs_real_t blend, high_order, low_order, ratio;
325 high_order = 2.*nvf_p_c;
341 blend =
CS_MIN(1., pow(ratio, .5));
345 nvf_p_f = blend*high_order + (1.-blend)*low_order;
348 if (c_courant < .7 && c_courant > .3) {
349 nvf_p_f = nvf_p_f + (nvf_p_f - low_order)*(.7 - c_courant )/.4;
350 }
else if (c_courant >= .7) {
355 if (c_courant <= .3) {
357 }
else if (c_courant <= .6) {
358 high_order =
CS_MIN(1., nvf_p_c/.3);
359 }
else if (c_courant <= .7) {
364 high_order = 10.*( (.7-c_courant)*
CS_MIN(1., nvf_p_c/.3)
365 + (c_courant-.6)*superbee);
385 blend =
CS_MIN(1., pow(ratio, 2.));
389 nvf_p_f = blend*high_order + (1.-blend)*low_order;
408 blend =
CS_MIN(1., pow(ratio, 4.));
412 nvf_p_f = blend*high_order + (1.-blend)*low_order;
456 testi = grdpai[0]*i_face_normal[0]
457 + grdpai[1]*i_face_normal[1]
458 + grdpai[2]*i_face_normal[2];
459 testj = grdpaj[0]*i_face_normal[0]
460 + grdpaj[1]*i_face_normal[1]
461 + grdpaj[2]*i_face_normal[2];
463 *testij = grdpai[0]*grdpaj[0]
464 + grdpai[1]*grdpaj[1]
465 + grdpai[2]*grdpaj[2];
468 dcc = gradi[0]*i_face_normal[0]
469 + gradi[1]*i_face_normal[1]
470 + gradi[2]*i_face_normal[2];
472 ddj = (pj-
pi)/distf *srfan;
474 dcc = gradj[0]*i_face_normal[0]
475 + gradj[1]*i_face_normal[1]
476 + gradj[2]*i_face_normal[2];
477 ddi = (pj-
pi)/distf *srfan;
524 for (
int i = 0; i < 3; i++) {
525 *testij += gradsti[i][0]*gradstj[i][0]
526 + gradsti[i][1]*gradstj[i][1]
527 + gradsti[i][2]*gradstj[i][2];
529 testi[i] = gradsti[i][0]*i_face_normal[0]
530 + gradsti[i][1]*i_face_normal[1]
531 + gradsti[i][2]*i_face_normal[2];
532 testj[i] = gradstj[i][0]*i_face_normal[0]
533 + gradstj[i][1]*i_face_normal[1]
534 + gradstj[i][2]*i_face_normal[2];
536 if (i_massflux > 0.) {
537 dcc[i] = gradi[i][0]*i_face_normal[0]
538 + gradi[i][1]*i_face_normal[1]
539 + gradi[i][2]*i_face_normal[2];
541 ddj[i] = (pj[i]-
pi[i])/distf *srfan;
543 dcc[i] = gradj[i][0]*i_face_normal[0]
544 + gradj[i][1]*i_face_normal[1]
545 + gradj[i][2]*i_face_normal[2];
546 ddi[i] = (pj[i]-
pi[i])/distf *srfan;
595 for (
int ij = 0; ij < 6; ij++) {
596 *testij += gradsti[ij][0]*gradstj[ij][0]
597 + gradsti[ij][1]*gradstj[ij][1]
598 + gradsti[ij][2]*gradstj[ij][2];
599 testi[ij] = gradsti[ij][0]*i_face_normal[0]
600 + gradsti[ij][1]*i_face_normal[1]
601 + gradsti[ij][2]*i_face_normal[2];
602 testj[ij] = gradstj[ij][0]*i_face_normal[0]
603 + gradstj[ij][1]*i_face_normal[1]
604 + gradstj[ij][2]*i_face_normal[2];
606 if (i_massflux > 0.) {
607 dcc[ij] = gradi[ij][0]*i_face_normal[0]
608 + gradi[ij][1]*i_face_normal[1]
609 + gradi[ij][2]*i_face_normal[2];
611 ddj[ij] = (pj[ij]-
pi[ij])/distf *srfan;
614 dcc[ij] = gradj[ij][0]*i_face_normal[0]
615 + gradj[ij][1]*i_face_normal[1]
616 + gradj[ij][2]*i_face_normal[2];
617 ddi[ij] = (pj[ij]-
pi[ij])/distf *srfan;
656 cs_real_t gradpf[3] = {0.5*(gradi[0] + gradj[0]),
657 0.5*(gradi[1] + gradj[1]),
658 0.5*(gradi[2] + gradj[2])};
702 for (
int isou = 0; isou < 3; isou++) {
704 for (
int jsou = 0; jsou < 3; jsou++)
705 dpvf[jsou] = 0.5*( gradi[isou][jsou]
706 + gradj[isou][jsou]);
713 pip[isou] =
pi[isou] + recoi[isou];
714 pjp[isou] = pj[isou] + recoj[isou];
754 for (
int isou = 0; isou < 6; isou++) {
756 for (
int jsou = 0; jsou < 3; jsou++)
757 dpvf[jsou] = 0.5*( gradi[isou][jsou]
758 + gradj[isou][jsou]);
765 pip[isou] =
pi[isou] + recoi[isou];
766 pjp[isou] = pj[isou] + recoj[isou];
802 *pir =
pi/relaxp - (1.-relaxp)/relaxp * pia;
803 *pjr = pj/relaxp - (1.-relaxp)/relaxp * pja;
805 *pipr = *pir + recoi;
806 *pjpr = *pjr + recoj;
840 for (
int isou = 0; isou < 3; isou++) {
841 pir[isou] =
pi[isou] /relaxp - (1.-relaxp)/relaxp * pia[isou];
842 pjr[isou] = pj[isou] /relaxp - (1.-relaxp)/relaxp * pja[isou];
844 pipr[isou] = pir[isou] + recoi[isou];
845 pjpr[isou] = pjr[isou] + recoj[isou];
880 for (
int isou = 0; isou < 6; isou++) {
881 pir[isou] =
pi[isou] /relaxp - (1.-relaxp)/relaxp * pia[isou];
882 pjr[isou] = pj[isou] /relaxp - (1.-relaxp)/relaxp * pja[isou];
884 pipr[isou] = pir[isou] + recoi[isou];
885 pjpr[isou] = pjr[isou] + recoj[isou];
918 for (
int isou = 0; isou < 3; isou++)
935 for (
int isou = 0; isou < 6; isou++)
956 *pf = pnd*pip + (1.-pnd)*pjp;
976 for (
int isou = 0; isou < 3; isou++)
977 pf[isou] = pnd*pip[isou] + (1.-pnd)*pjp[isou];
997 for (
int isou = 0; isou < 6; isou++)
998 pf[isou] = pnd*pip[isou] + (1.-pnd)*pjp[isou];
1022 df[0] = i_face_cog[0] - cell_cen[0];
1023 df[1] = i_face_cog[1] - cell_cen[1];
1024 df[2] = i_face_cog[2] - cell_cen[2];
1050 for (
int jsou = 0; jsou < 3; jsou++)
1051 df[jsou] = i_face_cog[jsou] - cell_cen[jsou];
1053 for (
int isou = 0; isou < 3; isou++) {
1054 pf[isou] =
p[isou] + df[0]*grad[isou][0]
1055 + df[1]*grad[isou][1]
1056 + df[2]*grad[isou][2];
1082 for (
int jsou = 0; jsou < 3; jsou++)
1083 df[jsou] = i_face_cog[jsou] - cell_cen[jsou];
1085 for (
int isou = 0; isou < 6; isou++) {
1086 pf[isou] =
p[isou] + df[0]*grad[isou][0]
1087 + df[1]*grad[isou][1]
1088 + df[2]*grad[isou][2];
1109 *pf = blencp * (*pf) + (1. - blencp) *
p;
1129 for (
int isou = 0; isou < 3; isou++)
1130 pf[isou] = blencp*(pf[isou])+(1.-blencp)*
p[isou];
1150 for (
int isou = 0; isou < 6; isou++)
1151 pf[isou] = blencp*(pf[isou])+(1.-blencp)*
p[isou];
1194 flui = 0.5*(i_massflux + fabs(i_massflux));
1195 fluj = 0.5*(i_massflux - fabs(i_massflux));
1197 fluxij[0] += iconvp*xcppi*(thetap*(flui*pifri + fluj*pjfri) - imasac*i_massflux*
pi);
1198 fluxij[1] += iconvp*xcppj*(thetap*(flui*pifrj + fluj*pjfrj) - imasac*i_massflux*pj);
1237 flui = 0.5*(i_massflux + fabs(i_massflux));
1238 fluj = 0.5*(i_massflux - fabs(i_massflux));
1240 for (
int isou = 0; isou < 3; isou++) {
1242 fluxi[isou] += iconvp*( thetap*(flui*pifri[isou] + fluj*pjfri[isou])
1243 - imasac*i_massflux*
pi[isou]);
1244 fluxj[isou] += iconvp*( thetap*(flui*pifrj[isou] + fluj*pjfrj[isou])
1245 - imasac*i_massflux*pj[isou]);
1285 flui = 0.5*(i_massflux + fabs(i_massflux));
1286 fluj = 0.5*(i_massflux - fabs(i_massflux));
1288 for (
int isou = 0; isou < 6; isou++) {
1289 fluxi[isou] += iconvp*( thetap*(flui*pifri[isou] + fluj*pjfri[isou])
1290 - imasac*i_massflux*
pi[isou]);
1291 fluxj[isou] += iconvp*( thetap*(flui*pifrj[isou] + fluj*pjfrj[isou])
1292 - imasac*i_massflux*pj[isou]);
1321 fluxij[0] += idiffp*thetap*i_visc*(pipr -pjp);
1322 fluxij[1] += idiffp*thetap*i_visc*(pip -pjpr);
1352 for (
int isou = 0; isou < 3; isou++) {
1353 fluxi[isou] += idiffp*thetap*i_visc*(pipr[isou] -pjp[isou]);
1354 fluxj[isou] += idiffp*thetap*i_visc*(pip[isou] -pjpr[isou]);
1385 for (
int isou = 0; isou < 6; isou++) {
1386 fluxi[isou] += idiffp*thetap*i_visc*(pipr[isou] -pjp[isou]);
1387 fluxj[isou] += idiffp*thetap*i_visc*(pip[isou] -pjpr[isou]);
1829 const double relaxp,
1830 const double blencp,
1903 }
else if (ischcp == 0) {
2010 const double relaxp,
2011 const double blencp,
2163 const double relaxp,
2164 const double blencp,
2316 const double blencp,
2365 }
else if (ischcp == 0) {
2381 }
else if (ischcp == 3) {
2411 hybrid_blend_interp =
fmin(hybrid_blend_i,hybrid_blend_j);
2412 *pif = hybrid_blend_interp*(*pif) + (1. - hybrid_blend_interp)*pif_up;
2413 *pjf = hybrid_blend_interp*(*pjf) + (1. - hybrid_blend_interp)*pjf_up;
2476 const double blencp,
2522 }
else if (ischcp == 3) {
2552 hybrid_blend_interp =
fmin(hybrid_blend_i,hybrid_blend_j);
2553 for (
int isou = 0; isou < 3; isou++) {
2554 pif[isou] = hybrid_blend_interp *pif[isou]
2555 + (1. - hybrid_blend_interp)*pif_up[isou];
2556 pjf[isou] = hybrid_blend_interp *pjf[isou]
2557 + (1. - hybrid_blend_interp)*pjf_up[isou];
2618 const double blencp,
2744 const double relaxp,
2745 const double blencp,
2746 const double blend_st,
2780 *upwind_switch =
false;
2843 }
else if (ischcp == 0) {
2900 if (tesqck <= 0. || testij <= 0.) {
2915 *upwind_switch =
true;
2999 const double relaxp,
3000 const double blencp,
3001 const double blend_st,
3073 for (isou = 0; isou < 3; isou++) {
3129 if (tesqck <= 0. || testij <= 0.) {
3143 *upwind_switch =
true;
3164 for (isou = 0; isou < 3; isou++) {
3227 const double relaxp,
3228 const double blencp,
3229 const double blend_st,
3301 for (isou = 0; isou < 6; isou++) {
3357 if (tesqck <= 0. || testij <= 0.) {
3372 *upwind_switch =
true;
3395 for (isou = 0; isou < 6; isou++) {
3453 const double blencp,
3454 const double blend_st,
3483 *upwind_switch =
false;
3526 }
else if (ischcp == 0) {
3563 if (tesqck<=0. || testij<=0.) {
3572 *upwind_switch =
true;
3616 if (i_massflux >= 0.) {
3678 const cs_real_t dist_du = dist_dc + dist_cu;
3684 const cs_real_t grad2c = ((p_d - p_c)/dist_dc - gradc)/dist_dc;
3686 cs_real_t p_u = p_c + (grad2c*dist_cu - gradc)*dist_cu;
3690 const cs_real_t nvf_r_f = (dist_fc+dist_cu)/dist_du;
3691 const cs_real_t nvf_r_c = dist_cu/dist_du;
3698 if (
CS_ABS(p_d-p_u) <= _small) {
3702 const cs_real_t nvf_p_c = (p_c - p_u)/(p_d - p_u);
3704 if (nvf_p_c <= 0. || nvf_p_c >= 1.) {
3726 *pif = p_u + nvf_p_f*(p_d - p_u);
3780 const double blencp,
3781 const double blend_st,
3833 for (
int isou = 0; isou < 3; isou++) {
3871 if (tesqck <= 0. || testij <= 0.) {
3880 *upwind_switch =
true;
3897 for (
int isou = 0; isou < 3; isou++) {
3950 const double blencp,
3951 const double blend_st,
4004 for (isou = 0; isou < 6; isou++) {
4040 if (tesqck <= 0. || testij <= 0.) {
4052 *upwind_switch =
true;
4069 for (isou = 0; isou < 6; isou++) {
4095 *recoi = bldfrp * ( gradi[0]*
diipb[0]
4097 + gradi[2]*
diipb[2]);
4117 for (
int isou = 0; isou < 3; isou++) {
4118 recoi[isou] = bldfrp * ( gradi[isou][0]*
diipb[0]
4119 + gradi[isou][1]*
diipb[1]
4120 + gradi[isou][2]*
diipb[2]);
4141 for (
int isou = 0; isou < 6; isou++) {
4142 recoi[isou] = bldfrp * ( gradi[isou][0]*
diipb[0]
4143 + gradi[isou][1]*
diipb[1]
4144 + gradi[isou][2]*
diipb[2]);
4169 *pir =
pi/relaxp - (1.-relaxp)/relaxp*pia;
4170 *pipr = *pir + recoi;
4194 for (
int isou = 0; isou < 3; isou++) {
4195 pir[isou] =
pi[isou]/relaxp - (1.-relaxp)/relaxp*pia[isou];
4196 pipr[isou] = pir[isou] + recoi[isou];
4221 for (
int isou = 0; isou < 6; isou++) {
4222 pir[isou] =
pi[isou]/relaxp - (1.-relaxp)/relaxp*pia[isou];
4223 pipr[isou] = pir[isou] + recoi[isou];
4282 flui = 0.5*(b_massflux +fabs(b_massflux));
4283 fluj = 0.5*(b_massflux -fabs(b_massflux));
4286 pfac = inc*coefap + coefbp*pipr;
4287 *flux += iconvp*xcpp*(thetap*(flui*pir + fluj*pfac) -imasac*( b_massflux*
pi));
4293 pfac = inc*coface + cofbce*pipr;
4294 *flux += iconvp*xcpp*(-imasac*(b_massflux*
pi) + thetap*(pfac));
4351 flui = 0.5*(b_massflux +fabs(b_massflux));
4352 fluj = 0.5*(b_massflux -fabs(b_massflux));
4354 for (
int isou = 0; isou < 3; isou++) {
4355 pfac = inc*coefap[isou];
4356 for (
int jsou = 0; jsou < 3; jsou++) {
4357 pfac += coefbp[isou][jsou]*pipr[jsou];
4359 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4360 - imasac*b_massflux*
pi[isou]);
4367 for (
int isou = 0; isou < 3; isou++) {
4368 pfac = inc*coface[isou];
4369 for (
int jsou = 0; jsou < 3; jsou++) {
4370 pfac += cofbce[isou][jsou]*pipr[jsou];
4372 flux[isou] += iconvp*( thetap*pfac
4373 - imasac*b_massflux*
pi[isou]);
4423 flui = 0.5*(b_massflux +fabs(b_massflux));
4424 fluj = 0.5*(b_massflux -fabs(b_massflux));
4427 pfac = inc*coefap + coefbp*pipr;
4428 *flux += iconvp*xcpp*(thetap*(flui*pir + fluj*pfac) -imasac*( b_massflux*
pi));
4474 flui = 0.5*(b_massflux +fabs(b_massflux));
4475 fluj = 0.5*(b_massflux -fabs(b_massflux));
4477 for (
int isou = 0; isou < 3; isou++) {
4478 pfac = inc*coefa[isou];
4479 for (
int jsou = 0; jsou < 3; jsou++) {
4480 pfac += coefb[isou][jsou]*pipr[jsou];
4482 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4483 - imasac*b_massflux*
pi[isou]);
4530 flui = 0.5*(b_massflux +fabs(b_massflux));
4531 fluj = 0.5*(b_massflux -fabs(b_massflux));
4533 for (
int isou = 0; isou < 6; isou++) {
4534 pfac = inc*coefa[isou];
4535 for (
int jsou = 0; jsou < 6; jsou++) {
4536 pfac += coefb[isou][jsou]*pipr[jsou];
4538 flux[isou] += iconvp*( thetap*(flui*pir[isou] + fluj*pfac)
4539 - imasac*b_massflux*
pi[isou]);
4568 cs_real_t pfacd = inc*cofafp + cofbfp*pipr;
4569 *flux += idiffp*thetap*b_visc*pfacd;
4598 for (
int isou = 0; isou < 3; isou++) {
4599 pfacd = inc*cofaf[isou];
4600 for (
int jsou = 0; jsou < 3; jsou++) {
4601 pfacd += cofbf[isou][jsou]*pipr[jsou];
4603 flux[isou] += idiffp*thetap*b_visc*pfacd;
4633 for (
int isou = 0; isou < 6; isou++) {
4634 pfacd = inc*cofaf[isou];
4635 for (
int jsou = 0; jsou < 6; jsou++) {
4636 pfacd += cofbf[isou][jsou]*pipr[jsou];
4638 flux[isou] += idiffp*thetap*b_visc*pfacd;
4660 const double relaxp,
4701 const double relaxp,
4742 const double relaxp,
4822 for (
int isou = 0; isou < 3; isou++)
4823 pip[isou] =
pi[isou] + recoi[isou];
4853 for(
int isou = 0; isou< 6; isou++)
4854 pip[isou] =
pi[isou] + recoi[isou];
4877 *fluxi += idiffp*b_visc*(
pi - pj);
4900 for (
int k = 0;
k < 3;
k++)
4901 fluxi[
k] += idiffp*b_visc*(
pi[
k] - pj[
k]);
4915 const int *
const f_id,
4916 const int *
const init,
4917 const int *
const inc,
4919 const int *
const nswrgp,
4920 const int *
const imligp,
4921 const int *
const iphydp,
4922 const int *
const iwgrp,
4923 const int *
const iwarnp,
4946 const int *
const f_id,
4947 const int *
const init,
4948 const int *
const inc,
4950 const int *
const nswrgp,
4951 const int *
const imligp,
4952 const int *
const ircflp,
4953 const int *
const iphydp,
4954 const int *
const iwgrp,
4955 const int *
const iwarnp,
4980 const int *
const f_id,
4981 const int *
const init,
4982 const int *
const inc,
4984 const int *
const nswrgp,
4985 const int *
const imligp,
4986 const int *
const iphydp,
4987 const int *
const iwgrp,
4988 const int *
const iwarnp,
5010 const int *
const f_id,
5011 const int *
const init,
5012 const int *
const inc,
5014 const int *
const nswrgp,
5015 const int *
const imligp,
5016 const int *
const ircflp,
5017 const int *
const iphydp,
5018 const int *
const iwgrp,
5019 const int *
const iwarnp,
static void cs_b_imposed_conv_flux(int iconvp, cs_real_t thetap, int imasac, int inc, int bc_type, int icvfli, cs_real_t pi, cs_real_t pir, cs_real_t pipr, cs_real_t coefap, cs_real_t coefbp, cs_real_t coface, cs_real_t cofbce, cs_real_t b_massflux, cs_real_t xcpp, cs_real_t *flux)
Add convective flux (substracting the mass accumulation from it) to flux at boundary face....
Definition: cs_convection_diffusion.h:4254
static void cs_centered_f_val_vector(const double pnd, const cs_real_3_t pip, const cs_real_3_t pjp, cs_real_t pf[3])
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:971
void cs_anisotropic_left_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int ivisep, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_33_t i_visc[], const cs_real_t b_visc[], const cs_real_t i_secvis[], cs_real_3_t *restrict rhs)
Add explicit part of the terms of diffusion by a left-multiplying symmetric tensorial diffusivity for...
Definition: cs_convection_diffusion.c:9047
void itrmav(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const ircflp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t i_massflux[], cs_real_t b_massflux[])
Definition: cs_convection_diffusion.c:676
static void cs_i_compute_quantities(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_t pi, const cs_real_t pj, cs_real_t *recoi, cs_real_t *recoj, cs_real_t *pip, cs_real_t *pjp)
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:644
static void cs_i_cd_unsteady_nvd(const cs_nvd_type_t limiter, const double beta, const cs_real_3_t cell_cen_c, const cs_real_3_t cell_cen_d, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t gradv_c, const cs_real_t p_c, const cs_real_t p_d, const cs_real_t local_max_c, const cs_real_t local_min_c, const cs_real_t courant_c, cs_real_t *pif, cs_real_t *pjf)
Handle preparation of internal face values for the convection flux computation in case of an unsteady...
Definition: cs_convection_diffusion.h:3649
static void cs_i_cd_steady_upwind(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1418
static void cs_b_imposed_conv_flux_vector(int iconvp, cs_real_t thetap, int imasac, int inc, int bc_type, int icvfli, const cs_real_t pi[restrict 3], const cs_real_t pir[restrict 3], const cs_real_t pipr[restrict 3], const cs_real_t coefap[restrict 3], const cs_real_t coefbp[restrict 3][3], const cs_real_t coface[restrict 3], const cs_real_t cofbce[restrict 3][3], cs_real_t b_massflux, cs_real_t flux[restrict 3])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face....
Definition: cs_convection_diffusion.h:4324
static void cs_i_cd_unsteady_upwind_vector(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t pi[3], const cs_real_t pj[3], cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1710
static void cs_blend_f_val_tensor(const double blencp, const cs_real_t p[6], cs_real_t pf[6])
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1146
static cs_real_t cs_nvd_scheme_scalar(const cs_nvd_type_t limiter, const cs_real_t nvf_p_c, const cs_real_t nvf_r_f, const cs_real_t nvf_r_c)
Compute the normalized face scalar using the specified NVD scheme.
Definition: cs_convection_diffusion.h:118
static void cs_b_relax_c_val_tensor(const double relaxp, const cs_real_6_t pi, const cs_real_6_t pia, const cs_real_6_t recoi, cs_real_t pir[6], cs_real_t pipr[6])
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4214
static void cs_central_downwind_cells(const cs_lnum_t ii, const cs_lnum_t jj, const cs_real_t i_massflux, cs_lnum_t *ic, cs_lnum_t *id)
Determine the upwind and downwind sides of an internal face and matching cell indices.
Definition: cs_convection_diffusion.h:3610
static void cs_i_relax_c_val(const double relaxp, const cs_real_t pia, const cs_real_t pja, const cs_real_t recoi, const cs_real_t recoj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pir, cs_real_t *pjr, cs_real_t *pipr, cs_real_t *pjpr)
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:790
void cs_slope_test_gradient_tensor(const int inc, const cs_halo_type_t halo_type, const cs_real_63_t *grad, cs_real_63_t *grdpa, const cs_real_6_t *pvar, const cs_real_6_t *coefa, const cs_real_66_t *coefb, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1437
static void cs_b_diff_flux_tensor(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_6_t pipr, const cs_real_6_t cofaf, const cs_real_66_t cofbf, const cs_real_t b_visc, cs_real_t flux[6])
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4623
static void cs_slope_test_vector(const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t gradsti[3][3], const cs_real_t gradstj[3][3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:504
static void cs_i_cd_steady_tensor(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, const cs_real_6_t pia, const cs_real_6_t pja, cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2161
static void cs_b_cd_unsteady(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t pi, cs_real_t *pip)
Handle preparation of boundary face values for the flux computation in case of an unsteady algorithm.
Definition: cs_convection_diffusion.h:4779
static void cs_b_diff_flux(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_t pipr, const cs_real_t cofafp, const cs_real_t cofbfp, const cs_real_t b_visc, cs_real_t *flux)
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4559
void itrmas(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t i_massflux[], cs_real_t b_massflux[])
Definition: cs_convection_diffusion.c:614
static void cs_i_conv_flux_tensor(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t pifri[6], const cs_real_t pifrj[6], const cs_real_t pjfri[6], const cs_real_t pjfrj[6], const cs_real_t i_massflux, cs_real_t fluxi[6], cs_real_t fluxj[6])
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij.
Definition: cs_convection_diffusion.h:1270
static void cs_b_upwind_flux(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_t pi, const cs_real_t pir, const cs_real_t pipr, const cs_real_t coefap, const cs_real_t coefbp, const cs_real_t b_massflux, const cs_real_t xcpp, cs_real_t *flux)
Add convective flux (substracting the mass accumulation from it) to flux at boundary face....
Definition: cs_convection_diffusion.h:4402
static void cs_b_cd_steady(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t pi, const cs_real_t pia, cs_real_t *pir, cs_real_t *pipr)
Handle preparation of boundary face values for the flux computation in case of a steady algorithm.
Definition: cs_convection_diffusion.h:4659
static void cs_i_cd_steady_slope_test(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_3_t gradsti, const cs_real_3_t gradstj, const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2740
void cs_cell_courant_number(const int f_id, cs_real_t *courant)
Definition: cs_convection_diffusion.c:880
static void cs_b_cd_steady_vector(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_3_t pi, const cs_real_3_t pia, cs_real_t pir[3], cs_real_t pipr[3])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm.
Definition: cs_convection_diffusion.h:4700
cs_real_t * cs_get_v_slope_test(int f_id, const cs_var_cal_opt_t var_cal_opt)
Definition: cs_convection_diffusion.c:966
static void cs_solu_f_val(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_3_t grad, const cs_real_t p, cs_real_t *pf)
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1014
static void cs_sync_scalar_halo(const cs_mesh_t *m, cs_halo_type_t halo_type, cs_real_t pvar[])
Definition: cs_convection_diffusion.h:96
static void cs_upwind_f_val_vector(const cs_real_3_t p, cs_real_t pf[3])
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:915
static void cs_i_cd_unsteady_vector(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_t hybrid_blend_i, const cs_real_t hybrid_blend_j, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:2474
static void cs_i_cd_steady(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_t cell_ceni[3], const cs_real_t cell_cenj[3], const cs_real_t i_face_cog[3], const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t gradupi[3], const cs_real_t gradupj[3], const cs_real_t pi, const cs_real_t pj, const cs_real_t pia, const cs_real_t pja, cs_real_t *pifri, cs_real_t *pifrj, cs_real_t *pjfri, cs_real_t *pjfrj, cs_real_t *pip, cs_real_t *pjp, cs_real_t *pipr, cs_real_t *pjpr)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1827
void cs_face_anisotropic_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int ircflp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
Add the explicit part of the pressure gradient term to the mass flux in case of anisotropic diffusion...
Definition: cs_convection_diffusion.c:11256
void cs_anisotropic_diffusion_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict rhs)
Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equa...
Definition: cs_convection_diffusion.c:8294
void cs_face_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t *restrict visel, cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux)
Update the face mass flux with the face pressure (or pressure increment, or pressure double increment...
Definition: cs_convection_diffusion.c:10919
static void cs_b_relax_c_val_vector(const double relaxp, const cs_real_3_t pi, const cs_real_3_t pia, const cs_real_3_t recoi, cs_real_t pir[3], cs_real_t pipr[3])
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4187
static void cs_blend_f_val(const double blencp, const cs_real_t p, cs_real_t *pf)
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1105
static void cs_i_conv_flux(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi, const cs_real_t pj, const cs_real_t pifri, const cs_real_t pifrj, const cs_real_t pjfri, const cs_real_t pjfrj, const cs_real_t i_massflux, const cs_real_t xcppi, const cs_real_t xcppj, cs_real_2_t fluxij)
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij.
Definition: cs_convection_diffusion.h:1178
static void cs_b_cd_unsteady_tensor(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_6_t pi, cs_real_t pip[6])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm.
Definition: cs_convection_diffusion.h:4840
static void cs_i_diff_flux_vector(const int idiffp, const cs_real_t thetap, const cs_real_t pip[3], const cs_real_t pjp[3], const cs_real_t pipr[3], const cs_real_t pjpr[3], const cs_real_t i_visc, cs_real_t fluxi[3], cs_real_t fluxj[3])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1342
static void cs_centered_f_val(const double pnd, const cs_real_t pip, const cs_real_t pjp, cs_real_t *pf)
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:951
static void cs_b_relax_c_val(const double relaxp, const cs_real_t pi, const cs_real_t pia, const cs_real_t recoi, cs_real_t *pir, cs_real_t *pipr)
Compute relaxed values at boundary cell i.
Definition: cs_convection_diffusion.h:4162
static void cs_b_cd_steady_tensor(const cs_real_t bldfrp, const double relaxp, const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_6_t pi, const cs_real_6_t pia, cs_real_t pir[6], cs_real_t pipr[6])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm.
Definition: cs_convection_diffusion.h:4741
static void cs_i_cd_steady_vector(const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, const cs_real_3_t pia, const cs_real_3_t pja, cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2008
static void cs_i_cd_unsteady_upwind_tensor(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t pi[6], const cs_real_t pj[6], cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1760
static void cs_b_diff_flux_coupling(int idiffp, cs_real_t pi, cs_real_t pj, cs_real_t b_visc, cs_real_t *fluxi)
Add diffusive flux to flux at an internal coupling face.
Definition: cs_convection_diffusion.h:4871
static void cs_b_compute_quantities_tensor(const cs_real_3_t diipb, const cs_real_63_t gradi, const cs_real_t bldfrp, cs_real_t recoi[6])
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4136
static void cs_b_upwind_flux_vector(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_3_t pi, const cs_real_3_t pir, const cs_real_3_t pipr, const cs_real_3_t coefa, const cs_real_33_t coefb, const cs_real_t b_massflux, cs_real_t flux[3])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face....
Definition: cs_convection_diffusion.h:4454
static void cs_i_cd_unsteady_upwind(const cs_real_t bldfrp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:1660
static void cs_b_compute_quantities_vector(const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_t bldfrp, cs_real_t recoi[3])
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4112
void cs_convection_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int ivisep, int imasac, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const int icvfli[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t i_secvis[], const cs_real_t b_secvis[], cs_real_3_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a vector field .
Definition: cs_convection_diffusion.c:4284
static void cs_i_cd_steady_upwind_vector(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[3][3], const cs_real_t gradj[3][3], const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t pia[3], const cs_real_t pja[3], cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1501
static void cs_slope_test(const cs_real_t pi, const cs_real_t pj, const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[3], const cs_real_t gradj[3], const cs_real_t grdpai[3], const cs_real_t grdpaj[3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:438
void cs_anisotropic_right_diffusion_vector(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_3_t *restrict pvar, const cs_real_3_t *restrict pvara, const cs_real_3_t coefav[], const cs_real_33_t coefbv[], const cs_real_3_t cofafv[], const cs_real_33_t cofbfv[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_3_t *restrict rhs)
Add explicit part of the terms of diffusion by a right-multiplying symmetric tensorial diffusivity fo...
Definition: cs_convection_diffusion.c:9596
static void cs_solu_f_val_tensor(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_63_t grad, const cs_real_6_t p, cs_real_t pf[6])
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1074
static void cs_b_upwind_flux_tensor(const int iconvp, const cs_real_t thetap, const int imasac, const int inc, const int bc_type, const cs_real_6_t pi, const cs_real_6_t pir, const cs_real_6_t pipr, const cs_real_6_t coefa, const cs_real_66_t coefb, const cs_real_t b_massflux, cs_real_t flux[6])
Add convective flux (substracting the mass accumulation from it) to flux at boundary face....
Definition: cs_convection_diffusion.h:4510
void cs_anisotropic_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int ircflp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t *restrict diverg)
Add the explicit part of the divergence of the mass flux due to the pressure gradient (routine analog...
Definition: cs_convection_diffusion.c:12097
static void cs_b_compute_quantities(const cs_real_3_t diipb, const cs_real_3_t gradi, const cs_real_t bldfrp, cs_real_t *recoi)
Reconstruct values in I' at boundary cell i.
Definition: cs_convection_diffusion.h:4090
static void cs_upwind_f_val_tensor(const cs_real_6_t p, cs_real_t pf[6])
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:932
static void cs_solu_f_val_vector(const cs_real_3_t cell_cen, const cs_real_3_t i_face_cog, const cs_real_33_t grad, const cs_real_3_t p, cs_real_t pf[3])
Prepare value at face ij by using a Second Order Linear Upwind scheme.
Definition: cs_convection_diffusion.h:1042
static void cs_i_cd_steady_upwind_tensor(const cs_real_t bldfrp, const cs_real_t relaxp, const cs_real_t diipf[3], const cs_real_t djjpf[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t pia[6], const cs_real_t pja[6], cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:1584
void cs_face_convection_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const int icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], cs_real_2_t i_conv_flux[], cs_real_t b_conv_flux[])
Update face flux with convection contribution of a standard transport equation of a scalar field .
Definition: cs_convection_diffusion.c:3164
cs_nvd_type_t
Definition: cs_convection_diffusion.h:59
@ CS_NVD_SUPERBEE
Definition: cs_convection_diffusion.h:64
@ CS_NVD_SMART
Definition: cs_convection_diffusion.h:62
@ CS_NVD_CUBISTA
Definition: cs_convection_diffusion.h:63
@ CS_NVD_STOIC
Definition: cs_convection_diffusion.h:68
@ CS_NVD_WASEB
Definition: cs_convection_diffusion.h:70
@ CS_NVD_CLAM
Definition: cs_convection_diffusion.h:67
@ CS_NVD_OSHER
Definition: cs_convection_diffusion.h:69
@ CS_NVD_VOF_CICSAM
Definition: cs_convection_diffusion.h:72
@ CS_NVD_VOF_STACS
Definition: cs_convection_diffusion.h:73
@ CS_NVD_GAMMA
Definition: cs_convection_diffusion.h:61
@ CS_NVD_MINMOD
Definition: cs_convection_diffusion.h:66
@ CS_NVD_VOF_HRIC
Definition: cs_convection_diffusion.h:71
@ CS_NVD_MUSCL
Definition: cs_convection_diffusion.h:65
@ CS_NVD_N_TYPES
Definition: cs_convection_diffusion.h:74
void cs_convection_diffusion_scalar(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const int icvfli[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a standard transport equation of a scalar ...
Definition: cs_convection_diffusion.c:1725
static void cs_i_relax_c_val_tensor(const cs_real_t relaxp, const cs_real_t pia[6], const cs_real_t pja[6], const cs_real_t recoi[6], const cs_real_t recoj[6], const cs_real_t pi[6], const cs_real_t pj[6], cs_real_t pir[6], cs_real_t pjr[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:868
static void cs_b_cd_unsteady_vector(const cs_real_t bldfrp, const cs_real_3_t diipb, const cs_real_33_t gradi, const cs_real_3_t pi, cs_real_t pip[3])
Handle preparation of boundary face values for the flux computation in case of a steady algorithm.
Definition: cs_convection_diffusion.h:4809
void itrgrv(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const ircflp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_t diverg[])
Definition: cs_convection_diffusion.c:804
static void cs_slope_test_tensor(const cs_real_t pi[6], const cs_real_t pj[6], const cs_real_t distf, const cs_real_t srfan, const cs_real_t i_face_normal[3], const cs_real_t gradi[6][3], const cs_real_t gradj[6][3], const cs_real_t gradsti[6][3], const cs_real_t gradstj[6][3], const cs_real_t i_massflux, cs_real_t *testij, cs_real_t *tesqck)
Compute slope test criteria at internal face between cell i and j.
Definition: cs_convection_diffusion.h:574
void cs_convection_diffusion_tensor(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int icvflb, int inc, int imasac, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a vector field .
Definition: cs_convection_diffusion.c:5984
static void cs_i_cd_steady_slope_test_tensor(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_63_t grdpai, const cs_real_63_t grdpaj, const cs_real_6_t pi, const cs_real_6_t pj, const cs_real_6_t pia, const cs_real_6_t pja, cs_real_t pifri[6], cs_real_t pifrj[6], cs_real_t pjfri[6], cs_real_t pjfrj[6], cs_real_t pip[6], cs_real_t pjp[6], cs_real_t pipr[6], cs_real_t pjpr[6])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:3223
static void cs_i_compute_quantities_tensor(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t recoi[6], cs_real_t recoj[6], cs_real_t pip[6], cs_real_t pjp[6])
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:738
static void cs_i_diff_flux_tensor(const int idiffp, const cs_real_t thetap, const cs_real_t pip[6], const cs_real_t pjp[6], const cs_real_t pipr[6], const cs_real_t pjpr[6], const cs_real_t i_visc, cs_real_t fluxi[6], cs_real_t fluxj[6])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1375
static void cs_centered_f_val_tensor(const double pnd, const cs_real_6_t pip, const cs_real_6_t pjp, cs_real_t pf[6])
Prepare value at face ij by using a centered scheme.
Definition: cs_convection_diffusion.h:992
void cs_slope_test_gradient_vector(const int inc, const cs_halo_type_t halo_type, const cs_real_33_t *grad, cs_real_33_t *grdpa, const cs_real_3_t *pvar, const cs_real_3_t *coefa, const cs_real_33_t *coefb, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1285
static void cs_i_cd_unsteady(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_t hybrid_blend_i, const cs_real_t hybrid_blend_j, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:2314
static void cs_i_cd_unsteady_slope_test_vector(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_33_t grdpai, const cs_real_33_t grdpaj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pif[3], cs_real_t pjf[3], cs_real_t pip[3], cs_real_t pjp[3])
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:3776
static void cs_b_diff_flux_coupling_vector(int idiffp, const cs_real_t pi[3], const cs_real_t pj[3], cs_real_t b_visc, cs_real_t fluxi[3])
Add diffusive flux to flux at an internal coupling face for a vector.
Definition: cs_convection_diffusion.h:4894
static void cs_blend_f_val_vector(const double blencp, const cs_real_3_t p, cs_real_t pf[3])
Blend face values for a centered or SOLU scheme with face values for an upwind scheme.
Definition: cs_convection_diffusion.h:1125
void cs_diffusion_potential(const int f_id, const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int inc, int imrgra, int nswrgp, int imligp, int iphydp, int iwgrp, int iwarnp, double epsrgp, double climgp, cs_real_3_t *restrict frcxt, cs_real_t *restrict pvar, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t *restrict diverg)
Update the cell mass flux divergence with the face pressure (or pressure increment,...
Definition: cs_convection_diffusion.c:11732
static void cs_i_compute_quantities_vector(const cs_real_t bldfrp, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t recoi[3], cs_real_t recoj[3], cs_real_t pip[3], cs_real_t pjp[3])
Reconstruct values in I' and J'.
Definition: cs_convection_diffusion.h:686
static void cs_i_cd_unsteady_slope_test(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_3_t gradi, const cs_real_3_t gradj, const cs_real_3_t gradupi, const cs_real_3_t gradupj, const cs_real_3_t gradsti, const cs_real_3_t gradstj, const cs_real_t pi, const cs_real_t pj, cs_real_t *pif, cs_real_t *pjf, cs_real_t *pip, cs_real_t *pjp)
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:3449
static void cs_i_cd_steady_slope_test_vector(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double relaxp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_33_t gradi, const cs_real_33_t gradj, const cs_real_33_t grdpai, const cs_real_33_t grdpaj, const cs_real_3_t pi, const cs_real_3_t pj, const cs_real_3_t pia, const cs_real_3_t pja, cs_real_t pifri[3], cs_real_t pifrj[3], cs_real_t pjfri[3], cs_real_t pjfrj[3], cs_real_t pip[3], cs_real_t pjp[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Handle preparation of internal face values for the fluxes computation in case of a steady algorithm a...
Definition: cs_convection_diffusion.h:2995
static void cs_upwind_f_val(const cs_real_t p, cs_real_t *pf)
Prepare value at face ij by using an upwind scheme.
Definition: cs_convection_diffusion.h:899
static void cs_i_cd_unsteady_slope_test_tensor(bool *upwind_switch, const int iconvp, const cs_real_t bldfrp, const int ischcp, const double blencp, const double blend_st, const cs_real_t weight, const cs_real_t i_dist, const cs_real_t i_face_surf, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_normal, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_t i_massflux, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_63_t grdpai, const cs_real_63_t grdpaj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of a unsteady algorithm...
Definition: cs_convection_diffusion.h:3946
static void cs_i_diff_flux(const int idiffp, const cs_real_t thetap, const cs_real_t pip, const cs_real_t pjp, const cs_real_t pipr, const cs_real_t pjpr, const cs_real_t i_visc, cs_real_t fluxij[2])
Add diffusive fluxes to fluxes at face ij.
Definition: cs_convection_diffusion.h:1312
static void cs_i_conv_flux_vector(const int iconvp, const cs_real_t thetap, const int imasac, const cs_real_t pi[3], const cs_real_t pj[3], const cs_real_t pifri[3], const cs_real_t pifrj[3], const cs_real_t pjfri[3], const cs_real_t pjfrj[3], const cs_real_t i_massflux, cs_real_t fluxi[3], cs_real_t fluxj[3])
Add convective fluxes (substracting the mass accumulation from them) to fluxes at face ij.
Definition: cs_convection_diffusion.h:1222
void cs_slope_test_gradient(int f_id, int inc, cs_halo_type_t halo_type, const cs_real_3_t *grad, cs_real_3_t *grdpa, const cs_real_t *pvar, const cs_real_t *coefap, const cs_real_t *coefbp, const cs_real_t *i_massflux)
Compute the upwind gradient used in the slope tests.
Definition: cs_convection_diffusion.c:1025
static cs_real_t cs_nvd_vof_scheme_scalar(const cs_nvd_type_t limiter, const cs_real_3_t i_face_normal, const cs_real_t nvf_p_c, const cs_real_t nvf_r_f, const cs_real_t nvf_r_c, const cs_real_3_t gradv_c, const cs_real_t c_courant)
Compute the normalised face scalar using the specified NVD scheme for the case of a Volume-of-Fluid (...
Definition: cs_convection_diffusion.h:303
void cs_beta_limiter_building(int f_id, int inc, const cs_real_t rovsdt[])
Compute the beta blending coefficient of the beta limiter (ensuring preservation of a given min/max p...
Definition: cs_convection_diffusion.c:1580
void itrgrp(const int *const f_id, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgp, const int *const imligp, const int *const iphydp, const int *const iwgrp, const int *const iwarnp, const cs_real_t *const epsrgp, const cs_real_t *const climgp, const cs_real_t *const extrap, cs_real_3_t frcxt[], cs_real_t pvar[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_t visel[], cs_real_t diverg[])
Definition: cs_convection_diffusion.c:744
static void cs_b_diff_flux_vector(const int idiffp, const cs_real_t thetap, const int inc, const cs_real_3_t pipr, const cs_real_3_t cofaf, const cs_real_33_t cofbf, const cs_real_t b_visc, cs_real_t flux[3])
Add diffusive flux to flux at boundary face.
Definition: cs_convection_diffusion.h:4588
void cs_convection_diffusion_thermal(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, int imasac, cs_real_t *restrict pvar, const cs_real_t *restrict pvara, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t xcpp[], cs_real_t *restrict rhs)
Add the explicit part of the convection/diffusion terms of a transport equation of a scalar field su...
Definition: cs_convection_diffusion.c:6952
void cs_anisotropic_diffusion_tensor(int idtvar, int f_id, const cs_var_cal_opt_t var_cal_opt, int inc, cs_real_6_t *restrict pvar, const cs_real_6_t *restrict pvara, const cs_real_6_t coefa[], const cs_real_66_t coefb[], const cs_real_6_t cofaf[], const cs_real_66_t cofbf[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t *restrict viscel, const cs_real_2_t weighf[], const cs_real_t weighb[], cs_real_6_t *restrict rhs)
Add the explicit part of the diffusion terms with a symmetric tensor diffusivity for a transport equa...
Definition: cs_convection_diffusion.c:10310
static void cs_i_relax_c_val_vector(const double relaxp, const cs_real_3_t pia, const cs_real_3_t pja, const cs_real_3_t recoi, const cs_real_3_t recoj, const cs_real_3_t pi, const cs_real_3_t pj, cs_real_t pir[3], cs_real_t pjr[3], cs_real_t pipr[3], cs_real_t pjpr[3])
Compute relaxed values at cell i and j.
Definition: cs_convection_diffusion.h:828
static void cs_i_cd_unsteady_tensor(const cs_real_t bldfrp, const int ischcp, const double blencp, const cs_real_t weight, const cs_real_3_t cell_ceni, const cs_real_3_t cell_cenj, const cs_real_3_t i_face_cog, const cs_real_3_t diipf, const cs_real_3_t djjpf, const cs_real_63_t gradi, const cs_real_63_t gradj, const cs_real_6_t pi, const cs_real_6_t pj, cs_real_t pif[6], cs_real_t pjf[6], cs_real_t pip[6], cs_real_t pjp[6])
Handle preparation of internal face values for the fluxes computation in case of an unsteady algorith...
Definition: cs_convection_diffusion.h:2616
void cs_upwind_gradient(const int f_id, const int inc, const cs_halo_type_t halo_type, const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t i_massflux[], const cs_real_t b_massflux[], const cs_real_t *restrict pvar, cs_real_3_t *restrict grdpa)
Compute the upwind gradient in order to cope with SOLU schemes observed in the litterature.
Definition: cs_convection_diffusion.c:1164
#define restrict
Definition: cs_defs.h:139
#define BEGIN_C_DECLS
Definition: cs_defs.h:509
double cs_real_t
Floating-point value.
Definition: cs_defs.h:319
#define CS_MIN(a, b)
Definition: cs_defs.h:472
#define CS_ABS(a)
Definition: cs_defs.h:471
#define CS_MAX(a, b)
Definition: cs_defs.h:473
#define CS_PROCF(x, y)
Definition: cs_defs.h:523
cs_real_t cs_real_66_t[6][6]
6x6 matrix of floating-point values
Definition: cs_defs.h:342
cs_real_t cs_real_3_t[3]
vector of 3 floating-point values
Definition: cs_defs.h:332
cs_real_t cs_real_2_t[2]
vector of 2 floating-point values
Definition: cs_defs.h:331
cs_real_t cs_real_6_t[6]
vector of 6 floating-point values
Definition: cs_defs.h:334
#define CS_UNUSED(x)
Definition: cs_defs.h:495
#define END_C_DECLS
Definition: cs_defs.h:510
cs_real_t cs_real_33_t[3][3]
3x3 matrix of floating-point values
Definition: cs_defs.h:341
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:313
cs_real_t cs_real_63_t[6][3]
Definition: cs_defs.h:349
@ p
Definition: cs_field_pointer.h:67
@ k
Definition: cs_field_pointer.h:70
void cs_halo_sync_var(const cs_halo_t *halo, cs_halo_type_t sync_mode, cs_real_t var[])
Definition: cs_halo.c:1957
cs_halo_type_t
Definition: cs_halo.h:56
void cs_math_3_length_unitv(const cs_real_t xa[3], const cs_real_t xb[3], cs_real_t *len, cs_real_3_t unitv)
Compute the length (Euclidean norm) between two points xa and xb in a Cartesian coordinate system of ...
Definition: cs_math.c:403
static cs_real_t cs_math_3_square_distance(const cs_real_t xa[3], const cs_real_t xb[3])
Compute the squared distance between two points xa and xb in a Cartesian coordinate system of dimensi...
Definition: cs_math.h:333
static cs_real_t cs_math_3_norm(const cs_real_t v[3])
Compute the euclidean norm of a vector of dimension 3.
Definition: cs_math.h:424
static cs_real_t cs_math_3_square_norm(const cs_real_t v[3])
Compute the square norm of a vector of 3 real values.
Definition: cs_math.h:440
static cs_real_t cs_math_3_dot_product(const cs_real_t u[3], const cs_real_t v[3])
Compute the dot product of two vectors of 3 real values.
Definition: cs_math.h:355
static cs_real_t cs_math_sq(cs_real_t x)
Compute the square of a real value.
Definition: cs_math.h:222
const cs_real_t cs_math_epzero
@ CS_COUPLED_FD
Definition: cs_parameters.h:99
integer, dimension(:), allocatable icvfli
boundary convection flux indicator of a Rusanov or an analytical flux (some boundary contributions of...
Definition: cfpoin.f90:52
double precision pi
value with 16 digits
Definition: cstnum.f90:48
cs_equation_param_t * var_cal_opt
Definition: keywords.h:135
integer(c_int), pointer, save imrgra
type of gradient reconstruction
Definition: optcal.f90:137
double precision, dimension(:,:), pointer diipb
vector II' for interior faces for every boundary face, the three components of the vector ....
Definition: mesh.f90:212
integer(c_int), pointer, save idtvar
option for a variable time step
Definition: optcal.f90:260
double precision, save fmin
Definition: coincl.f90:182
double precision, dimension(ncharm), save beta
Definition: cpincl.f90:99
double precision, dimension(ncharm), save b1
Definition: cpincl.f90:233
double precision, dimension(ncharm), save b2
Definition: cpincl.f90:233
Set of parameters to handle an unsteady convection-diffusion-reaction equation with term sources.
Definition: cs_equation_param.h:192
Definition: cs_mesh_quantities.h:92
cs_halo_t * halo
Definition: cs_mesh.h:156