#include "cs_defs.h"#include <stdarg.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <assert.h>#include <math.h>#include <mpi.h>#include "bft_mem.h"#include "bft_printf.h"#include "cs_1d_wall_thermal.h"#include "cs_ale.h"#include "cs_array.h"#include "cs_assert.h"#include "cs_base.h"#include "cs_boundary.h"#include "cs_boundary_conditions.h"#include "cs_boundary_conditions_check.h"#include "cs_boundary_conditions_coupling.h"#include "cs_boundary_conditions_set_coeffs_symmetry.h"#include "cs_boundary_conditions_set_coeffs_turb.h"#include "cs_boundary_conditions_type.h"#include "cs_cf_boundary_conditions.h"#include "cs_coupling.h"#include "cs_field.h"#include "cs_field_default.h"#include "cs_field_operator.h"#include "cs_field_pointer.h"#include "cs_gradient_boundary.h"#include "cs_gui_boundary_conditions.h"#include "cs_gui_mobile_mesh.h"#include "cs_gui_util.h"#include "cs_ht_convert.h"#include "cs_internal_coupling.h"#include "cs_les_inflow.h"#include "cs_log.h"#include "cs_mesh.h"#include "cs_mesh_quantities.h"#include "cs_mobile_structures.h"#include "cs_parall.h"#include "cs_parameters.h"#include "cs_physical_constants.h"#include "cs_physical_model.h"#include "cs_prototypes.h"#include "cs_rad_transfer.h"#include "cs_rad_transfer_bcs.h"#include "cs_sat_coupling.h"#include "cs_syr_coupling.h"#include "cs_thermal_model.h"#include "cs_time_step.h"#include "cs_turbulence_model.h"#include "cs_turbomachinery.h"#include "cs_velocity_pressure.h"#include "cs_vof.h"#include "cs_wall_condensation.h"#include "cs_wall_condensation_1d_thermal.h"#include "cs_rotation.h"#include "cs_boundary_conditions_set_coeffs.h"Macros | |
| #define | NOZPPM 2000 /* max number of boundary conditions zone */ |
Functions | |
| int * | cs_f_boundary_conditions_get_bc_type (void) |
| void | cs_f_ppprcl (void) |
| void | cs_f_pptycl (bool init, int *itypfb, const int *izfppp) |
| void | cs_f_user_boundary_conditions_wrapper (int itypfb[], const int izfppp[], cs_real_t dt[]) |
| void | cs_boundary_conditions_set_coeffs (int nvar, int iterns, int isvhb, int itrale, int italim, int itrfin, int ineefl, int itrfup, int isostd[], cs_real_t visvdr[], cs_real_t hbord[], cs_real_t theipb[], int nftcdt) |
| Translation of the boundary conditions given by the user in a form that fits to the solver. | |
| void | cs_boundary_conditions_set_coeffs_init (void) |
| Initialization of boundary condition arrays. | |
| void | cs_boundary_conditions_set_convective_outlet_scalar (cs_lnum_t f_id, cs_field_bc_coeffs_t *bc_coeffs, cs_real_t pimp, cs_real_t cfl, cs_real_t hint) |
| Set convective oulet boundary condition for a scalar. | |
| void | cs_boundary_conditions_set_generalized_sym_vector_aniso (cs_lnum_t f_id, cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t pimpv[3], const cs_real_t qimpv[3], const cs_real_t hint[6], const cs_nreal_t normal[3]) |
| Set generalized BC for an anisotropic symmetric vector for a given face. | |
| void | cs_boundary_conditions_set_generalized_dirichlet_vector_aniso (cs_lnum_t f_id, cs_field_bc_coeffs_t *bc_coeffs, const cs_real_t pimpv[3], const cs_real_t qimpv[3], const cs_real_t hint[6], const cs_nreal_t normal[3]) |
| Set generalized Dirichlet BC for an anisotropic vector for a given face. | |
Boundary condition management.
| #define NOZPPM 2000 /* max number of boundary conditions zone */ |
| void cs_boundary_conditions_set_coeffs | ( | int | nvar, |
| int | iterns, | ||
| int | isvhb, | ||
| int | itrale, | ||
| int | italim, | ||
| int | itrfin, | ||
| int | ineefl, | ||
| int | itrfup, | ||
| int | isostd[], | ||
| cs_real_t | visvdr[], | ||
| cs_real_t | hbord[], | ||
| cs_real_t | theipb[], | ||
| int | nftcdt ) |
Translation of the boundary conditions given by the user in a form that fits to the solver.
The values at a boundary face 



![\[P_{\face} = A_P^g + B_P^g P_{\centi}
\]](form_92.png)
and
![\[Q_{\face} = A_P^f + B_P^f P_{\centi}
\]](form_93.png)
where 

![\[ \delta P_{\face} = B_P^g \delta P_{\centi}
\]](form_95.png)
![\[ \delta Q_{\face} = -B_P^f \delta P_{\centi}
\]](form_96.png)

![\[ \vect{u}_{\face} = \vect{A}_u^g + \tens{B}_u^g \vect{u}_{\centi}
\]](form_98.png)
![\[ \vect{Q}_{\face} = \vect{A}_u^f + \tens{B}_u^f \vect{u}_{\centi}
\]](form_99.png)


Please refer to the boundary conditions section of the theory guide for more informations, as well as the condli section.
| [in] | nvar | total number of variables |
| [in] | iterns | iteration number on Navier-Stokes equations |
| [in] | isvhb | id of field whose exchange coeffient should be saved at the walls, or -1. |
| [in] | itrale | ALE iteration number |
| [in] | italim | for ALE |
| [in] | itrfin | for ALE |
| [in] | ineefl | for ALE |
| [in] | itrfup | for ALE |
| [in,out] | isostd | indicator for standard outlet and reference face index |
| [out] | visvdr | dynamic viscosity after V. Driest damping in boundary cells |
| [out] | hbord | exchange coefficient at boundary |
| [out] | theipb | value of thermal scalar at |
| [in] | nftcdt | Global indicator of condensation source terms (ie. sum on the processors of nfbpcd) cells associated to the face with condensation phenomenon |
| void cs_boundary_conditions_set_coeffs_init | ( | void | ) |
Initialization of boundary condition arrays.
| void cs_boundary_conditions_set_convective_outlet_scalar | ( | cs_lnum_t | f_id, |
| cs_field_bc_coeffs_t * | bc_coeffs, | ||
| cs_real_t | pimp, | ||
| cs_real_t | cfl, | ||
| cs_real_t | hint ) |
Set convective oulet boundary condition for a scalar.
| [in] | f_id | face id |
| [out] | bc_coeffs | boundary conditions structure |
| [in] | pimp | flux value to impose |
| [in] | cfl | local Courant number used to convect |
| [in] | hint | internal exchange coefficient |
| void cs_boundary_conditions_set_generalized_dirichlet_vector_aniso | ( | cs_lnum_t | f_id, |
| cs_field_bc_coeffs_t * | bc_coeffs, | ||
| const cs_real_t | pimpv[3], | ||
| const cs_real_t | qimpv[3], | ||
| const cs_real_t | hint[6], | ||
| const cs_nreal_t | normal[3] ) |
Set generalized Dirichlet BC for an anisotropic vector for a given face.
| [in] | f_id | face id |
| [out] | bc_coeffs | boundary conditions structure |
| [in] | pimpv | Dirichlet value to impose on the tangential components |
| [in] | qimpv | flux value to impose on the normal component |
| [in] | hint | internal exchange coefficient |
| [in] | normal | unit normal |
| void cs_boundary_conditions_set_generalized_sym_vector_aniso | ( | cs_lnum_t | f_id, |
| cs_field_bc_coeffs_t * | bc_coeffs, | ||
| const cs_real_t | pimpv[3], | ||
| const cs_real_t | qimpv[3], | ||
| const cs_real_t | hint[6], | ||
| const cs_nreal_t | normal[3] ) |
Set generalized BC for an anisotropic symmetric vector for a given face.
| [in] | f_id | face id |
| [out] | bc_coeffs | boundary conditions structure |
| [in] | pimpv | Dirichlet value to impose on the normal component |
| [in] | qimpv | flux value to impose on the tangential components |
| [in] | hint | internal exchange coefficient |
| [in] | normal | unit normal |
| int * cs_f_boundary_conditions_get_bc_type | ( | void | ) |
| void cs_f_ppprcl | ( | void | ) |
| void cs_f_pptycl | ( | bool | init, |
| int * | itypfb, | ||
| const int * | izfppp ) |
| void cs_f_user_boundary_conditions_wrapper | ( | int | itypfb[], |
| const int | izfppp[], | ||
| cs_real_t | dt[] ) |