#include "cs_defs.h"#include <assert.h>#include <stdarg.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include "bft_mem.h"#include "bft_error.h"#include "bft_printf.h"#include "cs_array.h"#include "cs_assert.h"#include "cs_at_data_assim.h"#include "cs_atmo.h"#include "cs_atmo_aerosol.h"#include "cs_atmo_profile_std.h"#include "cs_blas.h"#include "cs_boundary_conditions.h"#include "cs_bw_time_diff.h"#include "cs_cf_model.h"#include "cs_coal.h"#include "cs_combustion_model.h"#include "cs_ctwr.h"#include "cs_ctwr_source_terms.h"#include "cs_divergence.h"#include "cs_drift_convective_flux.h"#include "cs_elec_model.h"#include "cs_equation_iterative_solve.h"#include "cs_face_viscosity.h"#include "cs_field.h"#include "cs_field_default.h"#include "cs_field_operator.h"#include "cs_field_pointer.h"#include "cs_gradient.h"#include "cs_gui.h"#include "cs_intprf.h"#include "cs_lagr.h"#include "cs_lagr_precipitation_model.h"#include "cs_math.h"#include "cs_mass_source_terms.h"#include "cs_mesh.h"#include "cs_mesh_quantities.h"#include "cs_parall.h"#include "cs_param_types.h"#include "cs_physical_constants.h"#include "cs_physical_model.h"#include "cs_prototypes.h"#include "cs_rad_transfer.h"#include "cs_rad_transfer_source_terms.h"#include "cs_sat_coupling.h"#include "cs_scalar_clipping.h"#include "cs_syr_coupling.h"#include "cs_thermal_model.h"#include "cs_time_step.h"#include "cs_turbulence_model.h"#include "cs_turbulence_rij.h"#include "cs_turbulence_rit.h"#include "cs_velocity_pressure.h"#include "cs_vof.h"#include "cs_volume_mass_injection.h"#include "cs_wall_condensation.h"#include "cs_wall_functions.h"#include "cs_solve_equation.h"Functions | |
| void | cs_solve_equation_scalar (cs_field_t *f, int iterns, int itspdv, cs_real_t viscf[], cs_real_t viscb[]) |
| Solve the convection/diffusion equation (with optional source terms and/or drift) for a scalar quantity over a time step. | |
| void | cs_solve_equation_vector (cs_field_t *f, int iterns, cs_real_t viscf[], cs_real_t viscb[]) |
| Solve the convection/diffusion equation (with optional source terms and/or drift) for a vectorial quantity over a time step.. | |
| void cs_solve_equation_scalar | ( | cs_field_t * | f, |
| int | iterns, | ||
| int | itspdv, | ||
| cs_real_t | viscf[], | ||
| cs_real_t | viscb[] ) |
Solve the convection/diffusion equation (with optional source terms and/or drift) for a scalar quantity over a time step.
| [in] | f | pointer to field structure |
| [in] | iterns | Navier-Stokes iteration number |
| [in] | itspdv | indicator to compute production/dissipation terms for a variance:
|
| viscf | visc*surface/dist at internal faces (work array) | |
| viscb | visc*surface/dist at boundary faces (work array) |
Electric arcs, Joule effect ionic conduction
Cooling towers
| void cs_solve_equation_vector | ( | cs_field_t * | f, |
| int | iterns, | ||
| cs_real_t | viscf[], | ||
| cs_real_t | viscb[] ) |
Solve the convection/diffusion equation (with optional source terms and/or drift) for a vectorial quantity over a time step..
| [in] | f | pointer to field structure |
| [in] | iterns | Navier-Stokes iteration number |
| viscf | visc*surface/dist at internal faces (work array) | |
| viscb | visc*surface/dist at boundary faces (work array) |