#include "cs_defs.h"#include <float.h>#include <stdarg.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <assert.h>#include <math.h>#include <mpi.h>#include "bft_printf.h"#include "cs_array.h"#include "cs_blas.h"#include "cs_boundary_conditions.h"#include "cs_boundary_conditions_set_coeffs.h"#include "cs_convection_diffusion.h"#include "cs_equation_iterative_solve.h"#include "cs_face_viscosity.h"#include "cs_field_default.h"#include "cs_field_operator.h"#include "cs_field_pointer.h"#include "cs_mesh.h"#include "cs_mesh_quantities.h"#include "cs_turbulence_model.h"#include "cs_wall_distance.h"Functions | |
| void | cs_f_wall_distance_get_pointers (int **ineedy, int **imajdy, int **icdpar) |
| void | cs_wall_distance (int iterns) |
| Compute distance to wall by solving a 3d diffusion equation. Solve. | |
| void | cs_wall_distance_yplus (cs_real_t visvdr[]) |
| This subroutine computes the dimensionless distance to the wall solving a steady transport equation. | |
| cs_wall_distance_options_t * | cs_get_glob_wall_distance_options (void) |
| Provide read/write access to cs_glob_wall_distance. | |
Variables | |
| static bool | _initialized = false |
| static cs_lnum_t | n_wall = 0 |
| static cs_wall_distance_options_t | _wall_distance_options |
| const cs_wall_distance_options_t * | cs_glob_wall_distance_options = &_wall_distance_options |
| void cs_f_wall_distance_get_pointers | ( | int ** | ineedy, |
| int ** | imajdy, | ||
| int ** | icdpar ) |
| cs_wall_distance_options_t * cs_get_glob_wall_distance_options | ( | void | ) |
Provide read/write access to cs_glob_wall_distance.
| void cs_wall_distance | ( | int | iterns | ) |
Compute distance to wall by solving a 3d diffusion equation. Solve.
![\[ -\divs ( \grad \varia ) = 1 \]](form_285.png)
with:


![\[ d \simeq -|\grad \varia |
+ \sqrt{ \grad \varia \cdot \grad \varia +2 \varia }
\]](form_288.png)
| [in] | iterns | iteration number on Navier-Stokes equations |
| void cs_wall_distance_yplus | ( | cs_real_t | visvdr[] | ) |
This subroutine computes the dimensionless distance to the wall solving a steady transport equation.
This function solves the following steady pure convection equation on 
![\[\divs \left( \varia \vect{V} \right)
- \divs \left( \vect{V} \right) \varia = 0
\]](form_289.png)
where the vector field 
![\[ \vect{V} = \dfrac{ \grad y }{\norm{\grad y} }
\]](form_291.png)
The boundary conditions on 
![\[ \varia = \dfrac{u_\star}{\nu} \textrm{ on walls}
\]](form_292.png)
![\[ \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere}
\]](form_293.png)
Then the dimensionless distance is deduced by:
![\[ y^+ = y \varia
\]](form_294.png)
Then, Imposition of an amortization of Van Driest type for the LES. 


| [in] | visvdr | dynamic viscosity in edge cells after driest velocity amortization |
|
static |
| const cs_wall_distance_options_t* cs_glob_wall_distance_options = &_wall_distance_options |
|
static |