Calculation of 




Public Member Functions | |
| subroutine | turbulence_bc_ke_hyd_diam (uref2, dh, rho, mu, ustar2, k, eps) |
Calculation of 




Both 




We use the laws from Idel'Cik, i.e. the head loss coefficient 
![\[ |\dfrac{\Delta P}{\Delta x}| =
\dfrac{\lambda}{D_H} \frac{1}{2} \rho U_{ref}^2 \]](form_123.png)
then the relation reads 



![\[ \lambda = \dfrac{64}{Re} \]](form_128.png)

![\[ \lambda = \dfrac{1}{( 1.8 \log_{10}(Re)-1.64 )^2} \]](form_130.png)

![\[ \lambda = 0.021377 + 5.3115. 10^{-6} Re \]](form_132.png)
From 


![\[ k = \dfrac{u^{\star 2}}{\sqrt{C_\mu}} \]](form_134.png)
![\[ \varepsilon = \dfrac{ u^{\star 3}}{(\kappa D_H /10)} \]](form_135.png)
| [in] | uref2 | square of the reference flow velocity |
| [in] | dh | hydraulic diameter |
| [in] | rho | mass density |
| [in] | mu | dynamic viscosity |
| [out] | ustar2 | square of friction speed |
| [out] | k | calculated turbulent intensity |
| [out] | eps | calculated turbulent dissipation |
| subroutine turbulence_bc_ke_hyd_diam | ( | real(c_double), value | uref2, |
| real(c_double), value | dh, | ||
| real(c_double), value | rho, | ||
| real(c_double), value | mu, | ||
| real(c_double) | ustar2, | ||
| real(c_double) | k, | ||
| real(c_double) | eps ) |