8.0
general documentation
Loading...
Searching...
No Matches
distyp.f90 File Reference

This subroutine computes the dimensionless distance to the wall solving a steady transport equation. More...

Functions/Subroutines

subroutine distyp (itypfb, visvdr)

Detailed Description

This subroutine computes the dimensionless distance to the wall solving a steady transport equation.

This function solves the following steady pure convection equation on $ \varia $:

\[    \divs \left( \varia \vect{V} \right)
        - \divs \left( \vect{V} \right) \varia = 0
\]

where the vector field $ \vect{V} $ is defined by:

\[     \vect{V} = \dfrac{ \grad y }{\norm{\grad y} }
\]

The boundary conditions on $ \varia $ read:

\[     \varia = \dfrac{u_\star}{\nu} \textrm{ on walls}
\]

\[     \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere}
\]

Then the dimensionless distance is deduced by:

\[     y^+ = y \varia
\]

Then, Imposition of an amortization of Van Driest type for the LES. $ \nu_T $ is absorbed by $ (1-\exp(\dfrac{-y^+}{d^+}))^2 $ where $ d^+ $ is set at 26.

Function/Subroutine Documentation

◆ distyp()

subroutine distyp ( integer, dimension(nfabor) itypfb,
double precision, dimension(ncelet) visvdr )
Parameters
[in]itypfbboundary face types
[in]visvdrdynamic viscosity in edge cells after driest velocity amortization