8.0
general documentation
Loading...
Searching...
No Matches
ppincl Module Reference

Functions/Subroutines

subroutine pp_models_init
 Initialize Fortran physical models properties API. This maps Fortran pointers to global C variables.
subroutine pp_models_bc_map
 Map Fortran physical models boundary condition info. This maps Fortran pointers to global C variables.

Variables

integer nmodmx
 number of specific physics
integer(c_int), dimension(:), pointer, save ippmod
 global indicator for speciphic physics By default, all the indicators ippmod(i.....) are initialized to -1, which means that no specific physics is activated.
integer iphpar
 ippmod(iphpar) is a global indicator for the specific physics:
integer icod3p
 pointer for specific physics
integer islfm
 pointer to specify steady laminar flamelet approach
integer icoebu
 pointer to specify Eddy Break Up pre-mixed flame with indicator ippmod(icoebu)
integer icolwc
 pointer to specify Libby-Williams pre-mixed flame withy indicator ippmod(icolwc)
integer(c_int), pointer, save isoot
integer ieljou
 pointer to specify Joule effect module (Laplace forces not taken into account) with indicator ippmod(ieljou):
integer ielarc
 pointer to specify Electric arcs module (Joule effect and Laplace forces) with indicator ippmod(ielarc):
integer icpl3c
 pointer to specify Lagrangian modelling of multi-coals and multi-classes pulverised coal combustion with indicator ippmod(icpl3c). The number of different coals must be inferior or equal to ncharm = 3. The number of particle size classes nclpch(icha) for the coal icha, must be inferior or equal to ncpcmx = 10.
integer iccoal
 pointer to specify multi-coals and multi-classes pulverised coal combustion with indicator ippmod(iccoal). The number of different coals must be inferior or equal to ncharm = 3. The number of particle size classes nclpch(icha) for the coal icha, must be inferior or equal to ncpcmx = 10.
integer i_comb_drift
 coal with drift (0: without drift (default), 1: with)
integer icfuel
 pointer to specify multi-classes pulverised heavy fuel combustion with indicator ippmod(icfuel)
integer icompf
 pointer to specify compressible module with indicator ippmod(icompf)
integer iatmos
 pointer to specify atmospheric flow module with indicator ippmod(iatmos)
integer iaeros
 pointer to specify cooling towers module with indicator ippmod(iaeros)
integer igmix
 pointer to specify gas mixture module with indicator ippmod(igmix)
integer idarcy
 pointer to specify richards model
integer(c_int), pointer, save icondb
 Specific condensation modelling if = -1 module not activated if = 0 condensation source terms activated.
integer(c_int), pointer, save icondb_model
 Wall condensation correlation (only if icondb > -1) if = 0 legacy copain model if = 1 updated copain model (Benteboula and Dabbene 2020) if = 2 Uchida model (TODO : add ref) if = 3 Dehbi model (Dehbi 2015)
integer(c_int), pointer, save icondv
 Specific condensation modelling if = -1 module not activated if = 0 condensation source terms with metal structures activate.
integer, save ifm
 pointer to specify the mixing rate in isca(ifm)
integer, save ifp2m
 pointer to specify the variance of the mixing rate in isca(ifp2m)
integer, save ifsqm
 pointer to specify the second moment of the mixing rate in isca(ifsqm):
integer, save ipvm
 pointer to specify the transported progress variable ippmod(islfm) >= 2:
integer, save iygfm
 pointer to specify the fresh gas mass fraction in isca(iygfm)
integer, save icm
 the intersection computation mode. If its value is:
integer, save icp2m
 transported variable
integer, save ifpcpm
 transported variable
integer, save iyfm
 transported variable
integer, save iyfp2m
 transported variable
integer, save icoyfp
 transported variable
integer, dimension(ngazgm), save iym
 mass fractions :
integer, dimension(ngazgm), save ibym
integer, save itemp
 state variable (temperature)
integer, save ifmin
 state variable
integer, save ifmax
 state variable
integer, save irecvr
 state variable: Pointer to the reconstructed variance in case of mode_fp2m = 1
integer, save itotki
 state variable: Pointer to the total scalar dissipation rate
integer, save ihrr
 state variable: Pointer to volumetric heat release rate
integer, save ixr
 state variable: Pointer to enthalpy defect
integer, save iomgc
 state variable: Pointer to enthalpy defect
integer, save ickabs
 state variable: absorption coefficient, when the radiation modelling is activated
integer, save it2m
 state variable: $T^2$ term
integer, save it3m
 state variable: $T^3$ term, when the radiation modelling is activated
integer, save it4m
 state variable: $T^4$ term, when the radiation modelling is activated
integer, save itsc
integer, save inpm
 pointer for soot precursor number in isca (isoot = 1)
integer, save ifsm
 pointer for soot mass fraction in isca (isoot = 1)
integer, dimension(ncharm), save if1m
 mean value of the tracer 1 representing the light volatiles released by the coal icha
integer, dimension(ncharm), save if2m
 mean value of the tracer 2 representing the heavy volatiles released by the coal icha
integer, save if3m
 mean value of the tracer 3 representing the carbon released as CO during coke burnout
integer, save if4m
 transported variable of countinuous phase (gas mixture)
integer, save if5m
 transported variable of countinuous phase (gas mixture)
integer, save if6m
 transported variable of countinuous phase (gas mixture)
integer, save if7m
 transported variable of countinuous phase (gas mixture)
integer, save if8m
 transported variable of countinuous phase (gas mixture)
integer, save if9m
 transported variable of countinuous phase (gas mixture)
integer, save if4p2m
 the variance associated with the tracer 4 representing the air (the mean value of this tracer is not transported, it can be deduced directly from the three others)
integer, save ifvp2m
 f1f2 variance
integer, dimension(nclcpm), save ixck
 coke mass fraction related to the class icla
integer, dimension(nclcpm), save ixch
 reactive coal mass fraction related to the class icla
integer, dimension(nclcpm), save inp
 number of particles of the class icla per kg of air-coal mixture
integer, dimension(nclcpm), save ih2
 mass enthalpy of the coal of class icla, if we are in permeatic conditions
integer, dimension(nclcpm), save ixwt
 transported variable of dispersed phase (particle class)
integer, dimension(nclcpm), save inagecp
 Pointer to Np*age(particles)
integer, save iage
 Pointer to age of bulk.
integer, dimension(nclcpm), save iv_p_x
integer, dimension(nclcpm), save iv_p_y
integer, dimension(nclcpm), save iv_p_z
integer, dimension(ngazem), save iym1
 mass fractions:
integer, save irom1
 State variables of continuous phase (gas mixture)
integer, save immel
 molar mass of the gas mixture
integer, dimension(nclcpm), save itemp2
 temperature of the particles of the class icla
integer, dimension(nclcpm), save irom2
 density of the particles of the class icla
integer, dimension(nclcpm), save idiam2
 diameter of the particles of the class icla
integer, dimension(nclcpm), save ix2
 solid mass fraction of the class icla
integer, dimension(nclcpm), save igmdch
 disappearance rate of the reactive coal of the class icla
integer, dimension(nclcpm), save igmhet
 coke disappearance rate of the coke burnout of the class icla
integer, dimension(nclcpm), save igmtr
 Implicite part of the exchanges to the gas by molecular distribution.
integer, dimension(nclcpm), save ighco2
 State variables of dispersed phase (particles class)
integer, dimension(nclcpm), save igmdv1
 mass transfer caused by the release of light volatiles of the class icla
integer, dimension(nclcpm), save igmdv2
 mass transfer caused by the release of heavy volatiles of the class icla
integer, dimension(nclcpm), save igmsec
 State variables of dispersed phase (particles class)
integer, save ibcarbone
 Used for bulk balance of Carbon.
integer, save iboxygen
 Used for bulk balance of Oxygen.
integer, save ibhydrogen
 Used for bulk balance of Hydrogen.
integer, save ifvap
 transported variable of continuous phase
integer, dimension(nclcpm), save ihlf
 transported variable of dispersed phase
integer, dimension(nclcpm), save ixkf
 transported variable of dispersed phase
integer, dimension(nclcpm), save ixfol
 transported variable of dispersed phase
integer, dimension(nclcpm), save ing
 transported variable of dispersed phase
integer, dimension(nclcpm), save iyfol
 state variable of continuous phase
integer, dimension(nclcpm), save ih1hlf
 state variable of dispersed phase
integer, dimension(nclcpm), save igmhtf
 state variable of dispersed phase
integer, dimension(nclcpm), save igmeva
 state variable of dispersed phase
integer, save ienerg
 specific total energy for compressible algorithm
integer, save itempk
 temperature deduced from the specific total energy
integer, save ifracv
 homogeneous model, volume fraction $ \alpha $
integer, save ifracm
 homogeneous model, mass fraction $ y $
integer, save ifrace
 homogeneous model, energy fraction $ z $
integer, save iviscv
 additional property:
integer, save irun
 alias for boundary conditions
integer, save irunh
 alias for boundary conditions
real(c_double), pointer, save viscv0
 reference volume viscosity
integer, save ippred
 pressure predicion by an evolution equation
integer, save igrdpp
 indicates whether the pressure should be updated (=1) or not (=0) after the solution of the acoustic equation always usef
integer, save icfgrp
 indicates if the boundary conditions should take into account (=1) or not (=0) the hydrostatic balance.
integer, save ihm
 enthalpy, if transported or if deduced
double precision, save srrom
 with gas combustion, pulverised coal or the electric module, srrom is the sub-relaxation coefficient for the density, following the formula: $\rho^{n+1}$\,=\,srrom\,$\rho^n$+(1-srrom)\,$\rho^{n+1}$ hence, with a zero value, there is no sub-relaxation. With combustion and pulverized coal, srrom is initialized to -grand and the user must specify a proper value through the Interface or the initialization subroutine (cs_user_combustion). With gas combustion, pulverised coal or electric arcs, srrom is automatically used after the second time-step. With Joule effect, the user decides whether or not it will be used in cs_user_physical_properties from the coding law giving the density.
integer(c_int), dimension(:), pointer, save iqimp
 imposed flow zone indicator in a way which is similar to the process described in the framework of the EBU module, the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or 0). If the mass flow is imposed, the user must set the air mass flow value qimpat(izone), its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw) and the incoming air temperature timpat(izone) in Kelvin. If the velocity is imposed, he has to set rcodcl(ifac,iu), rcodcl(ifac,iv), and rcodcl(ifac,iw).
integer(c_int), dimension(:), pointer, save icalke
 condition type turbulence indicator
real(c_double), dimension(:), pointer, save xintur
 turbulent intensity (k=1.5(uref*xintur)**2)
real(c_double), dimension(:), pointer, save dh
 hydraulic diameter
integer, save nozapm
 index of maximum reached boundary zone
integer, save nzfppp
 number of boundary zones on current process
integer, dimension(nozppm), save ilzppp
 list of boundary zones index

Function/Subroutine Documentation

◆ pp_models_bc_map()

subroutine pp_models_bc_map

Map Fortran physical models boundary condition info. This maps Fortran pointers to global C variables.

◆ pp_models_init()

subroutine pp_models_init

Initialize Fortran physical models properties API. This maps Fortran pointers to global C variables.