8.0
general documentation
Loading...
Searching...
No Matches
clptrg.f90 File Reference

Boundary conditions for rough walls (icodcl = 6). More...

Functions/Subroutines

subroutine clptrg (nscal, isvhb, icodcl, rcodcl, velipb, rijipb, visvdr, hbord, theipb)
subroutine clptrg_scalar (iscal, isvhb, icodcl, rcodcl, byplus, buk, buet, bcfnns, bdlmo, hbord, theipb, tetmax, tetmin, tplumx, tplumn)

Detailed Description

Boundary conditions for rough walls (icodcl = 6).

The wall functions may change the value of the diffusive flux.

The values at a boundary face $ \fib $ stored in the face center $ \centf $ of the variable $ P $ and its diffusive flux $ Q $ are written as:

\[    P_{\face} = A_P^g + B_P^g P_{\centi}
\]

and

\[    Q_{\face} = A_P^f + B_P^f P_{\centi}
\]

where $ P_\centi $ is the value of the variable $ P $ at the neighboring cell.

Warning:

  • for a vector field such as the velocity $ \vect{u} $ the boundary conditions may read:

    \[      \vect{u}_{\face} = \vect{A}_u^g + \tens{B}_u^g \vect{u}_{\centi}
\]

    and

    \[      \vect{Q}_{\face} = \vect{A}_u^f + \tens{B}_u^f \vect{u}_{\centi}
\]

    where $ \tens{B}_u^g $ and $ \tens{B}_u^f $ are 3x3 tensor matrix which coupled velocity components next to a boundary.

Please refer to the clptrg section of the theory guide for more informations.

Function/Subroutine Documentation

◆ clptrg()

subroutine clptrg ( integer nscal,
integer isvhb,
integer, dimension(:,:), pointer icodcl,
double precision, dimension(:,:,:), pointer rcodcl,
double precision, dimension(:,:) velipb,
double precision, dimension(:,:), pointer rijipb,
double precision, dimension(:), pointer visvdr,
double precision, dimension(:), pointer hbord,
double precision, dimension(:), pointer theipb )
Parameters
[in]nscaltotal number of scalars
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the Dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2
    1. for the velocity $ (\mu+\mu_T)
                                       \gradv \vect{u} \cdot \vect{n}  $
    2. for the pressure $ \Delta t
                                       \grad P \cdot \vect{n}  $
    3. for a scalar $ cp \left( K +
                                        \dfrac{K_T}{\sigma_T} \right)
                                        \grad T \cdot \vect{n} $
[in]velipbvalue of the velocity at $ \centip $ of boundary cells
[in]rijipbvalue of $ R_{ij} $ at $ \centip $ of boundary cells
[out]visvdrdynamic viscosity after V. Driest damping in boundary cells
[out]hbordexchange coefficient at boundary
[in]theipbvalue of thermal scalar at $ \centip $ of boundary cells

◆ clptrg_scalar()

subroutine clptrg_scalar ( integer iscal,
integer isvhb,
integer, dimension(:,:), pointer icodcl,
double precision, dimension(:,:,:), pointer rcodcl,
double precision, dimension(:) byplus,
double precision, dimension(:) buk,
double precision, dimension(:) buet,
double precision, dimension(:) bcfnns,
double precision, dimension(:) bdlmo,
double precision, dimension(:), pointer hbord,
double precision, dimension(:), pointer theipb,
double precision tetmax,
double precision tetmin,
double precision tplumx,
double precision tplumn )
Parameters
[in]iscalscalar id
[in]isvhbindicator to save exchange coeffient
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the Dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2
    1. for the velocity $ (\mu+\mu_T)
                                       \gradv \vect{u} \cdot \vect{n}  $
    2. for the pressure $ \Delta t
                                       \grad P \cdot \vect{n}  $
    3. for a scalar $ cp \left( K +
                                        \dfrac{K_T}{\sigma_T} \right)
                                        \grad T \cdot \vect{n} $
[in]byplusdimensionless distance to the wall
[in]bukdimensionless velocity
[in]buetboundary ustar value
[in]bcfnnsboundary correction factor
[in]bdlmoboundary Monin Obukhov length inverse
[in,out]hbordexchange coefficient at boundary
[in]theipbboundary temperature in $ \centip $ (more exaclty the energetic variable)
[out]tetmaxmaximum local ustar value
[out]tetminminimum local ustar value
[out]tplumxmaximum local tplus value
[out]tplumnminimum local tplus value