|
void | inimav (const int *const f_id, const int *const itypfl, const int *const iflmb0, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgu, const int *const imligu, const int *const iwarnu, const cs_real_t *const epsrgu, const cs_real_t *const climgu, const cs_real_t rom[], const cs_real_t romb[], const cs_real_3_t vel[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], cs_real_t i_massflux[], cs_real_t b_massflux[]) |
|
void | divmas (const int *const init, const cs_real_t i_massflux[], const cs_real_t b_massflux[], cs_real_t diverg[]) |
|
void | divmat (const int *const init, const cs_real_3_t i_massflux[], const cs_real_3_t b_massflux[], cs_real_3_t diverg[]) |
|
void | projts (const int *const init, const int *const nswrgu, const cs_real_3_t frcxt[], const cs_real_t cofbfp[], cs_real_t i_massflux[], cs_real_t b_massflux[], const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[]) |
|
void | projtv (const int *const init, const int *const nswrgu, const int *const ircflp, const cs_real_3_t frcxt[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], cs_real_t i_massflux[], cs_real_t b_massflux[]) |
|
void | divrij (const int *const f_id, const int *const itypfl, const int *const iflmb0, const int *const init, const int *const inc, const int *const imrgra, const int *const nswrgu, const int *const imligu, const int *const iwarnu, const cs_real_t *const epsrgu, const cs_real_t *const climgu, const cs_real_t rom[], const cs_real_t romb[], const cs_real_6_t tensorvel[], const cs_real_6_t coefav[], const cs_real_66_t coefbv[], cs_real_3_t i_massflux[], cs_real_3_t b_massflux[]) |
|
void | cs_mass_flux (const cs_mesh_t *m, const cs_mesh_quantities_t *fvq, int f_id, int itypfl, int iflmb0, int init, int inc, int imrgra, int nswrgu, int imligu, int iwarnu, double epsrgu, double climgu, const cs_real_t rom[], const cs_real_t romb[], const cs_real_3_t vel[], const cs_real_3_t coefav[], const cs_real_33_t coefbv[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux) |
| Add \( \rho \vect{u} \cdot \vect{s}_\ij\) to the mass flux \( \dot{m}_\ij \). More...
|
|
void | cs_divergence (const cs_mesh_t *m, int init, const cs_real_t i_massflux[], const cs_real_t b_massflux[], cs_real_t *restrict diverg) |
| Add the integrated mass flux on the cells. More...
|
|
void | cs_tensor_divergence (const cs_mesh_t *m, int init, const cs_real_3_t i_massflux[], const cs_real_3_t b_massflux[], cs_real_3_t *restrict diverg) |
| Add the integrated mass flux on the cells for a tensor variable. More...
|
|
void | cs_ext_force_flux (const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int nswrgu, const cs_real_3_t frcxt[], const cs_real_t cofbfp[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux, const cs_real_t i_visc[], const cs_real_t b_visc[], const cs_real_t viselx[], const cs_real_t visely[], const cs_real_t viselz[]) |
| Project the external source terms to the faces in coherence with cs_face_diffusion_scalar for the improved hydrostatic pressure algorithm (iphydr=1). More...
|
|
void | cs_ext_force_anisotropic_flux (const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int init, int nswrgp, int ircflp, const cs_real_3_t frcxt[], const cs_real_t cofbfp[], const cs_real_t i_visc[], const cs_real_t b_visc[], cs_real_6_t viscel[], const cs_real_2_t weighf[], cs_real_t *restrict i_massflux, cs_real_t *restrict b_massflux) |
| Project the external source terms to the faces in coherence with cs_face_anisotropic_diffusion_scalar for the improved hydrostatic pressure algorithm (iphydr=1). More...
|
|
void | cs_tensor_face_flux (const cs_mesh_t *m, cs_mesh_quantities_t *fvq, int f_id, int itypfl, int iflmb0, int init, int inc, int imrgra, int nswrgu, int imligu, int iwarnu, double epsrgu, double climgu, const cs_real_t c_rho[], const cs_real_t b_rho[], const cs_real_6_t c_var[], const cs_real_6_t coefav[], const cs_real_66_t coefbv[], cs_real_3_t *restrict i_massflux, cs_real_3_t *restrict b_massflux) |
| Add \( \rho \tens{r} \vect{s}_\ij\) to a flux. More...
|
|
void cs_mass_flux |
( |
const cs_mesh_t * |
m, |
|
|
const cs_mesh_quantities_t * |
fvq, |
|
|
int |
f_id, |
|
|
int |
itypfl, |
|
|
int |
iflmb0, |
|
|
int |
init, |
|
|
int |
inc, |
|
|
int |
imrgra, |
|
|
int |
nswrgu, |
|
|
int |
imligu, |
|
|
int |
iwarnu, |
|
|
double |
epsrgu, |
|
|
double |
climgu, |
|
|
const cs_real_t |
rom[], |
|
|
const cs_real_t |
romb[], |
|
|
const cs_real_3_t |
vel[], |
|
|
const cs_real_3_t |
coefav[], |
|
|
const cs_real_33_t |
coefbv[], |
|
|
cs_real_t *restrict |
i_massflux, |
|
|
cs_real_t *restrict |
b_massflux |
|
) |
| |
Add \( \rho \vect{u} \cdot \vect{s}_\ij\) to the mass flux \( \dot{m}_\ij \).
For the reconstruction, \( \gradt \left(\rho \vect{u} \right) \) is computed with the following approximated boundary conditions:
- \( \vect{a}_{\rho u} = \rho_\fib \vect{a}_u \)
- \( \tens{b}_{\rho u} = \tens{b}_u \)
For the mass flux at the boundary we have:
\[ \dot{m}_\ib = \left[ \rho_\fib \vect{a}_u + \rho_\fib \tens{b}_u \vect{u} + \tens{b}_u \left(\gradt \vect{u} \cdot \vect{\centi \centip}\right)\right] \cdot \vect{s}_\ij \]
The last equation uses some approximations detailed in the theory guide.
- Parameters
-
[in] | m | pointer to mesh |
[in] | fvq | pointer to finite volume quantities |
[in] | f_id | field id (or -1) |
[in] | itypfl | indicator (take rho into account or not)
- 1 compute \( \rho\vect{u}\cdot\vect{s} \)
- 0 compute \( \vect{u}\cdot\vect{s} \)
|
[in] | iflmb0 | the mass flux is set to 0 on walls and symmetries if = 1 |
[in] | init | the mass flux is initialized to 0 if > 0 |
[in] | inc | indicator
- 0 solve an increment
- 1 otherwise
|
[in] | imrgra | indicator
- 0 iterative gradient
- 1 least square gradient
|
[in] | nswrgu | number of sweeps for the reconstruction of the gradients |
[in] | imligu | clipping gradient method
- < 0 no clipping
- = 0 thanks to neighbooring gradients
- = 1 thanks to the mean gradient
|
[in] | iwarnu | verbosity |
[in] | epsrgu | relative precision for the gradient reconstruction |
[in] | climgu | clipping coefficient for the computation of the gradient |
[in] | rom | cell density |
[in] | romb | density at boundary faces |
[in] | vel | vector variable |
[in] | coefav | boundary condition array for the variable (explicit part - vector array ) |
[in] | coefbv | boundary condition array for the variable (implicit part - 3x3 tensor array) |
[in,out] | i_massflux | mass flux at interior faces \( \dot{m}_\fij \) |
[in,out] | b_massflux | mass flux at boundary faces \( \dot{m}_\fib \) |
For the reconstruction, \( \gradt \left(\rho \vect{u} \right) \) is computed with the following approximated boundary conditions:
- \( \vect{a}_{\rho u} = \rho_\fib \vect{a}_u \)
- \( \tens{b}_{\rho u} = \tens{b}_u \)
For the mass flux at the boundary we have:
\[ \dot{m}_\ib = \left[ \rho_\fib \vect{a}_u + \rho_\fib \tens{b}_u \vect{u} + \tens{b}_u \left(\gradt \vect{u} \cdot \vect{\centi \centip}\right)\right] \cdot \vect{s}_\ij \]
The last equation uses some approximations detailed in the theory guide.
- Parameters
-
[in] | m | pointer to mesh |
[in] | fvq | pointer to finite volume quantities |
[in] | f_id | field id (or -1) |
[in] | itypfl | indicator (take rho into account or not)
- 1 compute \( \rho\vect{u}\cdot\vect{s} \)
- 0 compute \( \vect{u}\cdot\vect{s} \)
|
[in] | iflmb0 | the mass flux is set to 0 on symmetries if = 1 |
[in] | init | the mass flux is initialized to 0 if > 0 |
[in] | inc | indicator
- 0 solve an increment
- 1 otherwise
|
[in] | imrgra | indicator
- 0 iterative gradient
- 1 least square gradient
|
[in] | nswrgu | number of sweeps for the reconstruction of the gradients |
[in] | imligu | clipping gradient method
- < 0 no clipping
- = 0 thanks to neighbooring gradients
- = 1 thanks to the mean gradient
|
[in] | iwarnu | verbosity |
[in] | epsrgu | relative precision for the gradient reconstruction |
[in] | climgu | clipping coefficient for the computation of the gradient |
[in] | rom | cell density |
[in] | romb | density at boundary faces |
[in] | vel | vector variable |
[in] | coefav | boundary condition array for the variable (explicit part - vector array ) |
[in] | coefbv | boundary condition array for the variable (implicit part - 3x3 tensor array) |
[in,out] | i_massflux | mass flux at interior faces \( \dot{m}_\fij \) |
[in,out] | b_massflux | mass flux at boundary faces \( \dot{m}_\fib \) |