Solving the void fraction \( \alpha \) for the Volume of Fluid method (and hence for cavitating flows). More...
Functions/Subroutines | |
subroutine | resvoi (dt, iterns) |
Solving the void fraction \( \alpha \) for the Volume of Fluid method (and hence for cavitating flows).
This function solves the equation:
\[ \dfrac{\alpha^n - \alpha^{n-1}}{\Delta t} + \divs \left( \alpha^n \vect{u}^n \right) + \divs \left( \left[ \alpha^n \left( 1 - \alpha^{n} \right) \right] \vect{u^r}^n \right) = \dfrac{\Gamma_V \left( \alpha^{n-1}, p^n \right)}{\rho_v} \]
with \( \Gamma_V \) the eventual vaporization source term (Merkle model) in case the cavitation model is enabled, \( \rho_v \) the reference gas density and \( \vect{u^r} \) the drift velocity for the compressed interface.
subroutine resvoi | ( | double precision, dimension(ncelet) | dt, |
integer | iterns | ||
) |
[in] | dt | time step (per cell) |
[in] | iterns | Navier-Stokes iteration number |