#include "cs_defs.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "bft_mem.h"
#include "bft_printf.h"
#include "cs_array.h"
#include "cs_base.h"
#include "cs_field.h"
#include "cs_field_default.h"
#include "cs_field_pointer.h"
#include "cs_field_operator.h"
#include "cs_gradient.h"
#include "cs_halo.h"
#include "cs_halo_perio.h"
#include "cs_les_filter.h"
#include "cs_log.h"
#include "cs_math.h"
#include "cs_mesh.h"
#include "cs_mesh_location.h"
#include "cs_mesh_quantities.h"
#include "cs_parall.h"
#include "cs_physical_constants.h"
#include "cs_physical_model.h"
#include "cs_prototypes.h"
#include "cs_turbulence_model.h"
#include "cs_les_mu_t.h"
Functions | |
void | cs_les_mu_t_smago_dyn (cs_real_33_t *gradv) |
Calculation of the turbulent viscosity for a dynamic Smagorinsky LES model. More... | |
void | cs_les_mu_t_smago_const (cs_real_33_t *gradv) |
Calculation of turbulent viscosity for a Smagorinsky LES model. More... | |
void | cs_les_mu_t_wale (cs_real_33_t *restrict gradv) |
Compute the turbulent viscosity for the WALE LES model. More... | |
void cs_les_mu_t_smago_const | ( | cs_real_33_t * | gradv | ) |
Calculation of turbulent viscosity for a Smagorinsky LES model.
\[ \mu_T = \rho (C_{S} l)^2 \sqrt{2 S_{ij}S_{ij}} \]
\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]
[out] | gradv | computed velocity gradients (may be used by caller) ! |
void cs_les_mu_t_smago_dyn | ( | cs_real_33_t * | gradv | ) |
Calculation of the turbulent viscosity for a dynamic Smagorinsky LES model.
Calculation of turbulent viscosity for a dynamic Smagorinsky LES model.
\[ smago = \dfrac{L_{ij}M_{ij}}{M_{ij}M_{ij}} \]
\[ \mu_T = \rho smago L^2 \sqrt{2 S_{ij}S_{ij}} \]
\[ S_{ij} = \dfrac{\der{u_i}{x_j} + \der{u_j}{x_i}}{2}\]
Please refer to the dynamic Smagorinsky model section of the theory guide for more informations.
[out] | gradv | the computed velocity gradients ! |
void cs_les_mu_t_wale | ( | cs_real_33_t *restrict | gradv | ) |
Compute the turbulent viscosity for the WALE LES model.
The turbulent viscosity is: \( \mu_T = \rho (C_{wale} L)^2 * \dfrac{(\tens{S}:\tens{Sd})^{3/2}} {(\tens{S} :\tens{S})^(5/2) +(\tens{Sd}:\tens{Sd})^(5/4)} \) with \( \tens{S} = \frac{1}{2}(\gradt \vect{u} + \transpose{\gradt \vect{u}})\) and \( \tens{Sd} = \deviator{(\symmetric{(\tens{S}^2)})}\)
[out] | gradv | the computed velocity gradients ! |