8.0
general documentation
distyp.f90 File Reference

This subroutine computes the dimensionless distance to the wall solving a steady transport equation. More...

Functions/Subroutines

subroutine distyp (itypfb, visvdr)
 

Detailed Description

This subroutine computes the dimensionless distance to the wall solving a steady transport equation.

This function solves the following steady pure convection equation on \( \varia \):

\[ \divs \left( \varia \vect{V} \right) - \divs \left( \vect{V} \right) \varia = 0 \]

where the vector field \( \vect{V} \) is defined by:

\[ \vect{V} = \dfrac{ \grad y }{\norm{\grad y} } \]

The boundary conditions on \( \varia \) read:

\[ \varia = \dfrac{u_\star}{\nu} \textrm{ on walls} \]

\[ \dfrac{\partial \varia}{\partial n} = 0 \textrm{ elsewhere} \]

Then the dimensionless distance is deduced by:

\[ y^+ = y \varia \]

Then, Imposition of an amortization of Van Driest type for the LES. \( \nu_T \) is absorbed by \( (1-\exp(\dfrac{-y^+}{d^+}))^2 \) where \( d^+ \) is set at 26.

Function/Subroutine Documentation

◆ distyp()

subroutine distyp ( integer, dimension(nfabor)  itypfb,
double precision, dimension(ncelet)  visvdr 
)
Parameters
[in]itypfbboundary face types
[in]visvdrdynamic viscosity in edge cells after driest velocity amortization