8.0
general documentation
Module for turbulence constants
+ Collaboration diagram for Module for turbulence constants:

Variables

double precision, save xkappa = 0.42d0
 \( \kappa \) Karman constant. (= 0.42) Useful if and only if iturb >= 10. (mixing length, \(k-\varepsilon\), \(R_{ij}-\varepsilon\), LES, v2f or \(k-\omega\)) More...
 
double precision, save cstlog = 5.2d0
 constant of logarithmic law function: \( \dfrac{1}{\kappa} \ln(y^+) + cstlog \) ( \( cstlog = 5.2 \)) constant of the logarithmic wall function. Useful if and only if iturb >= 10 (mixing length, \(k-\varepsilon\), \(R_{ij}-\varepsilon\), LES, v2f or \(k-\omega\)) More...
 
real(c_double), pointer, save ypluli
 limit value of \(y^+\) for the viscous sublayer. ypluli depends on the chosen wall function: it is initialized to 10.88 for the scalable wall function (iwallf=4), otherwise it is initialized to \(1/\kappa\approx 2,38\). In LES, ypluli is taken by default to be 10.88. More...
 
double precision, pointer, save apow
 Werner and Wengle coefficient. More...
 
double precision, pointer, save bpow
 Werner and Wengle coefficient. More...
 
real(c_double), pointer, save cmu
 constant \(C_\mu\) for all the RANS turbulence models Warning, different values for the v2f model Useful if and only if iturb = 20, 21, 30, 31, 50, 51 or 60 ( \(k-\varepsilon\), \(R_{ij}-\varepsilon\) or \(k-\omega\)) More...
 
real(c_double), pointer, save cmu025
 \( C_\mu^\frac{1}{4} \) More...
 
real(c_double), pointer, save crij1
 Coefficient of interfacial coefficient in k-eps, used in Lagrange treatment. More...
 
real(c_double), pointer, save crij2
 constant \(C_2\) for the \(R_{ij}-\varepsilon\) LRR model. Useful if and only if iturb=30 ( \(R_{ij}-\varepsilon\) LRR) More...
 
real(c_double), pointer, save crij3
 constant \(C_3\) for the buoyant production term \(R_{ij}-\varepsilon\) models. More...
 
real(c_double), pointer, save csrij
 constant \(C_s\) for the \(R_{ij}-\varepsilon\) models. More...
 
double precision, save xcl = 0.122d0
 constant of the Rij-epsilon EBRSM More...
 
double precision, save xa1 = 0.1d0
 constant in the expression of Ce1' for the Rij-epsilon EBRSM More...
 
double precision, save xct = 6.d0
 constant of the Rij-epsilon EBRSM More...
 
double precision, save xceta = 80.d0
 constant of the Rij-epsilon EBRSM More...
 
double precision, save ckwsk1 = 1.d0/0.85d0
 constant \(\sigma_{k1}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 More...
 
double precision, save ckwsk2 = 1.d0
 constant \(\sigma_{k2}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 More...
 
double precision, save ckwsw1 = 2.d0
 constant \(\sigma_{\omega 1}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwsw2 = 1.d0/0.856d0
 constant \(\sigma_{\omega 2}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwbt1 = 0.075d0
 constant \(\beta_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwbt2 = 0.0828d0
 constant \(\beta_2\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwgm1
 \(\frac{\beta_1}{C_\mu}-\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 1}}\) constant \(\gamma_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwgm2
 \(\frac{\beta_2}{C_\mu}-\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 2}}\) constant \(\gamma_2\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwa1 = 0.31d0
 specific constant of k-omega SST constant \(a_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) More...
 
double precision, save ckwc1 = 10.d0
 constant \( c_1 \) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) specific constant of k-omega SST More...
 
double precision, save csab1 = 0.1355d0
 specific constant of Spalart-Allmaras More...
 
double precision, save csab2 = 0.622d0
 specific constant of Spalart-Allmaras More...
 
double precision, save csasig = 2.d0/3.d0
 specific constant of Spalart-Allmaras More...
 
double precision, save csav1 = 7.1d0
 specific constant of Spalart-Allmaras More...
 
double precision, save csaw1
 specific constant of Spalart-Allmaras More...
 
double precision, save csaw2 = 0.3d0
 specific constant of Spalart-Allmaras More...
 
double precision, save csaw3 = 2.d0
 specific constant of Spalart-Allmaras More...
 
real(c_double), pointer, save almax
 is a characteristic macroscopic length of the domain, used for the initialization of the turbulence and the potential clipping (with iclkep=1) More...
 
real(c_double), pointer, save uref
 the characteristic flow velocity, used for the initialization of the turbulence. Negative value: not initialized. More...
 
real(c_double), pointer, save xlomlg
 mixing length for the mixing length model More...
 
real(c_double), pointer, save xlesfl
 constant used in the definition of LES filtering diameter: \( \delta = \text{xlesfl} . (\text{ales} . volume)^{\text{bles}}\) xlesfl is a constant used to define, for each cell \(\omega_i\), the width of the (implicit) filter: \(\overline{\Delta}=xlesfl(ales*|\Omega_i|)^{bles}\)
Useful if and only if iturb = 40 or 41 More...
 
real(c_double), pointer, save ales
 constant used to define, for each cell \(Omega_i\), the width of the (implicit) filter: More...
 
real(c_double), pointer, save bles
 constant used to define, for each cell \(Omega_i\), More...
 
real(c_double), pointer, save csmago
 Smagorinsky constant used in the Smagorinsky model for LES. The sub-grid scale viscosity is calculated by \(\displaystyle\mu_{sg}= \rho C_{smago}^2\bar{\Delta}^2\sqrt{2\bar{S}_{ij}\bar{S}_{ij}}\) where \(\bar{\Delta}\) is the width of the filter and \(\bar{S}_{ij}\) the filtered strain rate. More...
 
real(c_double), pointer, save xlesfd
 ratio between explicit and explicit filter width for a dynamic model constant used to define, for each cell \(\Omega_i\), the width of the explicit filter used in the framework of the LES dynamic model: \(\widetilde{\overline{\Delta}}=xlesfd\overline{\Delta}\). More...
 
real(c_double), pointer, save cdries
 van Driest constant appearing in the van Driest damping function applied to the Smagorinsky constant: More...
 
double precision, save volmin
 minimal control volume More...
 
double precision, save volmax
 maximal control volume More...
 
double precision, save voltot
 total domain volume More...
 
double precision, save xclt = 0.305d0
 constant of EB-AFM and EB-DFM (0.122*2.5d0, See F. Dehoux thesis) More...
 

Detailed Description

Variable Documentation

◆ ales

real(c_double), pointer, save ales

constant used to define, for each cell \(Omega_i\), the width of the (implicit) filter:

  • \(\overline{\Delta}=xlesfl(ales*|Omega_i|)^{bles}\)

Useful if and only if iturb = 40 or 41.

◆ almax

real(c_double), pointer, save almax

is a characteristic macroscopic length of the domain, used for the initialization of the turbulence and the potential clipping (with iclkep=1)

  • Negative value: not initialized (the code then uses the cubic root of the domain volume).

Useful if and only if iturb = 20, 21, 30, 31, 50 or 60 (RANS models)

◆ apow

double precision, pointer, save apow

Werner and Wengle coefficient.

◆ bles

real(c_double), pointer, save bles

constant used to define, for each cell \(Omega_i\),

the width of the (implicit) filter:

  • \(\overline{\Delta}=xlesfl(ales*|Omega_i|)^{bles}\)

Useful if and only if iturb = 40 or 41

◆ bpow

double precision, pointer, save bpow

Werner and Wengle coefficient.

◆ cdries

real(c_double), pointer, save cdries

van Driest constant appearing in the van Driest damping function applied to the Smagorinsky constant:

  • \( (1-\exp^{(-y^+/cdries}) \).

Useful if and only if iturb = 40 or 41

◆ ckwa1

double precision, save ckwa1 = 0.31d0

specific constant of k-omega SST constant \(a_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

◆ ckwbt1

double precision, save ckwbt1 = 0.075d0

constant \(\beta_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

◆ ckwbt2

double precision, save ckwbt2 = 0.0828d0

constant \(\beta_2\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

◆ ckwc1

double precision, save ckwc1 = 10.d0

constant \( c_1 \) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST) specific constant of k-omega SST

◆ ckwgm1

double precision, save ckwgm1

\(\frac{\beta_1}{C_\mu}-\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 1}}\) constant \(\gamma_1\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

Warning
: \(\gamma_1\) is calculated before the call to usipsu. Hence, if \(\beta_1\), \(C_\mu\), \(\kappa\) or \(\sigma_{\omega 1}\) is modified in usipsu, ckwgm1 must also be modified in accordance.

◆ ckwgm2

double precision, save ckwgm2

\(\frac{\beta_2}{C_\mu}-\frac{\kappa^2}{\sqrt{C_\mu}\sigma_{\omega 2}}\) constant \(\gamma_2\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

Warning
: \(\gamma_2\) is calculated before the call to usipsu. Hence, if \(\beta_2\), \(C_\mu\), \(\kappa\) or \(\sigma_{\omega 2}\) is modified in usipsu, ckwgm2 must also be modified in accordance.

◆ ckwsk1

double precision, save ckwsk1 = 1.d0/0.85d0

constant \(\sigma_{k1}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60

◆ ckwsk2

double precision, save ckwsk2 = 1.d0

constant \(\sigma_{k2}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60

◆ ckwsw1

double precision, save ckwsw1 = 2.d0

constant \(\sigma_{\omega 1}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

◆ ckwsw2

double precision, save ckwsw2 = 1.d0/0.856d0

constant \(\sigma_{\omega 2}\) for the \(k-\omega\) SST model. Useful if and only if iturb=60 ( \(k-\omega\) SST)

◆ cmu

real(c_double), pointer, save cmu

constant \(C_\mu\) for all the RANS turbulence models Warning, different values for the v2f model Useful if and only if iturb = 20, 21, 30, 31, 50, 51 or 60 ( \(k-\varepsilon\), \(R_{ij}-\varepsilon\) or \(k-\omega\))

◆ cmu025

real(c_double), pointer, save cmu025

\( C_\mu^\frac{1}{4} \)

◆ crij1

real(c_double), pointer, save crij1

Coefficient of interfacial coefficient in k-eps, used in Lagrange treatment.

constant \(C_1\) for the \(R_{ij}-\varepsilon\) LRR model. Useful if and only if iturb=30 ( \(R_{ij}-\varepsilon\) LRR)

◆ crij2

real(c_double), pointer, save crij2

constant \(C_2\) for the \(R_{ij}-\varepsilon\) LRR model. Useful if and only if iturb=30 ( \(R_{ij}-\varepsilon\) LRR)

◆ crij3

real(c_double), pointer, save crij3

constant \(C_3\) for the buoyant production term \(R_{ij}-\varepsilon\) models.

◆ csab1

double precision, save csab1 = 0.1355d0

specific constant of Spalart-Allmaras

◆ csab2

double precision, save csab2 = 0.622d0

specific constant of Spalart-Allmaras

◆ csasig

double precision, save csasig = 2.d0/3.d0

specific constant of Spalart-Allmaras

◆ csav1

double precision, save csav1 = 7.1d0

specific constant of Spalart-Allmaras

◆ csaw1

double precision, save csaw1

specific constant of Spalart-Allmaras

◆ csaw2

double precision, save csaw2 = 0.3d0

specific constant of Spalart-Allmaras

◆ csaw3

double precision, save csaw3 = 2.d0

specific constant of Spalart-Allmaras

◆ csmago

real(c_double), pointer, save csmago

Smagorinsky constant used in the Smagorinsky model for LES. The sub-grid scale viscosity is calculated by \(\displaystyle\mu_{sg}= \rho C_{smago}^2\bar{\Delta}^2\sqrt{2\bar{S}_{ij}\bar{S}_{ij}}\) where \(\bar{\Delta}\) is the width of the filter and \(\bar{S}_{ij}\) the filtered strain rate.

Useful if and only if iturb = 40

Note
In theory Smagorinsky constant is 0.18. For a planar canal plan, 0.065 value is rather taken.

◆ csrij

real(c_double), pointer, save csrij

constant \(C_s\) for the \(R_{ij}-\varepsilon\) models.

◆ cstlog

double precision, save cstlog = 5.2d0

constant of logarithmic law function: \( \dfrac{1}{\kappa} \ln(y^+) + cstlog \) ( \( cstlog = 5.2 \)) constant of the logarithmic wall function. Useful if and only if iturb >= 10 (mixing length, \(k-\varepsilon\), \(R_{ij}-\varepsilon\), LES, v2f or \(k-\omega\))

◆ uref

real(c_double), pointer, save uref

the characteristic flow velocity, used for the initialization of the turbulence. Negative value: not initialized.

Useful if and only if iturb= 20, 21, 30, 31, 50 or 60 (RANS model) and the turbulence is not initialized somewhere else (restart file or subroutine cs_user_initialization)

◆ volmax

double precision, save volmax

maximal control volume

◆ volmin

double precision, save volmin

minimal control volume

◆ voltot

double precision, save voltot

total domain volume

◆ xa1

double precision, save xa1 = 0.1d0

constant in the expression of Ce1' for the Rij-epsilon EBRSM

◆ xceta

double precision, save xceta = 80.d0

constant of the Rij-epsilon EBRSM

◆ xcl

double precision, save xcl = 0.122d0

constant of the Rij-epsilon EBRSM

◆ xclt

double precision, save xclt = 0.305d0

constant of EB-AFM and EB-DFM (0.122*2.5d0, See F. Dehoux thesis)

◆ xct

double precision, save xct = 6.d0

constant of the Rij-epsilon EBRSM

◆ xkappa

double precision, save xkappa = 0.42d0

\( \kappa \) Karman constant. (= 0.42) Useful if and only if iturb >= 10. (mixing length, \(k-\varepsilon\), \(R_{ij}-\varepsilon\), LES, v2f or \(k-\omega\))

◆ xlesfd

real(c_double), pointer, save xlesfd

ratio between explicit and explicit filter width for a dynamic model constant used to define, for each cell \(\Omega_i\), the width of the explicit filter used in the framework of the LES dynamic model: \(\widetilde{\overline{\Delta}}=xlesfd\overline{\Delta}\).

Useful if and only if iturb = 41

◆ xlesfl

real(c_double), pointer, save xlesfl

constant used in the definition of LES filtering diameter: \( \delta = \text{xlesfl} . (\text{ales} . volume)^{\text{bles}}\) xlesfl is a constant used to define, for each cell \(\omega_i\), the width of the (implicit) filter: \(\overline{\Delta}=xlesfl(ales*|\Omega_i|)^{bles}\)
Useful if and only if iturb = 40 or 41

◆ xlomlg

real(c_double), pointer, save xlomlg

mixing length for the mixing length model

Useful if and only if iturb= 10 (mixing length)

◆ ypluli

real(c_double), pointer, save ypluli

limit value of \(y^+\) for the viscous sublayer. ypluli depends on the chosen wall function: it is initialized to 10.88 for the scalable wall function (iwallf=4), otherwise it is initialized to \(1/\kappa\approx 2,38\). In LES, ypluli is taken by default to be 10.88.

Always useful