EDF R&D

q
* SEeDF

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER

F-78401 CHATOU CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16

code_saturne documentation

code_saturne version 6.2 practical user’s guide

contact: saturne-support@edf.fr

© codesaturne

DECEMBER 2020

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 1/96
ABSTRACT

code_saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax-
isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady
or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars
and turbulent fluctuations of scalars can be taken into account. The code includes specific modules,
referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec-
tric arcs) and compressible flows. code_saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several kinds of elements) and may have
structural non-conformities (hanging nodes).

The present document is a practical user’s guide for code_saturne version 6.2. It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to run
a calculation with code_saturne version 6.2. It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

code_saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. code_saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 2/96

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 3/96
TABLE OF CONTENTS
1 Introduction o L e e e e e e e e e e e e 7
2 Practical information about code_saturne 7
2.0.1 User source files needed without the GUI 7
2.0.2 Exampleroutines i i e e 9
2.0.3 Main variableso e e e e e e 9
3 Basic modelling setup L Lo e e 16
3.1 INITIALISATION OF THE MAIN PARAMETERS+« c v v v v v v v e 16
3.2 NON-DEFAULT VARIABLES INITIALISATION ¢ ¢« v v v v v v vttt e e e e 21
3.3 MANAGE BOUNDARY CONDITIONS . . .« o v v v v it e e e e e e e e e e e e 23
3.3.1 CODING OF STANDARD BOUNDARY CONDITIONS 24
3.3.2 CODING OF NON-STANDARD BOUNDARY CONDITIONS 26
3.3.3 CHECKING OF THE BOUNDARY CONDITIONS« . . o oo oo . 29
3.3.4 SORTING OF THE BOUNDARY FACES« « « o v v v v i i 29
3.3.5 BOUNDARY CONDITIONS WITH LES 29
3.4 MANAGE THE VARIABLE PHYSICAL PROPERTIES« . . o oo oo oo .. 32
3.4.1 BASIC VARIABLE PHYSICAL PROPERTIES v v v v v v v v oo oo 32
3.4.2 MODIFICATION OF THE TURBULENT VISCOSITY . . . « . v v v v v v v v o o 33
3.4.3 MODIFICATION OF THE VARIABLE C' OF THE DYNAMIC LES MODEL 34
3.5 USER SOURCE TERMS« v v vttt e e e e e e e e e e e 34
3.5.1 IN NAVIER-STOKES« v ittt e e e e e e e e e 36
3.5.2 FORKAND € o o o 36
3.50.3 FOR Rijj AND € L e 36
3.5.4 FOR @ AND f. . . o o i 36
3.5 FORKAND w o o oo 37
3.5.6 FOR Dy . . . o o o e 37
3.5.7 FOR USER SCALARS« « v vttt it e i e e e 37
3.6 PRESSURE DROPS (HEAD LOSSES) AND POROSITY o oovvvvv o 37
3.6.1 HEAD LOSSES« o o v vt e e e e e e e e 37
3.6.2 POROSITY ottt i et e 37
3.7 MANAGEMENT OF THE MASS SOURCES ¢ ¢ v v v v vt e e e e e 38
3.8 USER LAW EDITOR OF THE GUIL 39
3.9 MODIFICATION OF THE VARIABLES AT THE END OF A TIME STEP 41
4 Advanced modelling setup 0 L Ll e e e e e e e 42
4.1 USE OF A SPECIFIC PHYSICS . . . « « v v v v v v et e e e e e e e e 42
4.2 PULVERISED COAL AND GAS COMBUSTION MODULE« « v v v v v v o .. 47

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 4/96
4.2.1 BOUNDARY CONDITIONS . . . « v v v v v vttt e e e e e e e e e 49
4.2.2 INITIALISATION OF THE OPTIONS OF THE VARIABLES 52
4.3 HEAVY FUEL OIL COMBUSTION MODULE « . v v v v v e e e e e e e e e e e e 54
4.3.1 INITIALISATION OF TRANSPORTED VARIABLES 54
4.3.2 BOUNDARY CONDITIONS . . . v v v v v v e e e et e e e e e e e e e e e 54
4.4 RADIATIVE THERMAL TRANSFERS IN SEMI-TRANSPARENT GRAY MEDIA 55
4.4.1 INITIALISATION OF THE RADIATION MAIN PARAMETERS 99
4.4.2 RADIATIVE TRANSFERS BOUNDARY CONDITIONS 56
4.4.3 ABSORPTION COEFFICIENT OF THE MEDIUM, BOUNDARY CONDITIONS FOR
THE LUMINANCE AND CALCULATION OF THE NET RADIATIVE FLUX 58
4.5 CONJUGATE HEAT TRANSFER . .« « « v v v v it e e e e e e e e e e e e e e e 58
4.5.1 THERMAL MODULE IN A 1D WALL 58
4.5.2 FLUID-THERMAL COUPLING WITH SYRTHES 59
4.6 PARTICLE-TRACKING (LAGRANGIAN) MODULEo vvv v 60
4.6.1 GENERAL INFORMATION . . . v v v v v v e e e et e e e e e e e e e e e 60
4.6.2 ACTIVATING THE PARTICLE-TRACKING MODULE o v 60
4.6.3 BASIC GUIDELINES FOR STANDARD SIMULATIONS v« 60
4.6.4 PRESCRIBING THE MAIN MODELLING PARAMETERS 61
4.6.5 PRESCRIBING PARTICLE BOUNDARY CONDITIONS 62
4.6.6 ADVANCED PARTICLE-TRACKING SET-UP v v v v v v v v ot 62
4.7 COMPRESSIBLE MODULE . . .+« « v v v v v e e e e e e e e e e e e e 64
4.7.1 INITIALISATION OF THE OPTIONS OF THE VARIABLES 64
4.7.2 MANAGEMENT OF THE BOUNDARY CONDITIONS 65
4.7.3 INITIALISATION OF THE VARIABLES o v v v v i e e e e 65
4.7.4 MANAGEMENT OF VARIABLE PHYSICAL PROPERTIES 65
4.8 MANAGEMENT OF THE ELECTRIC ARCS MODULE« v v v v v v v v 65
4.8.1 ACTIVATING THE ELECTRIC ARCS MODULE v v v v v v e v oo 65
4.8.2 INITIALISATION OF THE VARIABLES o v v v v i e v e oo 66
4.8.3 VARIABLE PHYSICAL PROPERTIES« v v v v v et e e 66
4.8.4 BOUNDARY CONDITIONS . . . « v v v v v ittt e e e e e e e 66
4.8.5 INITIALISATION OF THE VARIABLE OPTIONS o o v v v v v v o 67
4.8.6 EnSight OUTPUT« v v v vttt e i e e e e e 68
4.9 CODE_SATURNE-CODE_SATURNE COUPLING+« v v o vt e e e 68
4.10 FLUID-STRUCTURE EXTERNAL COUPLING . . . v v v v v v e e e e e e e e e e e e e 69
4.11 ALE MODULE 0 o o o e e e e e e e e e 70
4.11.1 INITIALISATION OF THE OPTIONS« + v v v vt et e e e 70

4.11.2 MESH VELOCITY BOUNDARY CONDITIONS« v v v v v i e oo 71

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 5/96
4.11.3 MODIFICATION OF THE MESH VISCOSITY « o v v v v i v v e o 72
4.11.4 FLUID - STRUCTURE INTERNAL COUPLING « v v v v v v e oo o e 72
4.12 MANAGEMENT OF THE STRUCTURE PROPERTY v« v v v v v e e oo o 73
4.13 MANAGEMENT OF THE ATMOSPHERIC MODULE« v v v v v v oo 73
4.13.1 DIRECTORY STRUCTURE v v v v v v v i it et e e e e e e e e 74
4.13.2 THE ATMOSPHERIC MESH FEATURES« « « v v v v v e e e e 74
4.13.3 ATMOSPHERIC FLOW MODEL AND STEADY/UNSTEADY ALGORITHM 74
4.13.4 PHYSICAL PROPERTIES« . v v v vttt et e e e e e e 75
4.13.5 BOUNDARY AND INITIAL CONDITIONS v v v v v vt e e e e 75
4.13.6 USER SUBROUTINES . . « . v v v v vt e e et e e e e e e e e e e e 77
4.13.7 PHYSICAL MODELS . . . « v v v v v v et e e e e e e e e e e e e 77
4.13.8 ATMOSPHERIC MAIN VARIABLES v v v v v vt e i e e e e e e e 78
4.13.9 RECOMMENDATIONS . . © . v v v v v v e e e et e e e e e e e e e e e e 79
4.14 TURBOMACHINERY COMPUTATIONS v v v v e e e e e e e e e e e e 80
4.14.1 INTRODUCTION« t v v ettt e e e e e e e e e e e e e e 80
4.14.2 MESHING RECCOMENDATIONS v v v v v vttt e e e e e e e 80
4.14.3 TURBOMACHINERY DEDICATED POSTPROCESSING FUNCTIONS 81
4.14.4 DATA SETTING, KEYWORDS AND EXAMPLES v v v v v v v v v o 81
4.15 CAVITATION MODULE .+ © v v v v v v e e e e e e e e e e e e e e e e e e e 81
5 Keyword list 0 0 0 i i e e e e e 86
5.1 INPUT-OUTPUT o e e e e e e e e e e e e e e 86
5.1.1 7CALCULATION” FILES . . + + v v v v v v e e e e e e e e e e e e e e e 87
5.2 NUMERICAL OPTIONS . . v v v v v e e et e e e e e e e e e e e e e e e e e 87
5.2.1 CALCULATION MANAGEMENTt v vt ittt e e e e e e 87
5.2.2 SCALAR UNKNOWNSt v v vttt e e e e e e e e e e e e e e 87
5.2.3 DEFINITION OF THE EQUATIONS v v v v v it e e e e e e e 87
5.2.4 DEFINITION OF THE TIME ADVANCEMENT o v v v v v v ... 87
5.2.5 TURBULENCE v v v v it i e e e e e e e e e e e e e e e 88
5.2.6 TIME SCHEME« v v vt i e e e e e e e e e e e 88
5.2.7 GRADIENT RECONSTRUCTION v v v v v vt e e e et e e e e e e e 89
5.2.8 SOLUTION OF THE LINEAR SYSTEMS . . . « « v v v v v e et e e e e e 89
5.2.9 CONVECTIVE SCHEME v v v v v e it e e e e e e e e e e e 89
5.2.10 PRESSURE-CONTINUITY STEP « « « v v v vt e i e e e e e 89
5.2.11 ERROR ESTIMATORS FOR NAVIER-STOKES« v v v v v v v v 89
5.2.12 CALCULATION OF THE DISTANCE TO THE WALL 91
5.2.13 OTHERS . . . v v v v e e e e e e e e e e e e e e s e e e e 91
5.3 NUMERICAL, PHYSICAL AND MODELLING PARAMETERS 91

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 6/96
5.3.1 NUMERIC PARAMETERS« v v vt it i e e e e e e e e e 91
5.3.2 PHYSICAL PARAMETERS . . + « v v v v v i e e e e e e e e e e e e 91
5.3.3 PHYSICAL VARIABLES« v v v it e e e e e e e 91
5.3.4 MODELLING PARAMETERS« v v v v it e e e e e e e e 92
5.4 ALE . . . e 92
5.5 THERMAL RADIATIVE TRANSFERS: GLOBAL SETTINGS v v v v v v v .. 92
5.6 ELECTRIC MODULE (JOULE EFFECT AND ELECTRIC ARCS): SPECIFICITIES 92
5.7 COMPRESSIBLE MODULE: SPECIFICITIES + v v v v v e e e e e e e e e e e 92
6 Bibliography 0 0 0 e e e e e e e e e e e e 93

Index of the main variables and keywords e e e e e e e e e e e e e e 95

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 7/96

1 Introduction

This document is a practical user guide for code_saturne version 6.2. It is the result of the joint effort
of all the members in the development team.

This document provides practical information for the usage of code_saturne. For more details about
the algorithms and their numerical implementation, please refer to the reports [1], [4] and [10], and to
the theoretical documentation [11].

The latest updated version of this document is available on-line with the version of code_saturne and
accessible through the command code_saturne info --guide theory.

This document presents some the necessary elements to run a calculation with code_saturne version
6.2. It then lists all the variables of the code which may be useful for more advanced users. The user
subroutines of all the modules within the code are then documented. Eventually, for each keyword and
user-modifiable parameter in the code, their definition, allowed values, default values and conditions
for use are given. These keywords and parameters are grouped under headings based on their function.
An alphabetical index is also given at the end of the document for easier reference.

In addition to the present user guide, a complete Doxygen documentation is available with code_saturne.
It can provide information about the implementation such as details on variables used throughout the
solver and the user subroutines. It also provides an easily explorable set of user subroutine examples
and Fortran-C naming references for quantities linked to the mesh or the physical fields.

The user documentation is in the process of migration from this pdf documentation to the Doxygen
documentation, so the user should first lok there. One can access the Doxygen main page through this
link or from a terminal by typing the following command: code_saturne info --guide theory.

On the left panel, several leaves are available :

e Introduction: general introduction,

e Running a computation: general user guide sections,

e Modules: list of all the code_saturne modules,

e Data structures: list of all the code_saturne structures,

e Files: list of all the source files with a brief description of their purpose,

e User examples: provides various examples of how to use user subroutines,

e Variables and structures references: helps users implementing user C functions, Fortran
subroutines or developing inside the main solver.

In any case, the search bar can be used to look for a specific keyword which can be a function, a
variable, a structure, a type, etc.

2 Practical information about code _saturne

2.0.1 User source files needed without the GUI
For all physical models:

very useful without Graphical User Interface:
- cs_user model (in cs_user_parameters.c) to define user scalars (species)
very useful:

- cs_user_physical_properties.c to manage variable physical properties (fluid density,
viscosity ...)

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 8/96

- cs_user_initialization.c to manage the non-standard initialisations

For the “gas combustion”, “pulverized fuel combustion”, and “heavy fuel combus-
tion” models:

compulsory without Graphical User Interface:

- usppmo (in cs_user_parameters.f90) to select a specific physics module and combus-
tion model

very useful:

- cs_user_combustion (in cs_user_parameters.f90), depending on the selected com-
bustion model, to specify the calculation options for the variables corresponding to
combustion model

For the “atmospheric module” models:

compulsory without Graphical User Interface:

- usppmo (in cs_user_parameters.f90) to select the atmospheric module

very useful:

- usatil (in cs_user_parameters.f90) to manage the reading of the meteo file

- usadtv or usatsoil (in cs_user_atmospheric model.f90) to manage the options to
the specific physics

For the “electric module” (Joule effect and electric arcs):

compulsory without Graphical User Interface:

- usppmo (in cs_user_parameters.f90) to select the module

- cs_user_initialization to initialise the enthalpy in case of Joule effect

- cs_user_physical_properties.c to define the physical properties in case of Joule effect

very useful:

- cs_user model and cs_user_parameters (in cs_user_parameters.c) to manage the

related options to the variables corresponding to the electric module

For the “Lagrangian module” (dispersed phase):

(the continuous phase is managed in the regular)

compulsory without Graphical User Interface:

- cs_user_lagr model to manage the calculation conditions

- cs_user_lagr boundary_conditions to manage the boundary conditions for the dis-
persed phase

For the “compressible module”:

compulsory without Graphical User Interface:

- cs_user model (in cs_user_parameters.c) to select the compressible module

very useful:

- uscfxl and uscfx?2 (in cs_user_parameters.f90) to manage the calculation parame-

ters

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 9/96

2.0.2 Example routines

Some user subroutines may be used for many different user definitions. As including enough examples
in those subroutines would make them very difficult to read, these routines provided as templates only,
with separate examples in a case’s EXAMPLES subdirectory of its SRC directory.

Example file names are defined by inserting the name of the matching example in the file name. For
example, a basic example for cs_user_boundary_conditions.f90 is provided in
cs_user_boundary_conditions-base.f90, while an example dedicated to atmospheric flows is pro-
vided in cs_user_boundary_conditions-atmospheric.f90.

The user is encouraged to check what examples are available, and to study those that are relevant to
a given setup.

Template user subroutines contain three sections the user may define, sometimes marked by the fol-
lowing strings:

e INSERT_VARIABLE DEFINITIONS_HERE

e INSERT_ADDITIONAL_INITTIALIZATION_CODE_HERE

e INSERT_MAIN_CODE_HERE
Comparing template and example files with a graphical file comparison tool should help the user

highlight the matching sections from the examples, so it is recommended as good practice for those
not already very familiar with those user subroutines.

2.0.3 Main variables

This section presents a non-exhaustive list of the main variables that may be encountered by the user.
Most of them should not be modified by the user. They are calculated automatically from the data.
However it may be useful to know what they represent. Developers can also refer to [11].

These variables are listed in the alphabetical index at the end of this document (see § 5).
The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

For a further detailed list of variables, one can refer to the dedicated Doxygen documentation.

2.0.3.1 Array sizes

For array sizes, please refer to the following Doxygen documentation:

e Mesh dimensions,
o General variable array dimensions,

e Specific variable array dimensions.
2.0.3.2 Geometric variables
The main geometric variables are available in most of the subroutines and directly accessible through

arrays defined in the mesh module (i.e. use mesh). For further details, please refer to the following
Doxygen documentation.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

2.0.3.3 Physical variables

Almost all physical variables! can be accessed via the cs_field API and are available in all the
subroutines as fields (either through their name or their id). The previous system, which used multi-
dimensional arrays, has been progressively replaced by the cs_field APIL

For a thorough description of the user management of all physical variables as well as the corresponding
syntaxes between the cs_field API (both in C and Fortran) and the previous system, please refer to
the dedicated Doxygen documentation.

Note that local arrays of values of physical variables, retrieved via the cs_field API, follow a naming
convention, fully described at this page of the Doxygen documentation. It is highly recommended to
follow this convention to ease the comprehension.

About the solved variables

The indexes allowing marking out the different solved variables (from 1 to nvar) are integers available
in a “module” called numvar.

For example, ipr refers to the variable “pressure”.

The list of integers referring to solved variables can be accessed through the following Doxygen doc-
umentation. These variable index-numbers can be used to retrieve the corresponding field indices
(for instance, ivarfl(ipr) is the field index for the pressure), but also for some arrays of variable
associated options (for instance, vislsO(itempk) is the viscosity of the temperature).

To access the main solved variables, please refer to the following Doxygen documentation.

Concerning the solved scalar variables (apart from the variables pressure, k, ¢, R;;, w, ¢, £, a, vy), the
following is very important:

- The designation “scalar” refers to scalar variables which are solution of an advection equation,
apart from the variables of the turbulence model (k, €, Ri;, w, ¢, f, a, v;): for instance the
temperature, scalars which may be passive or not, “user” or not. The mean value of the square
of the fluctuations of a “scalar” is a “scalar”, too. The scalars may be divided into two groups:
nscaus “user” scalars and nscapp “specific physics” scalars, with nscal=nscaus+nscapp. nscal
must be less than or equal to nscamx.

- The j*® user scalar is, in the whole list of the nscal scalars, the scalar number j. In the list of
the nvar solved variables, it corresponds to the variable number isca(j).

- The j*® scalar related to a specific physics is, in the whole list of the nscal scalars, the scalar
number iscapp(j). In the list of the nvar solved variables, it corresponds to the variable number
isca(iscapp(j)).

- Apart from specific physics, the temperature (or the enthalpy) is the scalar number iscalt in
the list of the nscal scalars. It corresponds to the variable number isca(iscalt). if there is no
thermal scalar, iscalt is equal to -1.

- A “user” scalar number j may represent the mean of the square of the fluctuations of a scalar k
(i.e. the average o'’ for a fluctuating scalar ¢). This can be made either via the interface or by
declaring that scalar using cs_parameters_add variable variance in cs_user_parameters.c
(if the scalar in question is not a “user” scalar, the selection is made automatically). For in-
stance, if j and k are “user” scalars, the variable ¢ corresponding to k is the variable number
isca(k)=isca(iscavr(j)).2

Lexcept some of the properties defined at the cell centers

2Tt is really ’¢’, and not 4/’

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

About the physical properties at the cell centers
To access the physical properties, please refer to the following Doxygen documentation. Some index
numbers are also described in the physical properties numbering Doxygen documentation.

NOTE: VARIABLE PHYSICAL PROPERTIES

Some physical properties such as specific heat or diffusivity are often constant (choice made by the
user). In that case, in order to limit the necessary memory, these properties are stored as a simple real
number rather than in a domain-sized array of reals.

e This is the case for the specific heat C,,.

- If C} is constant, it can be specified in the interface or by indicating icp=0 in
cs_user_parameters.f90, and the property will be stored in the real number cp0.

- If C, is variable, it can be specified in the interface or by indicating icp=1 in
cs_user_parameters.f90. The code will then modify this value to make icp refer to the
effective property field id corresponding to the specific heat, in a way which is transparent
for the user. For each cell iel, the value of C}, can then be defined in usphyv in an array
which pointer can be retrieved by calling field get_val_s(icp, cpro_cp).

e This is the same for the diffusivity K of each scalar iscal.

- If k is constant, it can be specified in the interface or by calling field_set key_int (ivarfl(isca(iscal)),
kivisl, -1) in cs_user_parameters.f90, (in usipsu) and the property will be stored in
the real number vislsO(iscal).

- If k is variable, it can be specified in the interface or by calling field _set key_int (ivarfl(isca(iscal)),
kivisl, 0) in cs_user_parameters.f90, (in usipsu). The code will then modify this key
value to make it refer to the effective field id corresponding to the diffusivity of the scalar
iscal, in a way which is transparent for the user. For each cell iel, the value of k is then
given in usphyv and stored in the field whose id is given by calling field_set_key_int (ivarfl(isca(iscal)),
kivisl, ...).

Two other variables, hbord and tbord, should be noted here, although they are relatively local (they
appear only in the treatment of the boundary conditions) and are used only by developers.

hbord(nfabor) [ra]: Array of the exchange coefficient for temperature (or enthalpy) at the boundary
faces. The table is allocated only if isvhb is set to 1 in the subroutine tridim (which is note
a user subroutine), which is done automatically, but only if the coupling with SYRTHES or
the 1D thermal wall module are activated..

tbord(nfabor) [ra]: Temperature (or enthalpy) at the boundary faces®. The table is allocated only
if isvtb is set to 1 in the subroutine tridim (which is note a user subroutine), which is done
automatically but only if the coupling with SYRTHES or the 1D thermal wall module are
activated..

Tables hbord and tbord are of size nfabor, although they concern only the wall boundary faces.

2.0.3.4 Variables related to the numerical methods

The main numerical variables and “pointers” are described in the Doxygen documentation below.

BOUNDARY CONDITIONS

3Tt is the physical temperature at the boundary faces, not the boundary condition for temperature. See [11] for more
details on boundary conditions

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

e ifmfbr and isympa arrays.

e itrifb, itypfb and uetbor arrays.

DISTANCE TO THE WALL

e dispar and yplpar arrays.

PRESSURE DROPS AND POROSITY

e icepdc, ckupdc and porosi arrays as well as ncepdcncepdc.

MASS SOURCES

e icetsm, itypsm and smacel arrays as well as ncetsm.

WALL 1D THERMAL MODULE

nfptid [i]: Number of boundary faces which are coupled with a wall 1D thermal module. See the
user subroutine cs_user_1d_wall_thermal.c.

ifptid [ia]: Array allowing marking out the numbers of the nfptid boundary faces which are cou-
pled with a wall 1D thermal module. The numbers of these boundary faces are given by
ifpti1d(ii), with 1<ii<nfptid. See the user subroutine cs_user_1d_wall_thermal.c.

npptid [ia]: Number of discretisation cells in the 1D wall for the nfptid boundary faces which are
coupled with a 1D wall thermal module. The number of cells for these boundary faces is given
by nppt1d(ii), with 1<ii<nfptld. See the user subroutine cs_user_1d_wall_thermal.c.

epptld [ia]: Thickness of the 1D wall for the nfptid boundary faces which are coupled with a 1D
wall thermal module. The wall thickness for these boundary faces is therefore given by
eppt1d(ii), with 1<ii<nfptid. See the user subroutine cs_user_1d_wall_thermal.c.

OTHERS

dt(ncelet) [ral: Value of the time step.
ifmcel(ncelet) [ia]: Family number of the elements. See note 1.

s2kw(ncelet) [ra]: Square of the norm of the deviatoric part of the deformation rate tensor (S% =
25555). This array is defined only with the k& —w (SST) turbulence model.

divukw [ia]: Divergence of the velocity. More precisely it is the trace of the velocity gradient (and
not a finite volume divergence term). In the cell iel, div(u) is given by divukw(iell). This
array is defined only with the £ —w SST turbulence model (because in this case it may be
calculated at the same time as S?)..

NOTE: BOUNDARY CONDITIONS
The gradient boundary conditions in code_saturne boil down to determine a value for the current

./doxygen/src/group__mesh.html#ifmfbr
./doxygen/src/group__mesh.html#isympa
./doxygen/src/group__coupled__case.html#itrifb
./doxygen/src/group__coupled__case.html#itypfb
./doxygen/src/group__coupled__case.html#uetbor
./doxygen/src/group__auxiliary.html#dispar
./doxygen/src/group__auxiliary.html#yplpar
./doxygen/src/group__auxiliary.html#icepdc
./doxygen/src/group__auxiliary.html#ckupdc
./doxygen/src/group__auxiliary.html#porosi
./doxygen/src/group__auxiliary.html#ncepdc
./doxygen/src/group__auxiliary.html#icetsm
./doxygen/src/group__auxiliary.html#itypsm
./doxygen/src/group__auxiliary.html#smacel
./doxygen/src/group__auxiliary.html#ncetsm

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

variable Y at the boundary faces f;, that is to say Y7, , value expressed as a function of Y7/, value of Y’
in I, projection of the center of the adjacent cell on the straight line perpendicular to the boundary
face and crossing its center:

Yy, = A-;ib + B‘J‘Zpr. (1)

For a face ifac, the pair of coefficients A% , B, is may be accessed using the field get_coefa.s and
field_get_coefb_s functions, replacing s with v for a vector.

The flux boundary conditions in code_saturne boil down to determine the value of the diffusive flux
of the current variable Y at the boundary faces f,, that is to say Dy, (Ky,, Y), value expressed as
a function of Y., value of Y in I, projection of the center of the adjacent cell on the straight line
perpendicular to the boundary face and crossing its center:

Diy (Ky,, Y) = AL + Bl Yy, (2)

For a face ifac, the pair of coefficients Afb, B;b may be accessed using the field _get_coefaf_s and
field_get_coefbf_s functions, replacing s with v for a vector.

The divergence boundary conditions in code_saturne boil down to determine a value for the current
variable Y (mainly the Reynolds stress components, the divergence div (ﬁ) used in the calculation of
the momentum equation) at the boundary faces f3, that is to say Y7,, value expressed as a function of
Yy, value of Y in I, projection of the center of the adjacent cell on the straight line perpendicular to

the boundary face and crossing its center:

be = Adb + B?{,YI“ (3)

For a face ifac, the pair of coefficients A9 , B?b may be accessed using the field_get_coefad_s and
field_get_coefbd_s functions, replacing s with v for a vector.

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

2.0.3.5 User arrays

Modules containing user arrays accessible from all user subroutines may be defined in the user modules.f90
file. This file is compiled before any other Fortran user file, to ensure modules may be accessed in
other user subroutines using the use <module> construct. It may contain any routines or variables

the user needs, and contains no predefined routines or variables (i.e. the only specificity of this file is
that a file with this name is compiled before all others).

2.0.3.6 Parallelism and periodicity

The user can check in a subroutine

- that the presence of periodicity is tested with the variable iperio (=1 if periodicity is activated);

- that the presence of rotation periodicities is tested with the variable iperot (number of rotation
periodicities);

- that running of a calculation in parallel is tested for with the variable irangp (irangp is worth
-1 in the case of a non-parallel calculation and p — 1 in the case of a parallel calculation, p being
the number of the current processor)

2.0.3.7 Variables saved to allow calculation restarts

The directory checkpoint contains:

- main: main restart file,
- auxiliary: auxiliary restart file (see ileaux, iecaux),
- radiative_transfer: restart file for the radiation module,
- lagrangian: main restart file for the Lagrangian module,
- lagrangian_stats: auxiliary restart file for the Lagrangian module (mainly for the statistics),
- 1dwall_module: restart file for the 1D wall thermal module,
The main restart file contains the values in every cell of the mesh for pressure, velocity, turbulence

variables and all the scalars (user scalars et specific physics scalars. Its content is sufficient for a
calculation restart, but the complete continuity of the solution at restart is not ensured*.

The auxiliary restart file completes the main restart file to ensure solution continuity in the case of a
calculation restart. If the code cannot find one or several pieces of data required for the calculation
restart in the auxiliary restart file, default values are then used. This allows in particular to run
calculation restarts even if the number of faces has been modified (for instance in case of modification
of the mesh merging or of periodicity conditions®). More precisely, the auxiliary restart file contains
the following data:

- type and value of the time step, turbulence model,

- density value at the cells and boundary faces, if it is variable,

4In other words, a restart calculation of n time steps following a calculation of m time steps will not yield strictly the
same results as a direct calculation on m+n time steps, whereas it is the case when the auxiliary file is used
5Imposing a periodicity changes boundary faces into internal faces

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

- values at the cells of the other variable physical properties, when they are extrapolated in time
(molecular dynamic viscosity, turbulent or sub-grid scale viscosity, specific heat, scalar diffusiv-
ity). The specific heat is stored automatically for the Joule effect (in case the user should need it
at restart to calculate the temperature from the enthalpy before the new specific heat has been
estimated),

- time step value at the cells, if it is variable,

- mass flow value at the internal and boundary faces (at the last time step, and also at the previous
time step if required by the time scheme),

- boundary conditions,
- values at the cells of the source terms when they are extrapolated in time,
- number of time-averages, and values at the cells of the associated cumulated values,

- for each cell, distance to the wall when it is required (and index-number of the nearest boundary
face, depending on icdpar),

- values at the cells of the external forces in balance with a part of the pressure (hydrostatic, in
general),

- for the D3P gas combustion model: massic enthalpies and temperatures at entry, type of bound-
ary zones and entry indicators,

- for the EBU gas combustion model: temperature of the fresh gas, constant mixing rate (for the
models without mixing rate transport), types of boundary zones, entry indicators, temperatures
and mixing rates at entry,

- for the LWC gas combustion model: the boundaries of the probability density functions for
enthalpy and mixing rate, types of boundary zones, entry indicators, temperatures and mixing
rates at entry,

- for the pulverised coal combustion: coal density, types of boundary zones, variables ientat,
ientcp, inmoxy, timpat, x20 (in case of coupling with the Lagrangian module, iencp and x20
are not saved),

- for the pulverised fuel combustion: types of boundary zones, variables ientat, ientfl, inmoxy,
timpat, qimpat , qimpfl,

- for the electric module: the tuned potential difference dpot and, for the electric arcs module,
the tuning coefficient coejou (when the boundary conditions are tuned), the Joule source term
for the enthalpy (when the Joule effect is activated) and the Laplace forces (with the electric arc
module).

It should be noted that, if the auxiliary restart file is read, it is possible to run calculation restarts
with relaxation of the density®(when it is variable), because this variable is stored in the restart file.
On the other hand, it is generally not possible to do the same with the other physical properties (they
are stored in the restart file only when they are extrapolated in time, or with the Joule effect for the
specific heat).

All checkpoint/restart files are binary files. Nonetheless, they may be dumped or compared using the
cs_io_dump tool.

In the case of parallel calculations, it should be noted that all the processors will write their restart
data in the same files. Hence, for instance, there will always be one and only one main file, whatever
the number of processors used. The data in the file are written according to the initial full domain
ids for the cells, faces and nodes. This allows in particular to restart using p processors a calculation

6Such a relaxation only makes sense for a steady calculation

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

begun with n processors, or to make the restart files independent of any mesh renumbering that may
be carried out in each domain.

WARNING: if the mesh is composed of several files, the order in which they appear in the launch script
or in the Graphical Interface must not be modified in case of a calculation restart”.

NOTE: when joining of faces or periodicity is used, two nodes closer than a certain (small) toler-
ance will be merged. Hence, due to numerical truncation errors, two different machines may yield
different results. This might change the number of faces in the global domain® and make restart files
incompatible. Should that problem arise when making a calculation restart on a different architec-
ture, the solution is to ignore the auziliary file and use only the main file, by setting ileauz = 0 in
cs_user_parameters. f90

3 Basic modelling setup

3.1 Initialisation of the main parameters

This operation is done in the Graphical User Interface (GUI) or by using the user subroutines in
cs_user_parameters.f90. In the GUI, the initialisation is performed by filling the parameters dis-
played in Figurel to ??. If the 'Mobile mesh’ option is activated, please see Section 4.11.4 for more
details. The headings filled for the initialisation of the main parameters are the followings:

- Thermophysical model options: Steady or unsteady algorithm, specific physics, ALE mobile
mesh, turbulence model, thermal model and species transport (definition of the scalars and their
variances), see Figure 1 to Figure 4. If a thermal scalar, temperature or enthalpy, is selected, two
other headings on conjugate heat transfer and radiative transfers can be filled in (see Figure 3).

- Body forces: gravity and coriolis forces, see Figure 5.

- Physical properties: reference pressure, velocity and length, fluid properties (density, viscosity,
thermal conductivity, specific heat and scalar diffusivity), see Figure 6 to Figure 7. If non-
constant values are used for the fluid properties, and if the GUI is not used, the
cs_user_physical_properties file must be used, see § 3.4.1.

- Volume conditions: definition of volume regions (for initialisation, head losses and source terms,
see § 3.5 and § 3.6), initialisation of the variables (including scalars), see Figure 8.

- Boundary conditions: definition and parametrisation of boundary conditions for all variables
(including scalars). If the GUI is not used, the cs_user_boundary_conditions file must be used,
see § 3.3.

- Numerical parameters: number and type of time steps, and advanced parameters for the numer-
ical solution of the equations, see Figure 9 to Figure 11.

- Calculation control: parameters related to the time averages, the locations of the probes where
some variables will be monitored over time (if the GUI is not used, this information is specified
in § 3.2), the definition of the frequency of the outputs in the calculation log, the post-processing
output writer frequency and format options, and the post-processing output meshes and variables
selection, see Figure 77, Figure 77, Figure 7?7, and Figure ??. The item “Profiles” allows to save,
with a frequency defined by the user, 1D profiles on a parametric curve define by its equation,
see Figure??.

With the GUI, the subroutine cs_user_parameters.f90 is only used to modify high-level parameters
which can not be managed by the interface. Without the GUI, this subroutine is compulsory and some

"When uncertain, the user can check the saved copy of the launch script in the RESU directory, or the head of the
preprocessor*.log files, which repeat the command lines passed to the Preprocessor module
8The number of cells will not be modified, it is always the sum of the number of cells of the different meshes

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 17/96
=]

» |4 Calculation environment Flow Models

» [Mesh

e Standard Eulerian single phase Incompressible

|4 Turbulence models atmospheric

|4 Thermal model
|4 Body forces
| 4 Species transport Groundwater
At Fluid properties
» [®, Wolume zones

Electric arcs

Reactive flows (combustion)

» ++ Boundary zones Hoemeogeneous Eulerian - VoF model
b At Time settings
¥ As Numerical parameters
» |7 Postprocessing o I
#k Performance settings GeE LELELERES
Eulerian-Lagrangian model off
Turbemachinery model None
Deformable mesh (ALE method)
Fans (source-term model)
Figure 1: Calculation features options
@6
» |4 Calculation environment Turbulence model
» [Mesh
v ¢ Calculation features k-epsilon Linear Production -
B Turbulence models
|| Thermal model
| | Body forces . 4,
| 4 Conjugate heat transfer Sehereedioniions &é
| | Species transport
At Fluid properties Reference values (used for initialization of turbulence)
b B, Wolume zones
b +=+ Boundary zones Welocity scale |1.0 mfs
b At Time settings
¥ Ar Numerical parameters Length scale |Automatic =
b |7 Postprocessing
[
Figure 2: Turbulence model selection
=]
¥ | Calculation environment Thermal scalar
» [Mesh

Temperature (Celsius) -

4

@ Calculation features
|| Turbulence models
Thermal radiative transfers
|| Bodyforces
|4 Conjugate heat transfer
|| Species transport
44 Fluid properties
» [, Volume zones

No radiative transfers -

Figure 3: Thermal scalar selection

of the headings must be completed (see §77?). cs_user_parameters.f£90 is used to indicate the value of
different calculation basic parameters: constant and uniform physical values, parameters of numerical
schemes, input-output management...

It is called only during the calculation initialisation.

For more details about the different parameters, please refer to the key word list (§5).

cs_user_parameters.f90 is in fact constituted of 4 separate subroutines: usipph, usppmo, usipsu
and usipes. Each one controls various specific parameters. The keywords which are not featured
in the supplied example can be provided by the user in SRC/REFERENCE/base; in this case, under-
standing of the comments is required to add the keywords in the appropriate subroutine, it will

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 18/96
B®
» |} Calculation environment Model or additional transported variables
» [Mesh
~ o Calculation features Name Turbulent flux model
| 4 Turbulence models temperature SGDH

|| Thermal model
|| Bodyforces
| 4 Conjugate heat transfer
/44 Fluid properties
=, Volume zones
++ Boundary zones
At Time settings
Axr Numerical parameters
|| Postprocessing 3 |[=
Performance settings

scalarl SGDH

rFvrwww

Variance of model or additional transported variables

Variance Associated variable

variancel temperature

Figure 4: Definition of the transported species/scalars

E®
b | 4 Calculation environment Gravity
v [Mesh
= oy Calculation features 9: (0.0 mfs?
|4 Turbulence models g, 0.0 mis?

|4 Thermal model

B Body forces g2 |-9.81 mis?

|4 Species transport

Pt Fluid properties Coriolis source terms (rotation vector)
» [, Wolume zones
Q, |0.0 sl
b ++ Boundary zones *
b At Time settings 0, 0.0 g1
¥ Ar Numerical parameters
» |7 Postprocessing 0, (0.0 sl

#% Performance settings

Figure 5: Setting of the gravity

(=]E]]
» | 4 Calculation environment Turbulence model
3 ﬂ: Mesh
¥ @ Calculation features k-epsilon Linear Production -

B Turbulence models

|} Thermal model

|4 Body forces

| 4 Conjugate heat transfer
|| Species transport

Advanced options %

At Fluid properties Reference values (used for initialization of turbulence)
b ®g Wolume zones
» ==+ Boundary zones Velocity scale |1.0 m/s
b At Time settings
» Az Mumerical parameters Length scale |Automatic «
b [Postprocessing

Performance settings

Figure 6: Setting of the reference values for pressure, velocity and length

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
B®

b | 4 Calculation environment

» [l Mesh) .
b @y Calculation features Material user_material h

Fluid properties Method user_properties ¥

=, Volume zones

++ Boundary zones

At Time settings

Az Numerical parameters
-7 Postprocessing

Performance settings

Reference total pressure

rFvrwvww

value |101325.0 Pa

Reference temperature

value 293,15 °C

(used for properties initialization)
Density

constant -

Reference value p 1.17862 kg/m?#
Wiscosity

constant -

Reference value w 1.83e-05 Pa.s

Specific heat

constant -

Reference value C, |1017.24 IikgiK
Thermal conductivity

constant -

Reference wvalue 4 |0.02495 Wim/K

Diffusion coefficient of species

Name |scalarl =

constant -

Reference value |1.83e-05 m3/s

Figure 7: Fluid properties

B®

b | Calculation environment Initialization
v [T Mesh

b oy Calculation features
P44 Fluid properties

~ = volume zones =

))]

B intialization Velocity

| | Head losses Thermal

i

Volume zone |all_cells -

++ Boundary Zzones

At Time settings

Ax Numerical parameters
|7 Postprocessing

$£ Performance settings

4
: Turbulence | Initialization by reference value(s) -
4

Species scalarl = =

E

Figure 8: Initialisation of variables

ensure that the value has been well defined. The modifiable parameters in each of the subroutines of
cs_user_parameters.f90 are:

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
gulde Page 20/96
[=]Es]
» | Calculation environment Global parameters
» [Mesh : :
» ¢u Calculation features Gradient calculation method:
A4t Fluid properties lterative handling of nen-orthogonalities -

» ®, Volume zones

Pseudo-coupled velocity-pressure solver
» ++ Boundary zones P yP

Handling of transposed gradient and divergence

b At Time settings - ; v
W Numerical parameters source terms in momentum equation
| Equation parameters Extrapolation of pressure gradient e ok o =

» |7 Postprocessing on domain boundary
'*' Performance settings Relaxation of pressure increase 1.0

Improved pressure interpolation in stratified flow

Figure 9: Global resolution parameters

(=]E3]
» |4 Calculation environment Solver | Scheme | Clipping
» [l Mesh
v ¢ Calculation features Solver ’reconditioning Solver Time Step
[} Turbulence models Name Choice Choice Precision V) Factor
[5) Thermal model pressure Automatic Automatic le-08 0
[T Body forces velocity Automatic Automatic le-08 0
[Conjugate heat transfer k Automatic Automatic le-08 0
[| Species transport epsilon Automatic Automatic le-08 0
P Fluid properties temperature = Automatic Automatic le-08 0 1
=, Volume zones scalarl Automatic Automatic le-08 0 1
variancel Automatic Automatic le-08 0 1

»
b ++ Boundary zones
b Af Time settings
¥ Ay Numerical parameters
» -7 Postprocessing
% Performance settings

Figure 10: Numerical parameters for the main variables resolution

(=]E3]

b | 4 Calculation environment

b [I] Mesh

» ¢ Calculation features
At Fluid properties Velocity-Pressure algorithm | SIMPLEC

b [m,) Wolume zones
b +=+ Boundary zones
| Start/Restart Reference time step 0.5 5
b Ar Numerical parameters
» |7 Postprocessing
Performance settings

Time step optien Constant -

Stopping criterion | Mumber of time steps - | |300

Figure 11: Time step settings

e usipph: iturb, itherm and icavit (don’t modify these parameters anywhere else)
e usppmo: activation of specific physical models.

e usipsu: physical parameters of the calculation (thermal scalar, physical properties, ...), numerical
parameters (time steps, number of iterations, ...), definition of the time averages.

e usipes: post-processing output parameters (periodicity, variable names, probe positions, ...)

For more details on the different parameters, see the list of keywords (§ 5). The names of the keywords
can also be seen in the help sections of the interface.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

e When using the interface, only the additional parameters (which can not be defined in the interface)
should appear in cs_user_parameters.f90. The user needs then only to activate examples which are
useful for his case (replacing if (.false.) with if (.true.), or removing such tests).

3.2 Non-default variables initialisation

The non-default variables initialisation is performed in the subroutine cs_user_initialization (called
only during the calculation initialisation).

At the calculation beginning, the variables are initialised automatically by the code. Velocities and
scalars are set to 0 (or scamax or scamin if 0 is outside the acceptable scalar variation range), and the
turbulent variables are estimated from uref and almax.

For k (of variable index ik) in the k — ¢, R;; — ¢, v2f or k — w models:

k = 1.5(0.02 uref)?

and in R;; —e:

2
For € (of variable index iep) in the k — ¢, R;; — ¢ or v2f models:
PR R Cu
almax

For w (of variable index iomg) in the & — w model:

05 1
almax

w==k

For ¢ and f (of variable indices iphi and ifb) in the v2f models:

For a (of variable index ial) in the EBRSM and BL-v2/k models:
a=1

For 7, in the Spalart-Allmaras model:
. 3
U = 0.02\/;(uref)(a1max)

The subroutine cs_user_initialization allows if necessary to initialise certain variables to values
closer to their estimated final values, in order to obtain a faster convergence.

This subroutine allows also the user to make a non-standard initialisation of physical parameters
(density, viscosity, ...), to impose a local value of the time step, or to modify some parameters (time
step, variable specific heat, ...) in the case of a calculation restart.

NOTE: VALUE OF THE TIME STEP

- For calculations with constant and uniform time step (idtvar=0), the value of the time step is
dtref, given in the parametric file of the interface or in cs_user_parameters.f90.

- For calculations with a non-constant time step (idtvar=1 or 2), which is not a calculation restart,
the value of dtref given in the parametric file of the interface or in cs_user_parameters.f90 is
used to initialise the time step.

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 22/96

- For calculations with a non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was different (for instance, restart using a variable time step of a calculation
run using a constant time step), the value of dtref, given in the parametric file of the interface

or in cs_user_parameters.f90, is used to initialise the time step.

- For calculations with non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was the same (for instance, restart with idtvar=1 of a calculation run
with idtvar=1), the time step is read from the restart file and the value of dtref given in the
parametric file of the interface, or in cs_user_parameters.f90, is not used.

It follows, that for a calculation with a non-constant time step (idtvar=1 or 2) which is a restart of a
calculation in which idtvar had the same value, dtref does not allow to modify the time step. The
user subroutine cs_user_initialization allows modifying the array dt which contains the value of
the time step read from the restart file (array whose size is ncelet, defined at the cell centres whatever

the chosen time step type is).

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

3.3 Manage boundary conditions

The boundary conditions can be specified in the Graphical User Interface (GUI) under the heading
“Boundary conditions” or in the user subroutine cs_user_boundary_conditions called every time
step. With the GUI, each region and the type of boundary condition associated to it are defined in
Figure 12. Then, the parameters of the boundary condition are specified in Figure 13. The colors of
the boundary faces may be read directly from a “preprocessor.log” file created by the Preprocessor.
This file can be generated directly by the interface under the heading “Definition of boundary regions
— Add from Preprocessor log — import groups and references from Preprocessor log”, see Figure 12.

cs_user_boundary_conditions is the second compulsory subroutine for every calculation launched

@®

» | Calculation environment Boundary regions definition
» [Mesh

~ 62 Calculation features Label Zone Nature Selection criteria

|4 Turbulence models inlet Inlet 1
outlet Qutlet 34

Thermal model
= wall_2 Wall Zor3

|4 Body forces =
| coni wall_3 Wall 4 or 7 or range[21, 23]
B jugate heat transfer
R wall_4 wall 5 and y=1
| | Species transport
péi Fluid properties wall_1 wall 24 and box[0.1 -1000,-1000, 0.5, 1000, 1000]

w ® wolume zones
|| Initialization

X Boundary zones

| | Boundary conditions
b At Time settings
b Ar Numerical parameters
» |7 Postprocessing
¥ Performance settings Add Delete

Add from preprocesser log

Import groups and references from preprocessor log E‘

Figure 12: Definition of the boundary conditions

without interface (except in the case of specific physics where the corresponding boundary condition
user subroutine must be used).

When using the interface, only complex boundary conditions (input profiles, conditions varying in
time, ...) need to be defined with cs_user_boundary_conditions. In the case of a calculation launched
without the interface, all the boundary conditions must appear in cs_user_boundary_conditions.

cs_user_boundary_conditions is essentially constituted of loops on boundary face subsets. Several
sequences of call getfbr (’criterion’, nlelt, lstelt) (cf. §77?) allow selecting the boundary
faces with respect to their group(s), their color(s) or geometric criteria. If needed, geometric and
physical variables are also available to the user. These allow him to select the boundary faces using
other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical and
computer documentation [11] of the subroutine condli (for wall conditions, see clptur) (to access
this document on a workstation, use code_saturne info --guide theory).

From the user point of view, the boundary conditions are fully defined by three arrays®: itypfb(nfabor),
icodcl (nfabor,nvar) and rcodcl(nfabor,nvar,3).
- itypfb(ifac) defines the type of the face ifac (input, wall, ...).

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar on the face
ifac (Dirichlet, flux ...).

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet condition, of the flux ...).

9Except with Lagrangian boundary condition

code_saturne
. . , 3
EDF R&D code_saturne version 6.2 practical user’s documentation
B&
b | Calculation environment Boundary conditions
b [Mesh ;
+ o Calculation features Label Zone Nature Selection criteria
. ul del inlet 1 ES
[Turbulence models outlet 2 outlet 34
|| Thermal model wall_2 3 wall 2or3
| Body forces wall_3 4 wall 4 or 7 orrange([21, 23]
) wall_4 5 wall 6 and y=>1
L& Conjugate heat transfer wall’1 6 wall 24 and box[0.1 -1000,-1000, 0.5, 100...
|| Species transport
/4t Fluid properties
v Wy Volume zones
| Initialization
~ == Boundary zones
B Boundary conditions
b At Time settings Conwvective Inlet
b Az Numerical parameters
= .
b 7 Postprocessing
¥ Performance settings
Mapped Inlet
Welocity
norm ~||1.0 m/fs
Direction normal direction to the inlet -
Turbulence
Calculation by hydraulic diameter -
Hydraulic diameter 1.0 m
Thermal
Type |Prescribed value -
temperature - Value 0.0
Species
Type | Prescribed value -
scalarl - value 0.0

Figure 13: Parameters of the boundary conditions

In the case of standard boundary conditions (see §3.3.1), it is sufficient to complete itypfb(ifac)
and parts of the array rcodcl; the array icodcl and most of rcodcl are filled automatically. For
non-standard boundary conditions (see §3.3.2), the arrays icodcl and rcodcl must be fully completed.

3.3.1 Coding of standard boundary conditions

The standard keywords used by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib,
ifrent, ifresf, i_convective_inlet and iindef.

o If itypfb=ientre: inlet face.

— Zero-flux condition for pressure and Dirichlet condition for all other variables. The value
of the Dirichlet condition must be given in rcodcl(ifac,ivar,1) for every value of ivar,
except for ivar=ipr. The other values of rcodcl and icodcl are filled automatically.

o If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

— the eventual sliding wall velocity of the face is found in rcodcl(ifac,ivar,1) (ivar being
iu, iv or iw). The initial values of rcodcl(ifac,ivar,1) are zero for the three velocity

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

components (and therefore are to be specified only if the velocity is not equal to zero).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code only uses the projection of this velocity on the face. As a consequence, if the velocity
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

— For scalars, two kinds of boundary conditions can be defined:

~~ Imposed value at the wall. The user must write
icodcl(ifac,ivar)=>5
rcodcl(ifac,ivar,1)=imposed value

~» Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=imposed flux value (depending on the variable, the user
may refer to the case icodc1=3 of § 3.3.2 for the flux definition).

~» If the user does not fill these arrays, the default condition is zero flux.
o If itypfb=iparug: rough solid wall face, impermeable and with friction.

— the eventual moving velocity of the wall tangent to the face is given by rcodcl(ifac,ivar,1)

(ivar being iu, iv or iw). The initial value of rcodcl(ifac,ivar,1) is zero for the three
velocity components (and therefore must be specified only in the case of the existence of a
slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

— The dynamic roughness must be specified in rcodcl(ifac,iu,3). The values of rcodcl(ifac,iv,3)

stores the thermal and scalar roughness. The values of rcodcl(ifac,iw,3) is not used.
— For scalars, two kinds of boundary conditions can be defined:
~> Imposed value at the wall. The user must write

icodcl(ifac,ivar)=6
rcodcl (ifac,ivar,1)=imposed value

~~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)= imposed flux value (definition of the flux condition ac-
cording to the variable, the user can refer to the case icodc1=3 of the paragraph 3.3.2).

~~ If the user does not complete these arrays, the default condition is zero flux.

o If itypfb=isymet: symmetry face (or wall without friction).
— Nothing to be writen in icodcl and rcodcl.
o If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)
— The pressure is always treated with a Dirichlet condition, calculated with the constraint
o (0P
on \ Ot

calibration is always done on a single face, even if there are several outlets.

) = 0. The pressure is set to Py at the first isolib face met. The pressure

— If the mass flow is coming in, the velocity is set to zero and a Dirichlet condition for the
scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value has
been specified).

— If the mass flow is going out, zero-flux condition are set for the velocity, the scalars and the
turbulent quantities.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

— Nothing is written in icodcl or rcodcl for the pressure or the velocity. An optional Dirichlet
condition can be specified for the scalars and turbulent quantities.

If itypfb=ifrent: free outlet, free inlet (based on Bernoulli relationship) face.

— if outlet, the equivalent to standard outlet. In case of ingoing flux, the Benoulli relationship
which links pressure and velocity is used (see the thory guide for more information). An
additional head loss modelling what is going on outward of the domain can be added by the
user.

If itypfb=ifresf: free-surface boundary condition.

If itypfb=i_convective_inlet: inlet with zero diffusive flux for all transported variables (species
and velocity). This allows to exactly impose the ingoing flux.

If itypfb=iindef: undefined type face (non-standard case).

— Coding is done in a non-standard way by filling both arrays rcodcl and icodcl (see § 3.3.2).

NOTES
e Whatever is the value of the indicator itypfb(ifac), if the array icodcl(ifac,ivar) is modified by
the user (i.e. filled with a non-zero value), the code will not use the default conditions for the variable
ivar at the face ifac. It will take into account only the values of icodcl and rcodcl provided by the
user (these arrays must then be fully completed, like in the non-standard case).
For instance, for a normal symmetry face where scalar 1 is associated with a Dirichlet condition equal
to 23.8 (with an infinite exchange coefficient):

itypfb(ifac)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8
(rcodcl(ifac,isca(1),2)=rinfin is the default value, therefore it is not necessary to specify a value)
The boundary conditions for the other variables are automatically defined.

e The user can define new types of boundary faces. He only must choose a value N and to fully specify
the boundary conditions (see §3.3.2). He must specify itypfb(ifac)=N where N range is 1 to ntypmx
(maximum number of boundary face types), and of course different from the values ientre, iparoi,
iparug, isymet, isolib and iindef (the values of these variables are given in the paramx module).
This allows to easily isolate some boundary faces, in order for instance to calculate balances.

3.3.2 Coding of non-standard boundary conditions

Ifa face does not correspond to a standard type, the user must completely fill the arrays itypfb,
icodcl and rcodcl. itypfb(ifac) is then equal to iindef or another value defined by the user (see
note at the end of § 3.3.1). The arrays icodcl and rcodcl must be filled as follows:

e If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

— rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates an
ideal transfer between the outside and the fluid (default case).

— rcodcl(ifac,ivar,3) is not used.
— rcodcl(ifac,ivar,1) has the units of the variable ivar, i.e.:

~» m/s for the velocity
~ m?/s? for the Reynolds stress

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 27/96
~ m?/s® for the dissipation
~ Pa for the pressure
~> °C for the temperature
~s J.kg~?! for the enthalpy
~ °C? for temperature fluctuations

~ J2.kg™? for enthalpy fluctuations

— rcodcl(ifac,ivar,2) has the following units (defined in such way that when multiplying
the exchange coefficient by the variable, the given flux has the same units as the flux defined
below when icodcl=3):

~ kg.m™2.s7! for the velocity

~ kg.m™2.s71 for the Reynolds stress
~ s.m~! for the pressure

~s Woan=2.°C7! for the temperature
~ kg.m~2.s71 for the enthalpy

e If icodcl(ifac,ivar)=2: radiative outlet at the face ifac for the variable ivar. It reads

% +C g—y = 0, where C' is a to be defined celerity of radiation.
n

— rcodcl(ifac,ivar,3) is not used.

— rcodcl(ifac,ivar,1) is the flux value of ivar at the cell center I’, projection of the center
of the adjacent cell on the straight line perpendicular to the boundary face and crossing its
center, at the previous time step. It corresponds to:

— rcodcl(ifac,ivar,?2) is CFL number based on the parameter C, the distance to the bound-

cdt

ary I'F and the time step: CFL = TE

o If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

— rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:

~ —(Ar + CP%)ZT -n for a temperature (in W/m?)

A
(£ + &)zh -n for an enthalpy (in W/m?).
Op Oh
—(A\p + &)zgp~ﬂ in the case of another scalar ¢ (in kg.m=2.s71.[p], where [¢] are the
Oy
units of).

~ —At VP - n for the pressure (in kg.m2.s71).
~ —(p+ u)VU; - n for a velocity component (in kg.m~1.s72).
~ —uVR;; - n for a R;j tensor component (in W/m?).

e If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for velocity components (U - n = 0) and the R;; tensor
components (for other variables, a zero-flux condition type is usually used).

e If icodcl(ifac,ivar)=>5: friction condition, for wall faces with friction. This condition can not
be applied to the pressure.

~ For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

rcodcl(ifac,iw,1)).

WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

For other scalars, the condition icodcl=5 is similar to icodcl=1, but with a wall exchange
coefficient calculated from a theoretical law. Therefore, the values of
rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) must be specified: see [11].

e If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be used with the pressure.

~

For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and
rcodcl(ifac,iw,1)).

WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

The dynamic roughness height is given by rcodcl(ifac,iu,3) only.

For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

o If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition is only applicable
to velocity components.
If the mass flow at the face is negative, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is positive, the velocity at the face is set to zero (but not the mass
flow).
rcodcl is not used.

o If icodcl(ifac,ivar)=14: generalized symmetry boundary condition for vectors (Marangoni
effect for the velocity for instance). This condition is only applicable to vectors and set a Dirich-
let boundary condition on the normal component and a Neumann condition on the tangential
components.

If the three components are ivarl, ivar2, ivar3, the required values are:

-
_>
—
—
—

%

rcodcl(ifac,ivari,1): Dirichlet value in the = direction.
rcodcl(ifac,ivar2,1): Dirichlet value in the y direction.
rcodcl(ifac,ivar3,1): Dirichlet value in the z direction.
rcodcl(ifac,ivari1,3): flux value for the x direction.
rcodcl(ifac,ivar2,3): flux value for the y direction.

rcodcl(ifac,ivar3,3): flux value for the z direction.

Therefore, the code automatically computes the boundary condition to impose to the normal
and to the tangential components.

NOTE

e A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free
outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodc1=3) for the other variables.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

3.3.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:

e On each face, the boundary conditions of the three velocity components must belong to the same
type. The same is true for the components of the R;; tensor.

e If the boundary conditions for the velocity belong to the “sliding” type (icodcl=4), the conditions
for R;; must belong to the “symmetry” type (icodcl=4), and vice versa.

e If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
boundary conditions for the turbulent variables must belong to the “friction” type, too.

e If the boundary condition of a scalar belongs to the “friction” type, the boundary condition of the
velocity must belong to the “friction” type, too.

In case of mistakes, if the post-processing output is activated (which is the default setting), a special
error output, similar to the mesh format, is produced in order to help correcting boundary condition
definitions.

3.3.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. To ease this
kind of search, an array made of sorted faces is automatically filled (and updated at each time step):
itrifb(nfabor).
ifac=itrifb(i) is the number of the i*® face of type 1.
ifac=itrifb(i+n) is the number of the i*" face of type 2, if there are n faces of type 1.

. ete.

Two auxiliary arrays of size ntypmx are also defined.
idebty(ityp) is the index corresponding to the first face of type ityp in the array itrifb.
ifinty(ityp) is the index corresponding to the last face of type ityp in the array itrifb.

Therefore, a value ifacO found between idebty(ityp) and ifinty(ityp) is associated to each face
ifac of type ityp=itypfb(ifac), so that ifac=itrifb(ifac0).

If there is no face of type ityp, the code set
ifinty(ityp)=idebty(ityp)-1,

which enables to bypass, for all the missing ityp, the loops such as
do ii=idebty(ityp),ifinty(ityp).

The values of all these indicators are displayed at the beginning of the code execution log.

3.3.5 Boundary conditions with LES
3.3.5.1 Synthetic Eddy Method

The user file cs_user_les_inflow.f90 allows to generate the unsteady boundary conditions for the
LES by the Synthetic Eddy Method. The basic principle of this method is illustrated in figure 14:
the turbulent fluctuations at the inlet are generated by a set of synthetic eddies advected across the
inlet boundaries. The eddies evolve in a virtual “box” surrounding the inlet boudaries and each of
them contributes to the normalized velocity fluctuations, depending on its relative position with the
inlet faces and on a form function characterizing the shape of the eddies. By this way, the Synthetic
Eddy Method provides a coherent flow with a target mean velocity and target Reynolds stresses at
LES inlet.

WARNING: As for laminar or RANS inlets, the type of boundary for LES inlets is ientre. It has
to be specified in the GUI or in the cs_user_boundary_conditions surboutine. On the contrary, if
Dirichlet values are given for these faces in the GUI or in the cs_user_boundary_conditions subroutine
(rcodcl(ifac,ivar,1) array), they are erased by those provided by the Synthetic Eddy Method.

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 30/96

v/SEM

3.500e+00
1.750e+00
0.000e+00

-1.750e+00
-3.500¢+00

Figure 14: Illustration of the principle of the Synthetic Eddy Method, with S the inlet boundary, B
the virtual box and U, the advection velocity of the eddies

In the current version of code_saturne, the Synthetic Eddy Method is not available through the GUI
but only through the cs_user_les_inflow.f90 user file. The user file contains 3 subroutines:

e cs_user_les_inflow_init (mandatory): global definition of synthetic turbulence inlets
e cs_user_les_inflow_define (mandatory): specific definition of each synthetic turbulence inlet

e cs_user_les_inflow_advanced (not mandatory): advanced definition of each synthetic turbu-
lence inlet

cs_user_les_inflow_init: this subroutine defines some global parameters shared by all LES inlets.
These parameters are:

e nent: number of LES inlet boundaries

e isuisy: in case of a restart calculation, it indicates if the synthetic turbulence is re-initialize (0)
or read from the previous calculation (1). In that case, the checkpoint folder must contain the
les_inflow restart file. This file is generated during a computation with synthetic turbulence,
at the same physical times as the main and auxiliary restart files.

cs_user_les_inflow_define: this subroutine defines the specific parameters of each LES inlet. These
parameters are:

e typent: type of LES inflow method. The Synthetic Eddy Method corresponds to typent=3. For
the sake of comparision, other methods can be selected through this user file (see remark 2).

e nelent: number of synthetic eddies in the “box”. This parameter might be adjusted, depending
on the case (in particular the size of the inlet plane and the level of turbulence). As a general rule,
the greater is the better since an insufficient number can lead to an intermittent signal while some
numerical tests have shown that this parameter does not have a great influence beyond a threshold
value. Given the inlet of size h? of a shear flow at a given Reynolds number Re = u,h/v, an
appropriate number of eddies can be evaluated by (Re/50)? (Re and 50 approximates respectively
the size, in wall unit, of the largest and the smallest synthetic eddy. Note the latter can depend
on the grid size, see remark 1).

e iverbo: level of verbosity in the log. iverbo=1 provides mainly informations about the size of
the eddies and the size of the “box” surrounding the inlet boundary.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 31/96

e nfbent and 1fbent: number and list of boundary faces composing the LES inlet boundary.

e vitent: reference mean velocity at inlet. This parameter imposes the target mean veloc-
ity at inlet. A finer (non homogeneous) definition of the mean velocity can be done in the
cs_user_les_inflow_advanced subroutine (see below).

e enrent: reference turbulence kinetic energy k at inlet. This parameter imposes the target
Reynolds stresses R;; at inlet, computed by R;; = %k(?ij (isotropy). A finer (non isotropic and/or

non homogeneous) definition of the Reynolds stresses can be done in the cs_user_les_inflow_advanced

subroutine (see below).

e dspent: reference dissipation rate € at inlet. This parameter is used to compute the size of the
synthetic eddies (see remark 1). A finer (non homogeneous) definition of the dissipation rate can
be done in the cs_user_les_inflow_advanced subroutine (see below).

cs_user_les_inflow_advanced: this optional subroutine enables to give an accurate (non homoge-
neous) specification of inflow statistics: mean velocity (uvwent array), Reynolds stresses (rijent
array) and dissipation rate (epsent array). In that case, this accurate specification replaces the one
given in cs_user_les_inflow_define subroutine (vitent, enrent and dspent variables).

REMARK 1: The specification of the dissipation rate € at inlet is used to compute the size o; of the
synthetic eddies in the i cartesian direction. One has:

3 \3/2
O'izmaX{C(zl%Z),A}, C =0.5.

A is a reference size of the grid, in order to assume that all synthetic eddies are discretized. In the
implementation of code_saturne, it is computed at each inlet boundary face F' as:

A =2 max {|x¥—xzc|}
i<3,Vey

with V the subset of the vertices of the boundary face F' and C' the cell adjacent to F.

REMARK 2: For the sake of comparison, others LES inflow methods are available through the
cs_user_les_inflow.f90 user file, in addition to the Synthetic Eddy Method:

e The Batten method corresponds to typent=2 in cs_user_les_inflow_define subroutine. With
this method, the inflow velocity signal is the superposition of several Fourier modes. The number
of modes is indicated through the nelent keyword. As for Synthetic Eddy Method, the mean
velocity, the turbulent kinetic energy and the dissipation rate have to be specified at inlet: either
giving their reference values (vitent, enrent and dspent) in the cs_user_les_inflow define
subroutine, either providing an accurate local description in the cs_user_les_inflow_advanced
subroutine.

e typent=1: turbulent fluctuations are given by a Gaussian noise. The mean velocity and Reynolds
stresses have to be specified (in cs_user_les_inflow_define or in cs_user_les_inflow_advanced).
The other parameters of the user subroutines are useless. The turbulent fluctuations provided
by this method are much less realistic than those provided by the Synthetic Eddy Method or
the Batten method. Especially for low Reynolds number flows, this could lead to the rapid
dissipation of this fluctuations and the laminarization of the flow.

e typent=0: No fluctuation. This method does not require any parameter. It should be reserved
to regions where the flow is laminar.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 32/96

3.4 Manage the variable physical properties
3.4.1 Basic variable physical properties

When the fluid properties are not constant, the user is offered the choice to define the variation laws in
the Graphical User Interface (GUI) or in the subroutine cs_user_physical _properties which is called
at each time step. In the GUI, in the item “Fluid properties” under the heading “Physical properties”,
the variation laws are defined for the fluid density, viscosity, specific heat, thermal conductivity and
scalar diffusivity through the use of a formula editor, see Figure 15 and Figure 16.

()]
b |4 Calculation environment
b [Mesh) .
» ¢ Calculation features Material user_material -
Fluid properties Method user_properties ~

= Volume zones

++ Boundary zones

At Time settings

Ar Numerical parameters
7 Postprocessing

#¥ Performance settings

Reference total pressure

rFvrvowwr

value 101325.0 Pa

Reference temperature

value 293.15 °C

(used for properties initialization)
Density

constant =

Reference value p 1.17862 kgfm?
Viscosity

constant -

Reference value u |1.83e-05 Pa.s
Specific heat

constant -

Reference value €, 1017.24 IfkglK
Thermal cenductivity

constant -

Reference value 3 |0.02485 Wim/K
Diffusion coefficient of species

Name |scalarl =

constant -

Reference value |1.83e-05 mi/s

Figure 15: Physical properties - Fluid properties

If necessary, all the variation laws related to the fluid physical properties are written in the subroutine
cs_user_physical_properties.

The validity of the variation laws must be checked, particularly when non-linear laws are defined (for
instance, a third-degree polynomial law may produce negative density values).

WARNING

o If the user wishes to impose a variable density or variable viscosity in usphyv, it must be flagged
either in the interface or in cs_user_parameters.f90(irovar=1, ivivar=1).

)10

e In order to impose a physical property (p, 1, A, Cp)'°, a reference value should be provided in

10Except for some specific physics

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 33/96

User expression | Predefined symbols = Examples

Air density
density = -1.283 * (273.15 / temperature ;

Density for mixture of gases

#¥l: m

¥i:

fraction of componer
fraction of componer

o ot
(=Y

[

d
d

o Lo

3
3

rhol = 1.25051;
rhoZ = 1.7832;

A = Yl / rhol, + YZ/rhol ;
density = 1.0/4;

Cancel | oK |

Figure 16: Definition of a user law for the density

the interface or in cs_user_parameters.f90 (in particular for p, the pressure will be function of
P0gz)

e By default, the C), coeflicient and the diffusivity for the scalars iscal (Ap for the temperature)
are considered as constant in time and uniform in space, with the values cp0 and vislsO(iscal)
specified in the interface or in cs_user_parameters.f90.
To assign a variable value to Cp, the user must specify it in the interface (with a user law) or
assign the value 1 to icp in cs_user_parameters.f£90, and fill for each cell iel the array cpro_cp
which can be retrieved by calling field_get_val_s(icp, cpro_cp) in cs_user_physical_properties.
NB: completing the array cpro_cp while icp=0 induces array overwriting problems and produces
wrong results.

e In the same way, to have variable diffusivities for the scalars iscal, the user must specify it in
the interface (with a user law) or calling field set_key_int(ivarfl(isca(iscal)), kivisl,
0) in cs_user_parameters.f90 (in usipsu), and complete for each cell iel the values array
of the field id ifcvsl returned by calling field get key_id(ivarfl(isca(iscal)), kivisl,
ifcvsl) in cs_user_physical_properties.

Note: The scalar diffusivity id must not be defined for user scalars representing the average
of the square of the fluctuations of another scalar, because the diffusivity of a user scalar jj
representing the average of the square of the fluctuations of a user scalar kk comes directly from
the diffusivity of this last scalar. In particular, the diffusivity of the scalar jj is variable if the
diffusivity of kk is variable.

3.4.2 Modification of the turbulent viscosity

The subroutine usvist is used to modify the calculation of the turbulent viscosity, i.e. p in kg.m=!.s71
(this piece of information, at the mesh cell centres, is conveyed by the variable cpro_visct which can be
retrieved by calling field get_val_s(ivisct, cpro_cp)). The subroutine is called at the beginning
of every time step, after the calculation of the physical parameters of the flow and of the “conventional”
value of y; corresponding to the chosen turbulence model (indicator iturb).

WARNING: The calculation of the turbulent viscosity being a particularly sensible stage, a wrong use
of usvist may seriously distort the results.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 34/96

3.4.3 Modification of the variable C of the dynamic LES model

Subroutine called every time step in the case of LES with the dynamic model.

The subroutine ussmag is used to modify the calculation of the variable C' of the LES sub-grid scale
dynamic model.

It worth to recalling that the LES approach introduces the notion of filtering between large eddies and
small motions. The solved variables are said to be filtered in an “implicit” way. Sub-grid scale models
(“dynamic” models) introduce in addition an explicit filtering.

The notations used for the definition of the variable C' used in the dynamic models of code_saturne
are specified below. These notations are the ones assumed in the document [3], to which the user may
refer to for more details.

The value of a filtered by the explicit filter (of width i) is called a and the value of a filtered by the
implicit filter (of width A) is called @. We define:

= a, |, 01 s foe o
Sij = (8 ﬁ + axi) |[S]| = /28545

R Vot ,
ay =24 |[8|[S;; By = ~2B7)IS1IS;)
Lij = wy —wuy My = ouj — Bij

In the framework of LES, the total viscosity (molecular + sub-grid) in kg.m~1.s~! may be written in

code_saturne:

Htotal = W+ Usub-grid if Hsub-grid > 0
= ©u otherwise (5)
. 72 qQ
with figub-gria = pCA[[S]|

A is the width of the implicit filter, defined at the cell €; by
A= XLESFL % (ALES x |Q;|)BLES .

In the case of the Smagorinsky model (iturb=40), C is a constant which is worth C2. C? is the
so-called Smagorinsky constant and is stored in the variable csmago.

In the case of the dynamic model (iturb=41), C is variable in time and in space. It is determined by
M;; Lij M;;Liy

Mklel

In practice, in order to increase the stability, the code does not use the value of C' obtained in each
cell, but an average with the values obtained in the neighbouring cells (this average uses the extended
neighbourhood and corresponds to the explicit filter). By default, the value calculated by the code is
o M;; Lij
Mg My

The subroutine ussmag allows to modify this value. It is for example possible to calculate the local
average after having calculated the ratio

M; ng]
C=
|:Mklel

WARNING: The subroutine ussmag can be activated only when the dynamic model is used.

3.5 User source terms

Assume, for example, that the user source terms modify the equation of a variable ¢ in the following
way:
d¢

pﬁ—k‘..:...ﬁ‘sz'mplx@'*‘sexpl

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 35/96

The example is valid for a velocity component, for a turbulent variable (k, €, R;;, w, ¢ or f) and for
a scalar (or for the average of the square of the fluctuations of a scalar), because the syntax of all the
subroutines ustsnv, cs_user_turbulence_source_terms and ustssc in the cs_user_source_terms
file is similar.

In the finite volume formulation, the solved system is then modified as follows:

(pit_z - Qisimpl,i> (@5 T _ gag)) +...=...+ Qisimpl7igp§) 4 i Seapt.i

The user needs therefore to provide the following values:
crvimp, = ;Simpl,i
crvexp; = i Seapl,i

At;
equation really taken into account by the code is the following:

Q.
In practice, it is essential for the term (pl - - Ql-Simpl,i> to be positive. To ensure this property, the

<pA1t-l - Mln(QiSimpl,ﬁ 0)) ((pg +) _ gOZ(«)) +...=...+ Qisimpl7igpz(.) + QiSempl,i

To make the “implicitation” effective, the source term decomposition between the implicit and explicit
parts will be done by the user who must ensure that crvimp, = Q;S;mp; is always negative (otherwise
the solved equation remains right, but there will not be “implicitation”).

WARNING: When the second-order in time is used along with the extrapolation of the source terms'!,

it is no longer possible to test the sign of Simpi,i, because of coherence reasons (for more details, the
user may refer to the theoretical and computer documentation [11] of the subroutine preduv). The
user must therefore make sure it is always positive (or take the risk to affect the calculation stability).

PARTICULAR CASE OF A LINEARISED SOURCE TERM

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Consider an equation of the type:

dp
T _F
P 5 ()
To make it implicit using the following method:
pid; ((n+1) (n)) Q (n) ((n+1) (n)) dF |
it (¢ — ol = O |F((— ™) 2 (L
At SO'L 902 (cpz) + 807, (101 dSO (807,)

Qi%(wg) x @M {F(%()= = () x)]

The user must therefore specify:
F
crvimp, = Qlj—@(gpgn))
ervexp; = i | Fo{"”) = = (") x o[
®
Ezxzample:

0
If the equation is pa—f = —K?, the user must set:

crvimp, = —QKQZ-cpEn)

crvexp, = K; [@E")]Q

Hindicator isno2t for the velocity, isto2t for the turbulence and isso2t for the scalars

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 36/96

3.5.1 In Navier-Stokes

The source term in Navier-Stokes can be filled in thanks to the GUI or the cs_user_source_terms user
file. Without the GUI, the subroutine ustsnv is used to add user source terms to the Navier-Stokes
equations (at each time step).

ustsnv is called only once per time step; for each cell iel, the vector crvexp(.,iel) (explicit part)
and the matrix crvimp(.,.,iel) (implicit part) must be filled in for the whole velocity vector.

3.5.2 Forkand:c

Subroutine called every time step, for the k — e and the v2f models.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the turbulent dissipation €. This subroutine is
called every time step (the treatment of the two variables k and ¢ is made simultaneously). The user is
expected to provide the arrays crkimp and crkexp for k, and creimp and creexp for €. These arrays
are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine ustsnv. The
way of making implicit the resulting source terms is the same as the one presented in ustsnv. For ¢
and f in the v2f model, see cs_user_turbulence_source_terms, §3.5.4.

3.5.3 For R;;and ¢

Subroutine called every time step, for the R;; — e models.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the Reynolds stress variables R;; and to the turbulent dissipation ¢. This subroutine is
called 7 times every time step (once for each Reynolds stress component and once for the dissipation).
The user must provide the arrays crvimp and crvexp for the field variable of index f_id (referring
successively to ir1l, ir22 ir33, ir12, ir13, ir23 and iep). These arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. The method for impliciting
the resulting source terms is the same as that presented in ustsnv.

3.54 Forypand f

Subroutine called every time step, for the v2f models.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the variables ¢ and f of the v2f p-model. This subroutine is called twice every time
step (once for ¢ and once for f). The user is expected to provide the arrays crvimp and crvexp
for ivar referring successively to iphi and ifb. Concerning ¢, these arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. Concerning f, the equation
is slightly different:

LQdZU(Z(f)) = f +.o+ Simpl X f =+ Seacpl

In the finite volume formulation, the solved system is written as:

—\(n 1 —(n+1 —(n+1
z(f)(+1)dS == (Q,fq() + ...+ QiSimpl,ifl(-) + Qisexpm)
o0 L'L

The user must then specify:
crvimp, = £;Simpl,i
crvexp, = ;Sexpi i

The way of making implicit the resulting source terms is the same as the one presented in ustsnv.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 37/96

3.5.5 Forkandw

Subroutine called every time step, for the k —w SST model.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the specific dissipation rate w. This subroutine
is called every time step (the treatment of the two variables k and w is made simultaneously). The
user is expected to provide the arrays crkimp and crkexp for the variable k, and the arrays crwimp
and crwexp for the variable w. These arrays are similar to the arrays crvimp and crvexp given for
the velocity in the user subroutine ustsnv. The way of making implicit the resulting source terms is
the same as the one presented in ustsnv.

3.5.6 Fory

Subroutine called every time step, or the Spalart-Allmaras model.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent viscosity v; for the Spalart-Allmaras model. This subroutine is called
every time step. The user is expected to provide the arrays crkimp and crkexp for the variable 7.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsnv. The way of making implicit the resulting source terms is the same as the one presented in
ustsnv.

3.5.7 For user scalars

Subroutine called every time step.

The source terms in the transport equations related to the user scalars (passive or not, average of the
square of the fluctuations of a scalar, ...) can be filled in thanks to the GUI or the cs_user_source_terms
user file. Without the GUI, the subroutine ustssc is used to add source terms to the transport equa-
tions related to the user scalars. In the same way as ustsnv, this subroutine is called every time step,
once for each user scalar. The user must provide the arrays crvimp and crvexp related to each scalar.
cvimp and crvexp must be set to 0 for the scalars on which it is not wished for the user source term
to be applied (the arrays are initially set to 0 at each inlet in the subroutine).

3.6 Pressure drops (head losses) and porosity
3.6.1 Head losses

Pressure drops can be defined in the Graphical User Interface (GUI) or in the user sources. In the
GUI, the page “Volume zones” allows to define areas where pressure drops are applied, see an example
in fig 17. The item “Head losses” allows to specify the head loss coefficients, see Figure 18. The tensor
representing the pressure drops is supposed to be symmetric and positive.

In the user sources, two files can be of use: cs_user_zones.c (called at the computation start)
to define a volume zone and cs_user_head losses.c (called at each iteration) to specify the val-
ues of the head losses coefficients. Note that volume zones defined with the GUI are available in
cs_user_head_losses.c.

See the associated doxygen documentation for examples.

3.6.2 Porosity

Porous zones can be set through the GUI in the “Volume zones” page. Alternatively, porous zones can
be defined in the user source cs_user_porosity.c and the porous model shall be chosen by setting the
keyword iporos in cs_user_parameters file. See the associated doxygen documentation for examples.

code_saturne
. . ’ 3
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 38/96
@

b |4 Calculation environment Definition of volume regions

b [Mesh = —

» ¢ Calculation features Label Zone Nature Selection criteria

/4t Fluid properties Initialization i .
et € R) 2 L 2R 0

|4 Initialization
|| Head losses

b +=+ Boundary zones
b At Time settings
b Ar Numerical parameters
b |7 Postprocessing
Performance settings
Add Delete Modify
Add from preprocesser log
Import groups and references from preprocessor log

Figure 17: Creation of head losses region

Em®
» | Calculation environment Select volume zone for head losses
b [Mesh

Label Zone Selection criteria
box[0.2, -0.75, -1000, 0.4, -0.25, 1000]

» ¢y Calculation features
A4 Fluid properties
~ =, olume zones
|4 Initialization
b ++ Boundary zones
b At Time settings
b Ax Numerical parameters
» |7 Postprocessing
Performance settings

Tensor coefficients

Head losses coefficients: pdU/dt = -0.5pa (U] Uj
Qg | 200000 ayy | 200000 az 200000

Reference frame transformation matrix
Figure 18: Head losses coefficients

Porous zones are defined at the beginning of the computation once and for all.

3.7 Management of the mass sources

The subroutine cs_user mass_source_terms is used to add a density source term in some cells of the
domain (called at each time step). The mass conservation equation is then modified as follows:

ap , B
E +div(pu) =T

I is the mass source term expressed in kg.m3.s71.

The presence of a mass source term modifies the evolution equation of the other variables, too. Let
¢ be any solved variable apart from the pressure (velocity component, turbulent energy, dissipation,
scalar, ...). Its evolution equation becomes:

dp

= T —
Pa T +T(pi —)

©; is the value of ¢ associated with the mass entering or leaving the domain. After discretisation, the

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 39/96

equation may be written:

P+ _ p(m)

= 4T(p — 0D
p Az + +T(pi — ¢)

For each variable ¢, there are two possibilities:

e We can consider that the mass is added (or removed) with the ambient value of ¢. In this case
@i = ("1 and the equation of ¢ is not modified.

e Or we can consider that the mass is added with an imposed value ; (this solution is physically
correct only when the mass is effectively added, T" > 0).

This subroutine is called three times every time step.

e During the first call, all the cells are checked to know the number of cells containing a mass
source term. This number is called ncesmp in cs_user mass_source_terms (and corresponds to
ncetsm). It is used to lay out the arrays related to the mass sources. If there is no mass source,
ncesmp must be equal to zero (it is the default value, and the rest of the subroutine is then
useless).

e During the second call, all the cells are checked again to complete the array icetsm whose

dimension is ncesmp. icetsm(ieltsm) is the number of the ieltsm™ cell containing a mass
source.

e During the third call, all the cells containing mass sources are checked in order to complete the

arrays itypsm(ncesmp,nvar) and smacel(ncesmp,nvar):

th cell

- itypsm(ieltsm,ivar) is the flow type associated with the variable ivar in the ielstm
containing a mass source.
itypsm=0: ¢; = 1) condition
itypsm=1: imposed ¢; condition
itypsm is not used for ivar=ipr
- smacel (ieltsm,ipr) is the value of the mass source term I', in kg.m=3.s71.
- smacel (ieltsm,ivar), for ivar different from ipr, is the value of ; for the variable ivar in

the ielstm™ cell containing a mass source.

NOTES

o If itypsm(ieltsm,ivar)=0, smacel(ieltsm,ivar) is not used.

o If '=smacel(ieltsm,ipr) <0, mass is removed from the system, and code_saturne considers
automatically a ¢; = (1) condition, whatever the values given to itypsm(ieltsm,ivar) and
smacel (ieltsm,ivar) (the extraction of a variable is done at ambient value).

The three calls are made every time step, so that variable mass source zones or values may be treated.

For the variance, do not take into account the scalar ¢; in the environment where ¢ # ¢; generates a
variance source.

3.8 User law editor of the GUI

A formula interpreter is embedded in code_saturne, which can be used through the GUI. In order to
call the formula editor of the GUI, click on the button:

The formula editor is a window with three tabs:

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

e User expression

This tab is the formula editor. At the opening of the window only the required symbols are dis-
played. The syntax colorization shows to the user symbols which are required symbols, functions,
or user variables. Each expression must be closed by a semicolon (“;”). The required symbols
must be present in the final user law. A syntax checker is used when the user clicks on the OK

button.

User expression | Predefined symbols = Examples

Alr density
density = -1.293 * (273.15 / temperature ;

Denzity for mixtuwre of gases

¥l: m
Yl m

rhaol
rhoZ

A=

[

fraction of component

EEE]
ass fraction of component

Lo In
[

= 1.25051;
= 1.783Z;

Y1 / rhol + (YZ/rhoeZ ;

density = 1.0/4;

e Predefined symbols

Cancel [0] ¢

Figure 19: Example of the user law editor

There are three types of symbols

Useful functions:

cos: cosine

sin: sine

tan: tangent
exp: exponential

sqrt: square root

log: Napierian logarithm

acos: arc cosine

asin: arc sine

atan(x): arc tangent (arc tangent of x in radians; the return value is in the range [-pi/2, pi/2])

atan2(y,x): arc tangent (arc tangent of y/x in radians; the return value is in the range [-pi, pi])

cosh: hyperbolic cosine

sinh: hyperbolic sine

tanh: hyperbolic tangent

abs: absolute value

mod: modulo

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
int: floor

min: minimum

max: maximum

Useful constants:

pi = 3.14159265358979323846
e = 2.718281828459045235

Operators and statements:
+ - %/ A
! < > <= >= = = && I

while if else print

e Examples

This tab displays examples of formula, which could be copy and paste.

3.9 Modification of the variables at the end of a time step

The subroutine cs_user_extra operations is called at the end of every time step. It is used to print
of modify any variable at the end of every time step.

Several examples are given in the directory EXAMPLES:

- Calculation of a thermal balance at the boundaries and in the domain (including the mass source
terms)

- Modification of the temperature in a given area starting from a given time

- Extraction of a 1D profile (which is also possible with the GUI, see Figure ?7)

- Printing of a moment

- Usage of utility subroutines in the case of a parallel calculation (calculation of a sum on the

processors, of a maximumn, ...)

WARNING: As all the variables (solved variables, physical properties, geometric parameters) can be
modified in this subroutine, a wrong use may distort totally the calculation.

The thermal balance example is particularly interesting.

- It can be easily adapted to another scalar (only three simple modifications to do, as indicated in
the subroutine).

- It shows how to make a sum on all the sub-domains in the framework of a parallel calculation
(see the calls to the subroutines par*).

- It shows the precautions to take before doing some operations in the framework of periodic or
parallel calculations (in particular when we want to calculate the gradient of a variable or to
have access to values at the neighbouring cells of a face).

- Finally it must not be forgotten that the resolution with temperature (and not enthalpy) as a
solved variable is questionable when the specific heat is not constant.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

4 Advanced modelling setup

4.1 Use of a specific physics

Specific physics such as dispersed phase, atmospheric flows, gas combustion, pulverised fuel combus-
tion, electrical model and compressible model can be added by the user from the interface, or by
using the subroutine usppmo of the cs_user_parameters.f90 file (called only during the calculation
initialisation). With the interface, when a specific physics is activated in Figure 20, additional items
or headings may appear (see for instance Sections 4.6.4 and 4.2.0.1).

B
» |4 Calculation environment Flow Models
» [Mesh
Calculation features e Standard Eulerian single phase Incompressible
|4 Turbulence models atmospheric

|4 Thermal model
|4 Body forces
| 4 Species transport Groundwater
A Fluid properties
» ®, Wolume zones
» ++ Boundary zones Hoemeogeneous Eulerian - VoF model
b At Time settings |
¥ As Numerical parameters
» [7 Postprocessing
#k Performance settings

Electric arcs

Reactive flows (combustion)

Additional Features

Eulerian-Lagrangian model off
Turbemachinery model None
Deformable mesh (ALE method)

Fans (source-term model)

Figure 20: Specific physics models selection

When the interface is not used, usppmo is one of the three subroutines which must be completed by the
user in order to use a specific physics module (only heavy fuel combustion is not available with the GUT).
At the moment, code_saturne allows to use two “pulverised coal” modules (with Lagrangian coupling or
not) and one “pulverised heavy fuel” module, two “gas combustion” modules, two “electrical” modules,
a “compressible” module, and an “atmospheric” module. To activate one of these modules, the user
must complete one (and only one) of the indicators ippmod(i.....) in the subroutine usppmo. By
default, all the indicators ippmod(i.....) are initialised at -1, which means that no specific physics
is activated.

e Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod (icod3p)

— ippmod(icod3p) = 0 adiabatic conditions
— ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)
— ippmod(icod3p) =-1 module not activated

e Eddy Break Up pre-mixed flame: indicator ippmod (icoebu)

— ippmod(icoebu) = 0 adiabatic conditions at constant richness
— ippmod(icoebu) = 1 permeatic conditions at constant richness
— ippmod(icoebu) = 2 adiabatic conditions at variable richness

— ippmod(icoebu) = 3 permeatic conditions at variable richness

— ippmod(icoebu) =-1 module not activated
e Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

— ippmod(icolwc)=0 two peak model with adiabiatic conditions.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 43/96
— ippmod(icolwc)=1 two peak model with permeatic conditions.
— ippmod(icolwc)=2 three peak model with adiabiatic conditions.
— ippmod(icolwc)=3 three peak model with permeatic conditions.
— ippmod (icolwc)=4 four peak model with adiabiatic conditions.
— ippmod (icolwc)=>5 four peak model with permeatic conditions.

— ippmod(icolwc)=-1 module not activated.

e Multi-coals and multi-classes pulverised coal combustion: indicator ippmod(iccoal) The number
of different coals must be less than or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be less than or equal to ncpemx = 10.

— ippmod(iccoal) = 0 imbalance between the temperature of the continuous and the solid
phases
— ippmod(iccoal) = 1 otherwise

— ippmod(iccoal) =-1 module not activated
o Multi-classes pulverised heavy fuel combustion: indicator ippmod(icfuel)

— ippmod(icfuel) = 0 module activated
— ippmod(icfuel) =-1 module not activated
e Lagrangian modelling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod(icpl3c) The number of different coals must be less than or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be less than or equal to
ncpemx = 10.
— ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of Hs
— ippmod(icpl3c) =-1 module not activated
e Electric arcs module (Joule effect and Laplace forces): indicator ippmod (ielarc)
— ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)
— ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

— ippmod(ielarc) =-1 module not activated
e Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

— ippmod(ieljou) = 1 use of a real potential

— ippmod(ieljou) = 2 use of a complex potential

— ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.
%

ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

— ippmod(ieljou) =-1 module not activated
e Compressible module: indicator ippmod (icompf)

— ippmod(icompf) = 0 module activated

— ippmod(icompf) =-1 module not activated
e Atmospheric flow module: indicator ippmod(iatmos)

— ippmod(iatmos) =-1 module not activated

— ippmod(iatmos) = 0 standard modelling

code_saturne
documentation

EDF R&D
Page 44/96

code_saturne version 6.2 practical user’s
guide

— ippmod(iatmos) = 1 dry atmosphere
— ippmod(iatmos) = 2 humid atmosphere

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modelling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default
value being 1). For more details, the user may refer to the following note (thermochemical files).

NOTE: THE THERMO-CHEMICAL FILES
The user must not forget to place in the directory DATA the thermochemical file dp_C3P, dp_C3PSJ or
dp-ELE (depending on the specific physics module he activated) Some example files are placed in the

directory DATA/REFERENCE at the creation of the study case. Their content is described below.

e Example of file for the gas combustion:

— if the enthalpy-temperature conversion data base JANAF is used: dp_C3P (see array 1).

Lines| Examples of values Variables Observations
1 5 ngaze Number of current species
2 10 npo Number of points for the
enthalpy-temperature table
3 300. tmin Lower temperature limit
for the table
4 3000. tmax Upper temperature limi t
for the tabulation
5 Empty line
6 |CH4 02 CO2 H20 N2 nomcoe(ngaze) List of the current species
7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species
8 4 nato Number of elemental species
9 01210100 wmolat(nato), Molar mass of the elemental
10 .00140020 species (first column)
11 01602210 atgaze(ngaze,nato) Composition of the current species
12 .01400002 as a function of the elemental species
(ngaze following columns)
13 3 ngazg Number of global species
Here, ngazg = 3 (Fuel, Oxidiser and Products)
14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) function of the current species of line 6
16 0. 0. 1. 2. 752 In the order: Fuel (line 15),
Oxidiser (line 16) and Product (line 17)
17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1
in this version)
18 igfuel(nrgaz), Numbers of the global species concerned by
12-1-9.5210.52 igoxy(nrgaz), the stoichiometric ratio
(first 2 integers)
stoeg(ngazg,nrgaz) Stoichiometry in global species reaction.
Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for
the products (here “Products”)

— if the user provides his own enthalpy-temperature tabulation (there must be three chemical

Table 1: Example of file for the gas combustion when JANAF is used: dp_C3P

species and only one reaction): dp_-C3PSJ (see array 2). This file replaces dp_C3P.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 45/96
Lines Examples of values Variables Observations
1 6 npo Number of tabulation points
2 50. -0.32E4-07 -0.22E4-06 -0.13E4-08
3 |250. -0.68E+06 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E407 0.14E+06 -0.13E408 | ehgazg(1l,npo),| mass enthalpies of fuel, oxidiser
5 650. 0.50E+07 0.33E+06 -0.12E+08 | ehgazg(2,npo), | and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 | ehgazg(3,npo) from line 2 to line npo+1
7 |1050. 0.11E+08 0.76E+06 -0.11E+08
8 .00219 .1387 .159 wmolg(1), Molar masses of fuel,
wmolg(2), oxidiser
wmolg(3) and products
9 11111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)
10 0.4 0.5 0.87 ckabsg(1), |Absorption coeflicients of the fuel,
ckabsg(2), oxidiser
ckabsg(3) and products
11 1. 2. xco2, xh20 Molar coefficients of C'O2
and H2O in the products
(using Modak radiation)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature

table (there must be three species and only one reaction): dp_C3PSJ (this file replaces dp_C3P)

Lines

Examples of values

Variables

Observations

1

Free format ASCII file ...

Free comment

Comment lines ...

Free comment

ST

Free comment

Argon propoerties ...

Free comment

.

Free comment

No of NGAZG and No ...

Free comment

NGAZG NPO ...

Free comment

0| | | O x| W N

1238 ngazg

npo

Number of given temperature points for
the tabulated physical properties
(npo < npot set in ppthch)
So there will be ngazg blocks of npo lines each

Number of species

Free comment

14

ixkabe

Radiation options for xkabe

15

Free comment

16

Propreties ...

Free comment

17

T H ..

Free comment

18

Temperature Enthalpy ...

Free comment

19

Free comment

20

K J/kg ...

Free comment

21

| Fe | [F | F 3 F| 23

Free comment

22

300. 14000. ...
h
roel
cpel
sigel
visel

xlabel
xkabel

In line tabulation of the physical properties
as a function of the temperature in Kelvin
for each of the ngazg species

Specific heat in J/(kg K)
Electric conductivity in Ohm/m
Dynamic viscosity in kg/(m s)
Thermal conductivity in W/(m K)
Absorption coefficient (radiation)

Enthalpy in J/kg
Density in kg/m3

Table 3: Example of file for the electric arcs module: dp_ELE

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 46/96

e Example of file for the electric arcs: dp_ELE (see array 3).

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

4.2 Pulverised coal and gas combustion module (needs update)
4.2.0.1 Initialisation of the variables

For coal combustion, it is possible to initialise the specific variables in the Graphical User Interface
(GUI) or in the subroutine cs_user_initialization. In the GUI, when a coal combustion physics
is selected in the item “Calculation features” under the heading “Thermophysical models”, an addi-
tional item appears: “Pulverized coal combustion”. In this item the user can define coal types, their
composition, the oxidant and reactions parameters, see Figure 21 to Figure 24.

(=153

b | 5 Calculation environment Model = Fuel | Oxidant
b [1] Mesh
- ¢y Calculation features Fuels characterization

| 4 Turbulence models

Name Type
(& Thermal model SolidFuel_1 coal
| | Body forces SolidFuel”2 coal Add
B Pulverized fuel combustion
| 4 Conjugate heat transfer Delete

| 4 Species transport
P4t Fluid properties
", Volume zones Classes
»+ Boundary zones
At Time settings Diameter type | user define -
Az Numerical parameters
-7 Postprocessing
¥k Performance settings

Size distribution | Solid fuel | Devolatilisation = Char combustion | NO: © #

class number Initial diameter (m)
Class 1 0.000122
Class 2 0.000122

rvrvww

Add

Delete

Figure 21: Thermophysical models - Pulverized coal combustion, coal classes

If the user deals with gas combustion or if he (or she) does not want to use the GUI for coal combustion,
the subroutine cs_user_initialization must be used (only during the calculation initialisation).
In this section, “specific physics” will refer to gas combustion or to pulverised coal combustion.

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

It should be recalled again that the user can access the array of values of the variables as described
in the the doxygen documentation dedicated to the fields management. In the following description,
only variables indices ivar are given, but field indices can be retrieved easily by using ivarfl(ivar).

WARNING: in the case of a specific physics modelling, all the variables will be initialised here, even
the potential user scalars: cs_user_initialization is no longer used.

e in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate isca(ifm) in variable richness, the fresh gas mass fraction
isca(iygfm) and the mixture enthalpy isca(iscalt) in permeatic conditions

e in the case of the rapid complete chemistry diffusion flame module, the user can initialise in every
cell iel: the mixing rate isca(ifm), its variance isca(ifp2m) and the mixture mass enthalpy
isca(iscalt) in permeatic conditions

e in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

— the transport variables related to the solid phase

isca(ixch(icla)) the reactive coal mass fraction related to the class icla (icla from
1 to nclacp which is the total number of classes, i.e. for all the coal type)

EDF R&D

code_saturne

code_saturne
documentation

version 6.2 practical user’s
Page 48/96

guide

(=[]

b |} Calculation environment
» [T Mesh
¥ ¢ Calculation features
|4 Turbulence models
|_4 Thermal model
| 4 Body forces
|4 Conjugate heat transfer
|4 Species transport
£ Fluid properties
=, volume zones
=+ Boundary zones
At Time settings
Ax Numerical parameters
-7 Postprocessing
Performance settings

vvvww

Model | Fuel = Oxidant

Fuels characterization

Name Type
SolidFuel 1 coal
SolidFuel_2 coal Add
Delete
Size distribution | Solid fuel | Devolatilisation = Char combustion = NOxfo | ¥

Elementary analysis (refers to dry coal)
Mass content of C |70.9
Mass content of H 4.6
Mass content of O |10.8

Mass content of N 0.0

EJ- - - S

Mass content of 5 |0.0

Immediate analysis

Heating model | LHV - ||0.0 Ifkg | dry basis -
Wolatile matter 0.0 %
Ash content 11.5 %
Moisture 0.0
Solid fuel physical properties
cp |1800.0 Iikgik
@ |1200.0 kg/m?
a2 [1e-05 WK
Ashes physical properties
Enthalpy |0.0 K
cp 1800.0 WkgrK
Coke Elementary analysis (refers to dry)
Mass content of C |100.0 %
Mass content of H 0.0 %
Mass content of 0 0.0 %
Mass content of N 0.0 %
Mass content of S |0.0 %

Figure 22: Pulverized coal combustion, coal composition

@E

b |4 Calculation environment
v [Mesh
~ o Calculation features
|4 Turbulence models
| 4 Thermal model
|4 Body forces
|4 Conjugate heat transfer
| Species transport
Pdb Fluid properties
» ®, Volume zones
~ ++ Boundary zones
|_) Boundary conditions
b At Time settings
b Ar Numerical parameters
» |7 Postprocessing
Performance settings

Figure 23:

Model = Fuel | Oxidant

Fuels characterization

Name Type
SolidFuel 1 coal
Add
Delete
Size distribution | Solid fuel =~ Devolatilisation | Charcombustion | Ny« | ¥
02 Kinetics
Pre-exponential constant |38.0 kg/m?¥s/atm1/?
Activation energy 15.96 keal/mol
Reaction order 0.5 -
CO2 Kinetics
Pre-exponential constant |38.0 kg/m?sfatmi/2
Activation energy 15.96 kcalimol
Reaction order 0.5 -

Pulverized coal combustion, reaction parameters

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 49/96
B8
b | 4 Caleulation environment Model | Fuel @ Oxidant
» [Mesh
~ ¢ Caleulation features molar -

|4 Turbulence models
| 4 Thermal model
. Body forces Oxidant
number 92 M2 M0 cez
|4 Conjugate heat transfer 1 1 3.76 o 0
| 4 Species transport
Pt Fluid properties
» ™, Volume zones
~ ++ Boundary zones
|| Boundary conditions
b At Time settings
b Az Numerical parameters
» -7 Postprocessing
#¥ Performance settings

Oxidants caracterization

Figure 24: Pulverized coal combustion, oxydant

isca(ixck(icla)) the coke mass fraction related to the class icla

isca(inp(icla)) the number of particles related to class icla per kg of air-coal mix-
ture

isca(ih2(icla)) the mass enthalpy related to the class icla in permeatic conditions
— isca(iscalt) the mixture enthalpy
— the transport variables related to the gas phase

isca(ifim(icha)) the mean value of the tracer 1 representing the light volatile matters
released by the coal icha

isca(if2m(icha)) the mean value of the tracer 2 representing the heavy volatile mat-
ters released by the coal icha

isca(if3m) the mean value of the tracer 3 representing the carbon released as CO
during coke burnout

isca(if4p2m) the variance associated with the tracer 4 representing the air (the mean
value of this tracer is not transported, it can be deduced directly from the three others)

isca(ifp3m) the variance associated with the tracer 3

4.2.1 Boundary conditions

In this section, “specific physics” refers to gas combustion or to pulverised coal combustion.

For coal combustion, it is possible to manage the boundary conditions in the Graphical User Interface
(GUI). When the coal combustion physics is selected in the heading “Thermophysical models”, specific
boundary conditions are activated for inlets, see Figure 25. The user fills for each type of coal previously
defined (see § 4.2.0.1) the initial temperature and initial composition of the inlet flow, as well as the
mass flow rate.

For gas combustion or if the GUI is not used for coal combustion, the use of cs_user_boundary_conditions
(called at every time step) is as mandatory as cs_user_parameters.f90 and usppmo to run a calcu-
lation involving specific physics. The way of using them is the same as using in the framework of
standard calculations, that is, run several loops on the boundary faces lists (cf. §77?) marked out by
their colors, groups, or geometrical criterion, where the type of face, the type of boundary condition
for each variable and eventually the value of each variable are defined.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 50/96
(=]ES)
b |4 Calculation environment Boundary conditions
’m::MSSh Label Z MNat Selecti iteri
sl : abe one ature election criteria
v g Clalculatlon features cold_inllet 1 inlet AIRSEC
s Turbulence models
|_4 Thermal model wall 3 wall WALL
| Body forces outlet 4 outlet QUTLET

|| Pulverized fuel combustion
|_4 Conjugate heat transfer
|_4 Species transport
24¢ Fluid properties
» M, Volume zones
¥ ++ Boundary zones
P At Time settings Convective Inlet
» Ar Mumerical parameters
» 7 Postprocessing

#F Performance settings
Mapped Inlet

Flows and temperatures

oxydant and coal ~

Mass flow rate and temperature for oxydant

norm - 1.0 m/s yi
Oxydant number 1 Temperature |1273.15 K
Direction

normal to the inlet - 2

Mass flow rate and temperature of coals

Coal number Flow (kg/s) Temp&r)ature
Coal 1 1 1273.15
Coal 2 1 1273.15

Ratio of mass distributien for each class of coal

Coall Coal 2
Class1 |100 100

Class 2 |0

Figure 25: Boundary conditions for the combustion of coal

WARNING: In the case of a specific physics modelling, all the boundary conditions for every variable
must be defined here, even for the eventual user scalars: cs_user_boundary_conditions is not used

at all.

In the case of a specific physics modelling, a zone number izone '? (for instance the color icoul) is
associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to cs_user_boundary_conditions, the main change from the user point of view

concerns the faces whose boundary conditions belong to the type itypfb=ientre:

e for the EBU pre-mixed flame module:

— the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas

izone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at

2000 in pppvar;not to be modified

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation

guide Page 51/96

%

%

indicator ientgf (izone)=1)
for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,
- the user gives to the indicator iqimp(izone) the value 1,
- the mass flow value is set in qimp(izone) (positive value, in kgs~1)
- finally he imposes the velocity vector direction by giving the components of a di-
rection vector in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw)

WARNING:

- the variable qimp (izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axi-symmetric calculations, the inlet
surface of the mesh must be broken up)

- the variable qimp (izone) deals with the inflow across the area 1zoz and only across
this zone; it is recommended to pay attention to the boundary conditions.
- the velocity direction vector is neither necessarily normed, nor necessarily incoming.
- to impose a velocity, the user must give to the indicator iqimp(izone) the value 0 and
set the three velocity components (in m.s™!) in rcodcl(ifac,iu), rcodcl(ifac,iv)
and rcodcl(ifac,iw)

finally he specifies for each gas inlet type the mixing rate fment (izone) and the temperature
tkent (izone) in Kelvin

e for the “3 points” diffusion flame module:

%

%

the user can choose between the “oxidiser inlet” type marked out by ientox(izone)=1 and
the “fuel inlet” type marked out by ientfu(izone)=1

concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

finally, the user sets the temperatures tinoxy for each oxidiser inlet and tinfue, for each
fuel inlet
Note: In the standard version, only the cases with only one oxidising inlet type and one fuel

inlet type can be treated. In particular, there must be only one input temperature for the
ozidiser (tinozy) and one input temperature for the fuel (tinfuel).

e for the pulverised coal module:

%

the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat (izone) =1

in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat (izone),
its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and

rcodcl(ifac,iw) and if

incoming air temperature timpat (izone) in Kelvin. If the velocity is imposed, he must set
rcodcl(ifac,iu),
rcodcl(ifac,iv) and rcodcl(ifac,iw).

if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)
the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

code_saturne
documentation
Page 52/96

EDF R&D code_saturne version 6.2 practical user’s

guide

4.2.2 Initialisation of the options of the variables

In the case of coal combustion, time averages, chronological records and logss follow-ups can be set
in the Graphical User Interface (GUI) or in the subroutines cs_user_combustion. In the GUI, under
the heading “Calculation control”, additional variables appear in the list in the items “Time averages”
and “Profiles”, as well as in the item Volume solution control”, see Figure 26 and Figure 27.

=]E3]

-

|_4 Calculation environment Time averages

[T Mesh

-

" Id Name Start type Starttime Restart Variables
¥ ¢ Calculat feat
;«:s FEL“:W':Z:‘:S“’ES 0 TimeAverage2 time step 10000 automatic <rho p 02% p 02>
b g Volume zones
» ++ Boundary zones
» At Time settings
¥ Az Numerical parameters
~ 7 Postprocessing
| 4 Additional user arrays
| | Velume solution control
|4 Surface solution control
|4 Profiles Add Delete
| Balance by zone
#* Performance settings
n_p_03 - rho_p_02
n_p_04 tp_ 0O
Pressure
rho_gas
rho_p_01 »
rho_p_02
rho_p_03
rho_p_04
t_gas
tp_01 -
S ——
t_p 03
tp 04

+ntal nrassira =

Figure 26: Calculation control - Time averages

=]E]

-

|4 Caleulation environment

» [1] Mesh

Solution control

¥ oy Calculation features Output label Internal name ﬁsrT‘:?rE n Pfcsgéssm Monitoring
/! Fluid properties ~ Base 7 9 p" 9 "
b ", Volume zones Pressure pressure v v ¥
b += Boundary zones ::‘etlo‘clty ;‘etb(\:lty : : :
b At Time settings otal_pressure otal_pressure
¥ Turbulence v v v
13 A‘i Numerical parameters epsilon epsilon "] v v
w |- Postprocessing k k v v v
|4 Additional user arrays TurbVisc turbulent_viscosity v v v
¥ Thermal v v v
| 4 Time averages
Enthal enthal v v v
B volume solution control ~ Coal Py Py v v v
|4 Surface solution control f1f2_variance f1f2_variance v v v
| Profiles fr_het_co2 fr_het_co2 v v v
fr_het 02 fr_het o2 v v v
L Balance by zone fr_mvl_01 fr_mvI_01 v v v
#¥ Performance settings fr_mvl_02 fr_mvl_02 v v v
fr_mvz_01 fr_mv2_01 v v '
fr_mv2_02 fr_mv2_02 v v '
n_p_01 n_p_01 v v v
n_p_02 n_p_02 v v v
n_p_03 n_p_03 v v v
n_p_04 n_p_04 v v v
w_c_h x c_h v v v
®_c_h_ox *_c_h_ox v v v
®_c_hecn %_c_hcn v v v
®_c_nh3 ®x_c_nh3 v v v
K_c_no X e_no v v v
®_p_char_01 ¥_p_char_01 v v v
®_p_char_02 ¥_p_char_02 v v v
®_p_char_03 ¥_p_char_03 v v v =
i R M ARy T : :

Iterative process error estimators

Prediction reconstruction off
Mass conservation off
Correction reconstruction off
Navier-Stokes sub-iterations off

Figure 27: Calculation control - Volume solution control

In this section, “specific physics” refers to gas combustion or pulverised coal combustion.

For gas combustion or if the GUI is not used for coal combustion, the 3 subroutines cs_user_combustion
can be used to complete cs_user_parameters.f90 for the considered specific physics. These subrou-

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 53/96

tines are called at the calculation start. They allow to:

e activate, for the variables which are specific to the activated specific physics module, chronolog-
ical records at the probes defined in cs_user_parameters.f90.
Concerning the main variables (velocity, pressure, etc ...) the user must still complete cs_user_parameters.f90
if he wants to get chronological records, printings in the log or chronological outputs. The vari-
ables which can be activated by the user for each specific physics are listed below. The solved
variables (of variable indices ivar) and the properties of indices iprop (defined at the cell iel by
cpro_prop(iel) which is obtained by calling field get_val_s(iprop, cpro_prop)) are listed
below:

— EBU pre-mixed flame modelling:
- Solved variables
ivar = isca(iygfm) fresh gas mass fraction
ivar = isca(ifm) mixing rate
ivar = isca(ihm) enthalpy, if transported
- Properties cpro_prop(iel)

iprop = itemp temperature

iprop = iym(1) fuel mass fraction

iprop = iym(2) oxidiser mass fraction

iprop = iym(3) product mass fraction

iprop = ickabs absorption coefficient, when the radiation modelling is activated

iprop = it3m and it4m “T” and “T"*” terms, when the radiation modelling is acti-
vated

— rapid complete chemistry diffusion flame modelling;:

everything is identical to the “EBU” case, except the fresh gas mass fraction which is
replaced by the variance of the mixing rate ivar=isca(ifp2m)

— pulverised coal modelling with 3 combustibles:
variables shared by the two phases:
- Solved variables
ivar = isca(ihm): gas-coal mixture enthalpy
ivar = isca(immel): molar mass of the gas mixture
variables specific to the dispersed phase:
- Solved variables

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(inp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in

permeatic conditions

- Properties cpro_prop(iel)

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla
iprop = igmdvi(icla): mass transfer caused by the release of light volatiles from

the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles
from the class icla

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 54/96
iprop = igmhet(icla): coke disappearance rate during the coke burnout of the
class icla
iprop = 1ix2(icla): solid mass fraction of the class icla

variables specific to the continuous phase:
- Solved variables

ivar = isca(ifim(icha)): mean value of the tracer 1 representing the light
volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy
volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released
as CO during coke burnout

ivar = isca(ifdpm): variance of the tracer 4 representing the air

ivar = isca(if3p2m): variance of the tracer 3

- Properties cpro_prop(iel)

iprop = itempl: temperature of the gas mixture

iprop = iym1(1): mass fraction of CHx1,, (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of C'Hxa,, (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iyml(4): mass fraction of Oz in the gas mixture

iprop = iym1(5): mass fraction of COs in the gas mixture

iprop = iym1(6): mass fraction of H3O in the gas mixture

iprop = iym1(7): mass fraction of Ny in the gas mixture

e set the relaxation coefficient of the density srrom, with
Pt = srrom * p" + (1 — srrom)p"t!
(the default value is strom = 0.8. At the beginning of a calculation, a sub-relaxation of 0.95 may
reduce the numerical “shocks”).

e set the dynamic viscosity dift10. By default dift10= 4.25 kgm1s~! (the dynamic diffusivity
being the ratio between the thermal conductivity A and the mixture specific heat C, in the
equation of enthalpy).

e set the value of the constant cebu of the Eddy Break Up model (only in cs_user_combustion.
By default cebu=2.5)

4.3 Heavy fuel oil combustion module
4.3.1 Initialisation of transported variables
To initialise or modify (in case of a continuation) values of transported variables and of the time step,

the standard subroutine cs_user_initialization is used.

Physical properties are stored using the cs_field API (cell center). For instance, to obtain rom(iel),

the mean density (in kg.m~3), one must declare a ncelet array cpro_rom and then call call field get val s(icrom,
cpro_rom).

Physical properties (rom, viscl, cp, ...) are computed in ppphyv and are not to be modified here.

The cs_user_initialization-fuel.f90 example illustrates how the user may initialise quantities
related to gaseous species and droplets compositions in addition to the chosen turbulent model.

4.3.2 Boundary conditions

Boundary conditions are defined as usual on a per-face basis in cs_user_boundary_conditions. They
may be assigned in two ways:

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 55/96

. for “standard” boundary conditions (inlet, free outlet, wall, symmetry): a code is defined in the
array itypfb (of dimensions equal to the number of boundary faces). This code will then be
used by a non-user subroutine to assign the conditions.

. for “non-standard” conditions: see details given in cs_user_boundary_conditions-fuel.f90
example.

4.4 Radiative thermal transfers in semi-transparent gray media
4.4.1 Initialisation of the radiation main parameters

The main radiation parameters can be initialise in the Graphical User Interface (GUI) or in the user
subroutine cs_user_radiative_transfer_param. In the GUI, under the heading “Thermophysical
models”, when one of the two thermal radiative transfers models is selected, see Figure 77, additional
items appear. The user is asked to choose the number of directions for angular discretisation, to define
the absorption coefficient and select if the radiative calculation are restarted or not, see Figure 28 and
Figure 30. When “Advanced options” is selected for both models Figure 29 or Figure 31 appear, the
user must fill the resolution frequency and verbosity levels. In addition, the activation of the radiative
transfer leads to the creation of an item “Surface solution control” under the heading “Calculation
control”, see Figure 32, where radiative transfer variables can be selected to appear in the output log.

@&

b | Caleulation environment Thermal scalar

b [Tl Mesh

* @ Calculation features
| 4 Turbulence models

B Thermal model Thermal radiative transfers

|4 Body forces

Temperature (Kelvin) -

Di t dinat: thod -
|_4 Conjugate heat transfer iscrete ordinates metho
|| species transport Quadrature (angular discretization)
P4+ Fluid properties
» ™. Volume zones 32 directions (T2) -
b += Boundary zones
b Af Time settings Absorption coefficient
b Ar Numerical parameters
» |7 Postprocessing user function (cs_user_rad_transfer_absorption) = | 0.0 mt

Performance settings

Restart for radiative calculation |v

Advanced options %

Figure 28: Radiative transfers - parameters of the DO method

lteration resolution frequency |1| |

Radiative source term calculus 2 -

Werbosity level for wall temperature 1~

verbosity level for brigthness resolution 0~
Cancel | oK |

Figure 29: Radiative transfers - advanced parameters of the DO method

If the GUI is not used, cs_user_radiative_transfer_param is one of the two subroutine which must
be completed by the user for all calculations including radiative thermal transfers. It is called only
during the calculation initialisation. It is composed of three headings. The first one is dedicated to
the activation of the radiation module, only in the case of classic physics.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 56,/96
(=]E5]
b |} Calculation environment Thermal scalar
b [T Mesh
~ oy Calculation features Temperature (Kelvin) -
|4 Turbulence models
Thermal radiative transfers
| 4 Body forces SRR =

|_4 Conjugate heat transfer
|| Species transport Absorption coefficient
A4t Fluid properties
=, Volume zones
++ Boundary zones
At Time settings
Ax Numerical parameters

[Postprocessing Advanced options %
& Performance settings

user function (cs_user_rad_transfer_absorption) = | 0.0 m-1

Restart for radiative calculation v

Fvwvww

Figure 30: Radiative transfers - parameters of the P-1 model

lteration resolution frequency 1
Radiative source term calculus 2~
Werbosity level for wall temperature 1 -

Cancel | oK

Figure 31: Radiative transfers - advanced parameters of the P-1 model

WARNING: when a calculation is ran using a specific physics module, this first heading must not be
completed. The radiation module is then activated or not, according to the parameter file related to the
considered specific physics.

In the second heading the basic parameters of the radiation module are indicated.

Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary
faces.

For more details about the different parameters, the user may refer to the keyword list (§ 5).

4.4.2 Radiative transfers boundary conditions

These informations can be filled by the user through the Graphical User Interface (GUI) or by using
the subroutine cs_user radiative_transfer_bcs.c (called every time step). If the interface is used,
when one of the “Radiative transfers” options is selected in Figure 3, it activates specific boundary
conditions each time a “Wall” is defined, see Figure 33. The user can then choose between 3 cases.
The parameters the user must specify are displayed for one of them in Figure 34.

When the GUI is not used, cs_user_radiative_transfer_bcs.c is needed for every calculation which
includes radiative thermal transfers. It is used to give all the necessary parameters concerning, in the
one case, the wall temperature calculation, and in the other, the coupling between the thermal scalar
(temperature or enthalpy), and the radiation module at the calculation domain boundaries. It must
be noted that the boundary conditions concerning the thermal scalar which may have been defined
in the GUI or in subroutine cs_user_boundary_conditions will be modified by the radiation module
according to the data given in cs_user_radiative_transfer bes (cf. §77).

A boundary condition type stored in the array isothp is associated with each boundary face. There

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 57/96
@
» | Calculation environment Solution control
» [Mesh
» ¢y Calculation features Output label Internal name prgpczssts-ing

P4 Fluid properties

=y Volume zones

++ Boundary zones

At Time settings

Ax Mumerical parameters

|7 Postprocessing
| 4 Additional user arrays
|| Time averages

{vvww

|_4 Wolume solution control

B surface solution control

|4 Profiles
|4 Balance by zone
% Performance settings

Stress

Stress, normal

Stress, tangential
¥plus

Dimensionless Thermal flux
Boundary temperature
Thermal flux

Tplus

Emissivity
Convective_flux
Convective_exch_coef
Incident_flux

Net_flux
Thermal_conductivity
Thickness

stress

stress_normal
stress_tangential

yplus

boundary layer_nusselt
boundary temperature
thermal_flux

tplus

emissivity
rad_convective_flux
rad_exchange_coefficient
rad_incident_flux
rad_net_flux
wall_thermal_conductivity
wall_thickness

-

E NN NS

Figure 32: Calculation control - Radiative transfers post-processing output

@

|| Body forces -
|] Conjugate heat transfer
|| Species transport
/4t Fluid properties

» "y Volume zones

w =+ Boundary zones

b At Time settings

b Ay Mumerical parameters

1 3

Thermal radiative transfer

Type (gray or black wall) WERERTEl IR =1

Fixed exterior temperature

Emissivity
Fixed conduction flux

Interior temperature

Figure 33: Boundary conditions - choice of wall thermal radiative transfers

are five different types:

e itpimp: wall face with imposed temperature,
e ipgrno: for a grey or black wall face, calculation of the temperature by means of a flux balance,

e iprefl: for a reflecting wall face, calculation of the temperature by means of a flux balance.
This is fixed at 2000 in radiat and cannot be modified.

e ifgrno: grey or black wall face to which a conduction flux is imposed,

e ifrefl: reflecting wall face to which a conduction flux is imposed, which is equivalent to impose
this flux directly to the fluid.

e ifinfe: for an open boundary (inlet or outlet) or symmetry face, simulate an infinite extrusion
by applying a Neumann condition to the radiation equations,

Depending on the selected boundary condition type at every wall face, the code needs to be given some
additional information:

e itpimp: the array tintp must be completed with the imposed temperature value and the array
epsp must be completed with the emissivity value (strictly positive).

e ipgrno: must be given: an initialisation temperature in the array tintp, the wall emissivity
(strictly positive, in epsp), thickness (in epap), thermal conductivity (in xlamp) and an external
temperature (in textp) in order to calculate a conduction flux across the wall.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 58/96
=]
|| Body forces =
|| Conjugate heat transfer
|| Species transport Thermal radiative transfer
At Fluid properties
» [®, volume zones Type (gray or black wall) | Fixed interior temperature -
~ =+ Boundary zones
B Boundary conditions Emissivity 0.8
b Ap Time settings Interior temperature 300.0 K

P Ax Numerical parameters
e . ;

Figure 34: Boundary conditions - example of wall thermal radiative transfer

e iprefl: must be given: an initialisation temperature (in tintp), the wall thickness (in epap)
and thermal conductivity (in xlamp) and an external temperature (in textp).

e ifgrno: must be given: an initialisation temperature (in tintp), the wall emissivity (in epsp)
and the conduction flux (in W/m? whatever the thermal scalar, enthalpy or temperature) in the
array rcodcl. The value of rcodcl is positive when the conduction flux is directed from the
inside of the fluid domain to the outside (for instance, when the fluid heats the walls). If the
conduction flux is null, the wall is adiabatic.

e ifrefl: must be given: an initialisation temperature (in tintp) and the conduction flux (in
W/m? whatever the thermal scalar) in the array rcodcl. The value of rcodcl is positive when
the conduction flux is directed from the inside of the fluid domain to the outside (for instance,
when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic. The flux
received by rcodcl is directly imposed as boundary condition for the fluid.

4.4.3 Absorption coefficient of the medium, boundary conditions for the lu-
minance and calculation of the net radiative flux

When the absorption coeflicient is not constant, the subroutine cs_user_rad_transfer_absorption is
called instead at each time step. It is composed of three parts. In the first one, the user must provide
the absorption coefficient of the medium in the array CK, for each cell of the fluid mesh. By default,
the absorption coefficient of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption coef-
ficient in this subroutine. In this case, the coefficient is either calculated automatically, or provided by
the user via a thermo-chemical parameter file (dp-C3P or dp-C3PSJ for gas combustion, and dp_FCP
for pulverised coal combustion).

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

4.5 Conjugate heat transfer
4.5.1 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the wall-affected thermal inertia. Some boundary faces are treated
as a solid wall with a given thickness, on which the code resolves a one-dimensional equation for the
heat conduction. The coupling between the 1D module and the fluid works in a similar way to the

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 59/96

coupling with the SYRTHES. By construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required in
order to evaluate the relevance of its usage by way of a report of the simple conditions (temperature,
zero-flux) or a coupling with SYRTHES.

The use of this code requires that the thermal scalar is defined as (iscalt> 0).

WARNING: The 1D thermal module is developed assuming the thermal scalar as a temperature. If the
thermal scalar is an enthalpy, the code calls the subroutine usthht for each transfer of data between
the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. This function
has not been tested and is firmly discouraged. If the thermal variable is the total (compressible) energy,
the thermal module will not work.

4.5.2 Fluid-Thermal coupling with SYRTHES

When the user wishes to couple code_saturne with SYRTHES to include heat transfers, he can do so
with using with the Graphical User Interface (GUI) or the cs_syrthes_coupling user function. To
set such a coupling in the Graphic User Interfacee (GUI), a thermal scalar must be selected first in
the item “Thermal scalar” under the heading “Thermophysical models”. Then the item “Conjugate
heat transfer” will appear, see Figure35. The zones where the coupling occurs must be defined and a
projection axis can be specified in case of 2D coupling.

(=]
b |4 Calculation environment Internal coupling External coupling (Syrthes)
b [Mesh
w &1 Calculation features werbosity Visualization = Projection Axis Selection criteria
|| Turbulence models 0 1 off WALL

|| Thermal model
| | Body forces
|| Species transport
/4t Fluid properties
=, Volume zones
++ Boundary zones
At Time settings
Ar Numerical parameters
-7 Postprocessing
Performance settings

Fvwvwow

Add Delete

Figure 35: Thermophysical models - coupling with SYRTHES

If the function cs_user_syrthes_coupling is used, the user must specify the arguments passed to the
‘cs_syr_coupling define’ function. These arguments are:

- syrthes_name is the matching SYRTHES application name (useful only when more than one
SYRTHES and one code_saturne domain are present),

- boundary_criteria is the surface selection criteria,
- volume_criteria is the volume selection criteria,

9)

- projection_axis: ’ 7 if the user wishes to use a 3D standard coupling, or specify 'z’, ’y’, or ’2’
as the projection axis if a 2D coupling with SYRTHES is used,

- verbosity is the verbosity level.

- visualization is the visualization level.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 60/96

Examples are provided in cs_user_coupling.c.

The user may also define global coupling options relative to the handling of time-stepping, by adapting
the example cs_user_coupling in the cs_user_coupling.c file. In the case of multiple couplings, these
options are global to all SYRTHES and code_saturne couplings.

4.6 Particle-tracking (Lagrangian) Module
4.6.1 General information

- The particle-tracking (or Lagrangian) module enables the simulation of poly-dispersed particu-
late flows, by calculating the trajectories of individual particles, mainly characterized by their
diameter and density (if no heat nor mass transfer between particle and fluid are activated).

- The standard use of the particle-tracking module follows the Moments/PDF approach: the
instantaneous properties of the underlying flow needed to calculate the particle motion are re-
constructed from the averaged values (obtained by Reynolds-Averaged Navier-Stokes simulation)
by using stochastic processes. The statistics of interest are then obtained through Monte-Carlo
simulation.

- As a consequence, is is important to emphasize that the most important (and physically meaning-
ful) results of a particle-tracking calculation following the Moments/PDF approach are statistics.
Volume and surface statistics, steady or unsteady, can be calculated. Individual particle trajec-
tories (as 1D, EnSight-readable cases) and displacements (as EnSight-readable animations) can
also be provided, but only for illustrative purposes.

4.6.2 Activating the particle-tracking module
The activation of the particle-tracking module is performed either:

e in the Graphical User Interface (GUI): Calculation features — Thermophysical models —
Eulerian-Lagrangian multi-phase treatment — particles and droplets tracking

e or in the user function cs_user_lagr model.

4.6.3 Basic guidelines for standard simulations

Except for cases in which the flow conditions depend on time, it is generally recommended to perform
a first Lagrangian calculation whose aim is to reach a steady-state (i.e. to reach a time starting from
which the relevant statistics do not depend on time anymore). In a second step, a calculation restart is
done to calculate the statistics. When the single-phase flow is steady and the particle volume fraction
is low enough to neglect the particles influence on the continuous phase behaviour, it is recommended
to perform a Lagrangian calculation on a frozen field.

It is then possible to calculate steady-state volumetric statistics and to give a statistical weight higher
than 1 to the particles, in order to reduce the number of simulated (“numerical”) particles to treat
while keeping the right concentrations. Otherwise, when the continuous phase flow is steady, but the
two-coupling coupling must be taken into consideration, it is still possible to activate steady statistics.
When the continuous phase flow is unsteady, it is no longer possible to use steady statistics. To have
correct statistics at every moment in the whole calculation domain, it is imperative to have an estab-
lished particle seeding and it is recommended (when it is possible) not to impose statistical weights
different from the unity.

Finally, when the so-called complete model is used for turbulent dispersion modelling, the user must
make sure that the volumetric statistics are directly used for the calculation of the locally undisturbed

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 61/96

fluid flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees
Celsius, whatever the thermal scalar associated with the continuous phase is (i.e. temperature or
enthalpy). If the thermal scalar associated with the continuous phase is the temperature in Kelvin,
the unit is converted automatically into Celsius. If the thermal scalar associated with the continuous
phase is the enthalpy, the enthalpy-temperature conversion subroutine usthht must be completed for
mode=1, and must express temperatures in degrees Celsius. In all cases, the thermal backward coupling

of the dispersed phase on the continuous phase is adapted to the thermal scalar transported by the
fluid.

4.6.4 Prescribing the main modelling parameters

USE oF THE GUI

In the GUI, the selection of the Lagrangian module activates the heading Particle and droplets
tracking in the tree menu. The initialization is performed in the three items included in this heading;:

e Global settings. The user defines in this item the kind of Euler/Lagrange multi-phase treat-
ment, the main parameters, the specific physics associated with the particles and advanced
numerical options, see Figure 36 to Figure37.

e Statistics. The user can select the volume and boundary statistics to be post-processed.

e Output. The user defines the output frequency and post-processing options for particles and
select the variables that will appear in the log.

@

b | Calculation environment Main parameters
b [Mesh
» o Calculation features
A4t Fluid properties
| Statistics
b B, Volume zones
» +=+ Boundary zones
b At Time settings
b Ay Mumerical parameters
» 7 Postprocessing
k& Performance settings

¥ Calculation restart for particles
¥ The continuous phase flow is a steady flow

Additional models associated with the particles
Heat transfer and evaperation -

¥ Particles heat transfer

Turbulent depesition modeling

Turbulence-based deposition medel
Numerical scheme

Advanced options %

Figure 36: Lagrangian module - View of the Global Settings page

USE OF THE SUBROUTINE CS_USER_LAGR_MODEL

When the GUI is not used, cs_user_lagr model must be completed. This function gathers in different
headings all the keywords which are necessary to configure the Lagrangian module. The different
headings refer to:

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 62/96
Advanced options X

Integration for the stochastic differential equations

second-order scheme v

Particle turbulent dispersion v
Suppresses the crossing trajectory effect

Complete model for turbulent dispersion

Cancel oK

Figure 37: Lagrangian module - Global Settings, advanced numerical options

e the global configuration parameters

e the specific physical models describing the particle behaviour

e the backward coupling (influence of the dispersed phase on the continuous phase)
e the numerical parameters

e the volumetric statistics

e the boundary statistics

For more details about the different parameters, the user may refer to the keyword list (§ 77).

4.6.5 Prescribing particle boundary conditions

In the framework of the multiphase Lagrangian modelling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the Eulerian
fluid phase (but they are of course generally consistent). The boundary condition zones are actually
redefined by the Lagrangian module (cf. §7?7?), and a type of particle behaviour is associated with
each one. The boundary conditions related to particles can be defined in the Graphical User Interface
(GUI) or in the cs_user_lagr_boundary_conditions.c file. More advanced user-defined boundary
conditions can be prescribed in the cs_user_lagr_in function from cs_user_lagr particle.c.

UseE oF THE GUI

In the GUI, selecting the Lagrangian module in the activates the item Particle boundary conditions
under the heading Boundary conditions in the tree menu. Different options are available depending
on the type of standard boundary conditions selected (wall, inlet/outlet, etc...), see Figure 38.

4.6.6 Advanced particle-tracking set-up

In this section, some information is provided for a more advanced numerical set-up of a particle-tracking
simulation.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 63/96
B
» |4 Calculation environment Lagrangian boundary cenditiens
v [Mesh :
b ¢ Calculation features Label Nature Partihctlg;la)gtl.ilggary Number of sets
/i Fluid properties
b | Particles and droplets tracking wall wall Particles rebound 0
b %y Volume zones injection inlet Particles inlet 1

~ ++ Boundary zones
|4 Boundary conditions outlet Particles outlet 0

out
: i
EE N I -~ <+ - R
» Ax Mumerical parameters § .
» |7 Postprocessing
#k Performance settings

Figure 38: Lagrangian module - boundary conditions

USER-DEFINED STOCHASTIC DIFFERENTIAL EQUATIONS

An adaptation in the cs_user_lagr_sde function is required if supplementary user variables are added
to the particle state vector. This function is called at each Lagrangian sub-step.

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this function.

When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called
twice.

The solved stochastic differential equations must be written in the form:

de, @,

dt T

where ®,, is the Ith supplementary user variable, 74 is a quantity homogeneous to a characteristic time,
and II is a coefficient which may be expressed as a function of the other particulate variables.
In order to do the integration of this equation, the following parameters must be provided:

- T4, equation characteristic time every particle,

- II , equation coefficient. If the integration scheme is a first-order, then II is expressed as a
function of the particulate variables at the previous iteration, stored in the array eptpa. If the
chosen scheme is a second-order, then II is expressed at the first call of the function (prediction
step) as a function of the variables at the previous iteration, then at the second call (correction
step) as a function of the predicted variables.

If necessary, the thermal characteristic time 7., whose calculation can be modified by the user in the
function cs_user_lagr rt.

USER-DEFINED PARTICLE RELAXATION TIME

The particle relaxation time may be modified in the cs_user_lagr_rt function according to the chosen
formulation of the drag coefficient. The particle relaxation time, modified or not by the user, is
available in the array taup.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 64/96

USER-DEFINED PARTICLE THERMAL CHARACTERISTIC TIME

The particle thermal characteristic time may be modified in the cs_user_lagr rt_t function according
to the chosen correlation for the calculation of the Nusselt number. This function is called at each
Lagrangian sub-step.

4.7 Compressible module

When the compressible module!? is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in cs_user_parameters.f90
or specified with the GUI.

- keep the convective numerical schemes proposed by default (i.e.: upwind scheme).
With the compressible algorithm, the specific total energy is a new solved variable isca(ienerg)).
The temperature variable deduced from the specific total energy variable is isca(itempk) for the
compressible module.
Initialisation of the options of the variables, boundary conditions, initialisation of the variables and

management of variable physical properties can be done with the GUI. We describe below the subrou-
tines the user has to fill in without the GUI.

4.7.1 Initialisation of the options of the variables

Subroutines called at each time step.

When the GUI is not being used, the subroutines uscfx1 and uscfx2 in cs_user_parameters.f90
must be completed by the user.

uscfx1 allows to specify:

- ieos: equation of state (only perfect gas with a constant adiabatic coefficient, ieos=1 is available,
but the user can complete the subroutine cfther, which is not a user subroutine, to add new
equations of state).

- call field set key_int(ivarfl(isca(itempk)), kivisl, ...): molecular thermal conduc-
tivity, constant (-1) or variable (0).

- iviscv: volumetric molecular viscosity, constant (0) or variable (1).
uscfx2 allows to specify:

- ivivar: molecular viscosity, constant (0) or variable (1).

- vislsO(itempk): reference molecular thermal conductivity.
- viscvO0: reference volumetric molecular viscosity.

- xmasmr: molar mass of the perfect gas (ieos=1).

- icfgrp: specify if the hydrostatic equilibrium must be accounted for in the boundary conditions.

3For more details concerning the compressible version, the user may refer to the theory guide [11] and the document
“Implantation d’un algorithme compressible dans code_saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F.
Archambeau et J.-M. Hérard.

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 65/96

4.7.2 Management of the boundary conditions

Subroutine called at each time step.

When running the compressible module without a GUI, the cs_user_boundary_conditions subroutine
can be used to define specific boundary conditions (see the cs_user boundary_conditions-compressible
file in the directory EXAMPLES for examples of boundary conditions with the compressible module).

With the compressible module, the following types of boundary condition are avaliable:

Inlet/outlet for which velocity and two thermodynamics variables are known.
- Subsonic inlet with imposed total pressure and total energy.

- Subsonic outlet with imposed static pressure.

- Supersonic outlet.

Wall (adiabatic or not).

- Symmetry.

It is advised to only use these predefined boundary conditions type for the compressible module.

4.7.3 Initialisation of the variables

Subroutine called only at the initialisation of the calculation

When the GUI is not used, the subroutine cs_user_initialization is used initialize the velocity,
turbulence and passive scalars (see the cs_user_initialization-compressible file in the directory
EXAMPLES for examples of initialisations with the compressible module). Concerning pressure, density,
temperature and specific total energy, only 2 variables out of these 4 are independent. The user may
then initialise the desired variable pair (apart from temperature-energy) and the two other variables
will be calculated automatically by giving the right value to the variable ithvar used for the call to
the subroutine cfther.

4.7.4 Management of variable physical properties

Subroutine called at each time step.

Without the GUI, all of the laws governing the physical properties of the fluid (molecular viscosity,
molecular volumetric viscosity, molecular thermal conductivity and molecular diffusivity of the user-
defined scalars) can be specified in the subroutine usphyv of the cs_user_physical_properties file,
which is then called at each time step. This subroutine replaces and is similar to usphyv.

The user should check that the defined laws are valid for the whole variation range of the variables.
Moreover, as only the perfect gas with a constant adiabatic coefficient equation of state is available,
it is not advised to give a law for the isobaric specific heat without modifying the equation of state in
the subroutine cfther which is not a user subroutine.

4.8 Management of the electric arcs module
4.8.1 Activating the electric arcs module
The electric arcs module is activated either:

o in the Graphical User Interface (GUI): Calculation features — Electrical models

e or in the user subroutine usppmo, by setting the ielarc or ieljou parameter to a non-null value.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 66/96

4.8.2 Initialisation of the variables

Subroutine called only at initialisation of the calculation

The subroutine cs_user_initialization allows the user to initialise some of the specific physics
variables prompted via usppmo. It is called only during the initialisation of the calculation. As
usual,the user has access to many geometric variables so that the zones can be treated separately if
needed.

The values of potential and its constituents are initialised if required.

It should be noted that the enthalpy is relevant.

- For the electric arcs module, the enthalpy value is taken from the temperature of reference t0
(given in cs_user_parameters.f90) from the temperature-enthalpy tables supplied in the data
file dp_ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user . An ex-
ample is given of how to obtain the enthalpy from the temperature of reference t0(given in
cs_user_parameters.f90), the temperature-enthalpy law must be supplied. A code is suggested
in the usthht subroutine (provided for the determination of physical properties).

4.8.3 Variable physical properties

All the laws of the variation of physical data of the fluid are written (when necessary) in the subroutine
cs_user_physical _properties. It is called at each time step.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventual user scalars): cs_user_physical properties is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular care should be taken with non-linear laws (for example, a 3¢ degree polynomial law giving
negative values of density)

WARNING: In the electric module, all of the physical properties are considered as variables and are
therefore stored using the cs_field API cp0, visclsO and visclO are not used

For the Joule effect, the user is required to supply the physical properties in the subroutine. FEx-
amples are given which are to be adapted by the user. If the temperature is to be determined
to calculate the physical properties, the solved variable, enthalpy must be deduced. The preferred
temperature-enthalpy law can be selected in the subroutine usthht (an example of the interpola-
tion is given from the law table. This subroutine can be re-used for the initialisation of the vari-
ables(cs_user_initialization)) For the electric arcs module, the physical properties are interpolated
from the data file dp_ELE supplied by the user. Modifications are generally not necessary.

4.8.4 Boundary conditions

For the electric module,each boundary face in cs_user_boundary_conditions should be associated
with a izone number *(the color icoul for example) in order to group together all the boundary
faces of the same type. In the cs_user_boundary_conditions report, the main change from the
users point of view concerns the specification of the boundary conditions of the potential, which isn’t
implied by default. The Dirichlet and Neumann conditions must be imposed explicitly using icodcl
and rcodcl (as would be done for the classical scalar).

Furthermore, if one wishes to slow down the power dissipation (Joule effect module) or the current
(electric arcs module) from the imposed values (puismp and couimp respectively), they can be changed

43 zone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar and cannot

be modified.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 67/96

by the potential scalar as shown below:

- For the electric arcs, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in in cs_user_parameters.c by an estimated potential difference. If ielcor=1 (see
cs_user_parameters.c), dpot is updated automatically during the calculation to obtain the
required current.

- For the Joule effect module, dpot is again used with the same signification as in the electric arcs
module. If dpot is not wanted in the setting of the boundary conditions, the variable coejou can
be used. coejou is the coefficient by which the potential difference is multiplied to obtain the
desired power dissipation. By default this begins at 1 and is updated automatically. If ielcor=1
(see cs_user_parameters.c), multiply the imposed potentials in cs_user_boundary_conditions
by coejou at each time step to achieve the desired power dissipation.

WARNING: In the case of alternating current, attention should be paid to the values of potential
imposed at the limits: the variable named “real potential” represents an affective value if the current
is in single phase, and a “real part” if not.

- For the Joule studies, a complex potential is sometimes needed (ippmod(ieljou)=2): this is
the case in particular where the current has three phases. To have access to the phase of the
potential, and not just to its amplitude, the two variables must be deleted: in code_saturne, there
are two arrays specified for this role, the real part and the imaginary part of the potential. For
use in the code, these variables are named “real potential” and “imaginary potential”. For an
alternative sinusoidal potential Pp, the maximum value is noted as Ppmax, the phase is noted as
¢, the real potential and the imaginary potential are respectively Ppmax cos¢ and Pppax Sing.

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary
part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continuous current,
but also with single phase alternative current. In code_saturne there is only 1 variable for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the ”real
potential” represents a effective value of potential , % Ppuax (in continuous current there is no

such ambiguity).

ADDITIONS FOR TRANSFORMERS

The following additional boundary conditions must be defined for tansformers:

e the intensity at each electrode

e the voltage on each terminal of transformers. To achieve it, the intensity, the rvoltage at each
termin, the Rvoltage, and the total intensity of the transformer are calculated.

Finally, a test is performed to check if the offset is zero or if a boundary face is in contact with the
ground.

4.8.5 Initialisation of the variable options

The subroutine cs_user_parameters (in cs_user_parameters.c) is called at each time step. It allows:

e to give the coefficient of relaxation of the density srrom:
p" 1 = srrom* p" + (1 — srrom)p”
(for the electric arcs, the sub-relaxation is taken into account during the 2nd time step;)

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 68/96

e to indicate if the data will be fixed in the power dissipation or in the current, done in ielcor.

e target either the current fixed as couimp (electric arcs module) or the power dissipation puism
(Joule module effect).

e to fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

e to define type of scaling model for electric arcs modrec. If scaling by a resetting plane is choosen
then idreca defines the current density component and crit_reca the plane used for resetting
of electromagnetic variables.

4.8.6 Post-processing output

The algebraic variables related to the electric module are provided by default:

- gradient of real potential in Vm~=! (VPotgr = —E)

- density of real current in Am=2 (j = oE)
specifically for the Joule module effect with ippmod(ieljou)=2:

- gradient of imaginary potential in Vm~!

- density of real current in Am =2
specifically for the electric arcs module with ippmod(ielarc)=2:
- magnetic field in T (B = rot A)

The post-processing output will be created automatically (on all output volume meshes for which the
automatic output of main variables is active).

4.9 code saturne-code saturne coupling

Subroutine called once during the calculation initialisation.

The user function cs_user_saturne_coupling (in cs_user_coupling.c is used to couple code saturne
with itself. It is used for turbo-machine applications for instance, the first code_saturne managing the
fluid around the rotor and the other the fluid around the stator. In the case of a coupling between
two code_saturne instances, first argument saturne_name of the function 'cs_sat_coupling define’ is
ignored. In case of multiple couplings, a coupling will be matched with available code_saturne instances
based on that argument, which should match the directory name for the given coupled domain..

The arguments of 'cs_sat_coupling define’ are:

- saturne_name: the matching code_saturne application name,

- volume_sup_criteria: the cell selection criteria for support,

- boundary_sup_criteria: the boundary face selection criteria for support (not functional),
- volume_cpl_criteria: the cell selection criteria for coupled cells,

- boundary_cpl_criteria: the boundary face selection criteria for coupled faces,

- verbosity: the verbosity level.

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 69/96

4.10 Fluid-Structure external coupling

Subroutine called only once

The subroutine usaste belongs to the module dedicated to external Fluid-Structure coupling with
Code_Aster. Here one defines the boundary faces coupled with Code_Aster and the fluid forces com-
ponents which are given to structural calculation. When using external coupling with Code_Aster,
structure numbers necessarily need to be negative; the references of coupled faces being i.e. -1, -2, etc.
The subroutine performs the following operations:

- ’getfbr’ is called to get a list of elements matching a geometrical criterion or reference number

then a structure number (negative value) is associated to these elements.

- the value passed to asddlf, for user-chosen component, for every negative structure number,
defines the movement imposed to the external structure.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation

4.11 ALE module

4.11.1 Initialisation of the options

This initialisation can be performed in the Graphical User Interface (GUI) or in the subroutines
usipph and usstrl. Firstly, when the “Mobile mesh” is selected in GUI under the “Calculation

features” heading, additional options are displayed. The user must choose the type of mesh viscosity
and describe its spatial distribution, see Figure 39. The following paragraphs are relevant if the GUI

Mathematical expression editor

User expression Predefined symbols | Examples |

mesh_viscosity 1 = 1;

[Cancel H

Figure 39: Thermophysical models - mobile mesh (ALE method)

is not used.

SUBROUTINE USIPPH
Subroutine called at the beginning. This subroutine completes cs_user_parameters.f90.

usipph allows setting options for the ALE module, and in particular to activate the ALE module
(iale=1).

SUBROUTINE USSTR1

This subroutine reads in cs_user_fluid_structure_interaction.f90. It allows to specify the follow-
ing pieces of information for the structure module:

- the index of the structure, (idfstr(ifac) where ifac is the index of the face). Then the total
number of structures nbstru is automatically computed by the code. Be careful, the value must
belong to 1, ..., nbstru.

- the initial value of displacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 71/96

e idfstr(ifac)
the index of the structure, (idfstr(ifac) where ifac is the index of the face), 0 if the face is
not coupled to any structure.

e xstr0(i,k)
initial position of a structure, where i is the dimension of space and k the index of the structure

e xstreq(i,k)
equilibrum position of a structure, where i is the dimension of space and k the index of the
structure

e vstr0(i,k)
initial velicity of a structure, where i is the dimension of space and k the index of the structure

4.11.2 Mesh velocity boundary conditions

These boundary conditions can be managed through the Graphical User Interface (GUI) or using the
subroutine usalcl (called at each time step). With the GUI, when the item “Mobile mesh” is activated
the item “Fluid structure interaction” appears under the heading “Boundary conditions”. Two types
of fluid-structure coupling are offered. The first one is internal, using a simplified structure model and
the second is external with Code_Aster, see Figure 40 and Figure 41.

SUBROUTINE USALCL

When the GUI is not used, the use of usalcl is mandatory to run a calculation using the ale module
just as it is in cs_user_parameters.f90. It is used the same way as cs_user_boundary_conditions
in the framework of standard calculations, that is to say a loop on the boundary faces marked out
by their colour (or more generally by a property of their family), where the type of mesh velocity
boundary condition is definied for each variable.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the mesh velocity from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the bound-
ary conditions defined in cs_user_boundary_conditions, or even from their coordinates. To
do so, the array ialtyb(nfabor) gives for each face ifac the mesh velocity boundary con-
dition types marked out by the key words ivimpo, igliss, ibfixe or ifresf..

e If ialtyb(ifac) = ivimpo: imposed velocity.

— In the cases where all the nodes of a face have a imposed displacement, it is not necessary
to fill the tables with mesh velocity boundary conditions for this face, these will be erased.
In the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for
every value of ivar (iuma, ivma and iwma). The other boxes of rcodcl and icodcl are
completed automatically.
The tangential mesh velocity is taken like a tape speed under the boundary conditions of
wall for the fluid, except if wall fluid velocity was specified by the user in the interface or
cs_user_boundary_conditions (in which case it is this speed which is considered).

e if ialtyb(ifac) = ibfixe: fixed wall

— the velocity is null.

o if ialtyb(ifac) = igliss: sliding wall

— symmetry boundary condition on the mesh velocity vector, which means a homogeneous
Neumann on the tangential mesh velocity and a zero Dirichlet on the normal mesh velocity.

e if ialtyb(ifac) = ifresf: free-surface

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 72/96

— an imposed mesh velocity such that the fluid mass flux is equal to the mesh displacement
in order to mimic the free-surface automatically. Note that the boundary condition on the
fluid velocity must be set separately (homogeneous Neumann condition for instance).

4.11.3 Modification of the mesh viscosity

The user subroutine cs_user_physical properties can be used along the ALE (Arbitrary Lagrangian
Eulerian Method) module, and allows modifying the mesh viscosity. It is called before the time loop,
and before reading restart files (so the mesh is always in its initial position at this stage). The user can
modify mesh viscosity values to prevent cells and nodes from huge displacements in awkward areas,
such as boundary layer for example.

Note that for more complex settings, the mesh viscosity could be modified in cs_user_initialization
or cs_user_extra operations. The matching field’s name is mesh_viscosity.

4.11.4 Fluid - Structure internal coupling

In the subroutine cs_user_fluid_structure_interaction the user provides the parameters of two
other subroutines. usstril is called at the beginning of the calculation. It is used to define and
initialise the internal structures where fluid-Structure coupling occurs. For each boundary face ifac,
idfstr(ifac) is the index of the structure the face belongs to (if idfstr(ifac) = 0, the face ifac
doesn’t belong to any structure). When using internal coupling, structure index necessarily must be
strictly positive and smaller than the number of structures. The number of ”internal” structures is
automatically defined with the maximum value of the idfstr table, meaning that internal structure
numbers must be defined sequentially with positive values, beginning with integer value 1.

For each internal structure the user can define:

- an initial velocity vstr0O

- an initial displacement xstr0 (i.e. xstr0 is the value of the displacement xstr compared to the
initial mesh at time t = 0)

- a displacement compared to equilibrium xstreq (i.e. xstreq is the initial displacement of the
internal structure compared to its position at equilibrium; at each time step t and for a displace-
ment xstr(t), the associated internal structure will undergo a force —k * (t + X STREQ) due to
the spring).

xstr0 and vstrO are initialised with the value 0. When starting a calculation using ALE, or re-starting a
calculation with ALE, based on a first calculation without ALE, an initial iteration 0 is automatically
performed in order to take initial arrays xstr0, vstr0 and xstreq into account. In any other case, add
the following expression ’italin=1’ in subroutine usipsu, so that the code can deal with the arrays xstr0,
vstrO and xstreq.

When ihistr is set to 1, the code writes in the output the history of the displacement, of the structural
velocity, of the structural acceleration and of the fluid force. The value of structural history output
step is the same as the one for standard variables nthist.

The second subroutine, usstr2, is called at each iteration. One defines in this subroutine structural pa-
rameters (considered as potentially time dependent): i.e., mass m xmstru, friction coefficients ¢ xcstru,
and stiffness k xkstru. forstr array gives fluid stresses acting on each internal structure. Moreover it is
also possible to take external forces (gravity for example) into account.

. the xstr array indicates the displacement of the structure compared to its position in the initial
mesh,

. the xstr0Q array gives the displacement of the structures in the initial mesh compared to structural
equilibrium,

EDF R&D

code_saturne version 6.2 practical user’s
guide

code_saturne
documentation
Page 73/96

. the vstr array stands for structural velocity.

xstr, xstr0 and vstr are DATA tables that can be used to define the Mass, Friction and Stiffness arays.
These are not to be modified.

The 3D structural equation that is solved is the following one:

m.Opz + c.0ix + k. @ + @) =/

(6)

where x stands for the structural displacement compared to initial mesh position xstr, zo represents
the displacement of the structure in initial mesh compared to equilibrium. Note that m,c, and k are
3x3 matrices. Equation (6) is solved using a Newmark HHT algorithm. Note that the time step used
to solve this equation, dtstr, can be different from the one of fluid calculations. The user is free to
define dtstr array. At the beginning of the calculation dtstr is initialised to the value of dtcel (fluid

time step).

4.12 Management of the structure property

The use of usstr2 is mandatory to run a calculation using the ALE module with a structure module.
It is called at each time step.

For each structure, the system that will be solved is:

where

Mz +Cax + K.(z—20)=0

- M is the mass structure (xmstru).

C' is the damping coefficient of the structure (xcstru).

- K is the spring constant or force constant of the structure (xkstru).

- x¢ is the initial position.

Below is a list of the different variables that might be modified:

e xmstru(i,j,k)
mass matrix of the structure, where i,j is the array of mass structure and k the index of the

structure.

e xcstru(i,j,k)
damping matrix coefficient of the structure, where i,j is the array of damping coefficient and k
the index of the structure.

e xkstru(i,j,k)
spring matrix constant of the structure, where 1,j is the array of spring constant and k the index
of the structure.

e forstr(i,k)

force vector of the structure, where i is the force vector and k the index of the structure.

4.13 Management of the atmospheric module

This section describes how to set a calculation using the atmospheric module of code_saturne. Each
paragraph describes a step of the data setting process.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 74/96

4.13.1 Directory structure

The flowchart (Figure 42) recalls the directory structure of a study generated by code_saturne (see also
??). When using the atmospheric module, the structure is identical but a file called meteo may be
added to the data settings in order to provide vertical profiles of the main variables. This file should
be put in the DATA directory. For more details about the meteo file, see § 4.13.5).

4.13.2 The atmospheric mesh features
An atmospheric mesh has the following specific features:

e The boundary located at the top of the domain should be a plane. So, horizontal wind speed at
a given altitude can be prescribed at the top face as an inlet boundary.

e Cells may have very different sizes, from very small (near ground or buildings) to very large (near
the top of domain or far from zone of interest).

e Vertical resolution: from tiny cells (e.g. Az = 1 m) near the ground to a few hundreds of meters
at the top.

e Horizontal resolution: from a few meters to hundreds of meters.

e The length ratio between two adjacent cells (in each direction) should preferably be between 0.7
and 1.3.

e The z axis represents the vertical axis.

A topography map can be used to generate a mesh. In this case, the preprocessor mode is particularly
useful to check the quality of the mesh (run type Mesh quality criteria).

4.13.3 Atmospheric flow model and steady/unsteady algorithm

The Graphical User Interface (GUI) may be used to enable the atmospheric flow module and set
up the following calculation parameters in the Thermophysical models-Calculation features page
(see Figure 43):

4.13.3.1 The atmospheric flow model
The user can choose one of the following atmospheric flow models:

e Constant density: To simulate neutral atmosphere.

e Dry atmosphere: To simulate dry, thermally-stratified atmospheric flows (enables Potential
temperature as thermal model).

e Humid atmosphere: To simulate thermally stratified atmospheric flows (air-water mixture)
with phase changes (enables Liquid potential temperature as thermal model). The model is
described in Bouzereau [15].

4.13.3.2 The time algorithm

e Steady flow algorithm: is the one usually set. It sets a time step variable in space and time. It
has to be selected if constant boundary conditions are used.

e Unsteady flow algorithm has to be selected for time varying boundary conditions (the time step
can then be variable in time or constant).

Table Table 4.13.4 can help to choose the right parameters depending on the type of atmospheric flow.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 75/96

4.13.3.3 Warnings
The following points have to be considered when setting the parameters described above:

e The potential temperature thermal model and the liquid potential temperature one (see the
paragraph “Atmospheric main variables” for the definition) requires that the vertical component
of the gravity is set to g, = —9.81m.s72 (g, = gy = 0m.s~2), otherwise pressure and density
won’t be correctly computed.

e As well, the use of scalar with drift for atmospheric dispersion requires the gravity to be set to
9. = —9.81 (g = g, = Om.s~2), even if the density is constant.

4.13.4 Physical properties

The specific heat value has to be set to the atmospheric value C), = 1005.J/kg/K.

Parameters Constant Dry atmo- | Humid atmo- | Explanation
density sphere sphere

pressure boundary | Neumann first | Extrapolation | Extrapolation In case of Extrapola-

condition order tion, the pressure gra-

dient is assumed (and
set) constant, whereas
in case of Neumann
first order, the pres-
sure gradient is as-
sumed (and set) to

Zero.
Improved pressure | no yes yes If yes, exact balance
interpolation in between the hydro-
stratified flows static part of the

pressure gradient and
the gravity term pg is
numerically ensured.

Gravity (gravity|g, = 0 or g, =|g. =[g. = -9.81m.s72
is assumed aligned | —9.81m.s~2 —9.81m.s~2
with the z-axis) | (the latter is
useful for scalar
with drift)

Thermal variable |no potential tem- |liquid potential
perature temperature
Others variables | no no total water con-
tent, droplets
number

Table 4: List of parameters

4.13.5 Boundary and initial conditions

The meteo file can be used to define initial conditions for the different fields and to set up the inlet
boundary conditions. For the velocity field, code_saturne can automatically detect if the boundary
is an inlet boundary or an outflow boundary, according to the wind speed components given in the
meteo file with respect to the boundary face orientation. This is often used for the lateral boundaries
of the atmospheric domain, especially if the profile is evolving in time. In the case of inlet flow, the

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 76/96

data given in the meteo file will be used as the input data (Dirichlet boundary condition) for velocity,
temperature, humidity and turbulent variables. In the case of outflow, a Neumann boundary condition
is automatically imposed (except for the pressure). The unit of temperature in the meteo file is the
degree Celsius whereas the unit in the GUI is the kelvin.

To be taken into account, the meteo file has to be selected in the GUI (Atmospheric flows page, see
Figure 45) and the check box on the side ticked. This file gives the profiles of prognostic atmospheric
variables containing one or a list of time stamps. The file has to be put in the DATA directory.
An example of file meteo is given in the directory DATA/REFERENCE/. The file format has to be
strictly respected. The horizontal coordinates are not used at the present time (except when boundary
conditions are based on several meteorological vertical profiles) and the vertical profiles are defined
with the altitude above sea level. The highest altitude of the profile should be above the top of the
simulation domain and the lowest altitude of the profile should be below or equal to the lowest level
of the simulation domain. The line at the end of the meteo file should not be empty.

If the boundary conditions are variable in time, the vertical profiles for the different time stamps have
to be written sequentially in the meteo file.

You can also set the profiles of atmospheric variables directly in the GUI. The following boundary
conditions can be selected in the GUI:

e Inlet/Outlet is automatically calculated for lateral boundaries (e.g. North, West...) of the
computational domain (see Figure 46).

e Inlet for the top of the domain (see Figure 47).

e Rough wall for building walls (see Figure 48) or for the ground (see Figure 49). The user has
to enter the roughness length. In case of variable roughness length, the user has to provide the
land use data and the association between the roughness length values and land use categories.

Remark: If a meteorological file is given, it is used by default to initialize the variables. If a
meteorological file is not given, the user can use the standard code_saturne initial and boundary
conditions set up but has to be aware that even small inconsistencies can create very large buoyancy
forces and spurious circulations.

4.13.5.1 Boundary conditions based on several meteorological vertical pro-
files

In some cases, especially when outputs of a mesoscale model are used, you need to build input boundary
conditions from several meteorological vertical wind profiles. Cressman interpolation is then used to
create the boundary conditions. The following files need to be put in the DATA directory:

e All meteo files giving the different vertical profiles of prognostic variables (wind, temperature,
turbulent kinetic energy and dissipation).

o A file called imbrication_files_list.txt which is a list of the meteo files used.

e A separate meteo file which is used for the initial conditions and to impose inlet boundary condi-
tions for the variables for which Cressman interpolation is not used (for example: temperature,
turbulent kinetic energy). This file must follow the rules indicated previously.

The following files should be put in the SRC directory:

e The user source file cs_user_parameters.f90. In this file, set the cressman_ flag of each variable,
for which the Cressman interpolation should be enabled, to .true..

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 77/96

4.13.6 User subroutines

The user subroutines are used when the graphical user interface is not sufficient to set up the calculation.
We give some examples of user file for atmospheric application:

e cs_user_source_terms.f90: to add a source term in the prognostic equations for forest canopy
modelling, wind turbine wake modelling... See the associated doxygen documentation for exam-
ples of use of cs_user_source_terms.f90.

e cs_user_parameters.f90: to activate the Cressman interpolation. For example, it is used to
impose inhomogeneous boundary conditions. See the associated doxygen documentation for
examples of use of cs_user_parameters.f90.

e cs_user_extra operations-extract.f90: to generate vertical profiles for post processing. See
the associated doxygen documentation for examples of use of cs_user_extra operations.f90.

e cs_user_boundary_conditions-atmospheric.f90: show how to set up the boundary conditions
and to put a heterogeneous roughness length... See the associated doxygen documentation for
examples of use of cs_user_boundary_conditions.f90.

Remark: If the computation is set without the GUI, other user subroutines such as the following
have to be used:

e cs_user_initialization-atmospheric.f£90: allows to initialize or modify (in case of a restarted
calculation) the calculation variables and the values of the time step. See the associated doxygen
documentation for examples of use of cs_user_initialization.f90.

e cs_user_boundary_conditions-atmospheric.f90: allows to define all the boundary conditions.
For each type of boundary condition, faces should be grouped as physical zones characterized
by an arbitrary number izone chosen by the user. If a boundary condition is retrieved from a
meteorological profile, the variable iprofm(izone) of the zone has to be set to 1. The vertical
profiles of atmospheric variables can be described in this file.

Examples are available in the directory SRC/EXAMPLE.

4.13.7 Physical models
4.13.7.1 Atmospheric dispersion of pollutants

To simulate the atmospheric dispersion of pollutant, one first need to define the source(s) term(s). That
is to say the location i.e. the list of cells or boundary faces, the total air flow, the emitted mass fraction
of pollutant, the emission temperature and the speed with the associated turbulent parameters. The
mass fraction of pollutant is simulated through a user added scalar that could be a ‘scalar with drift’
if wanted (aerosols for example).

The simulations can be done using 3 different methods:

1. Using a mass source term, that is added in the Navier-Stokes equations using the cs_user_mass_source_terms.f90
user subroutine.

2. Prescribing a boundary condition code “total imposed mass flux“ for some boundary faces using
the cs_user_boundary_conditions.f90 user subroutine.

3. Using a scalar source term. In this case, the air inflow is not taken into account. The user has to
add an explicit part to the equations for the scalar through the cs_user_source_terms.f90 file.
This is done by selecting the cells and adding the source term crvexp (cells) which equals to
the air flux multiplied by the mass fraction, while the implicit part crvimp is set to zero.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 78/96

The first method is recommended, but one must take care that each source influences the dispersion
of the others, which is physically realistic. So if the impact of several sources has to be analyzed
independently it has first to be verified that these influences are negligible or as many simulations as
there are sources have to be run.

With the second method, the same problem of sources interactions appears, and moreover standard
Dirichlet conditions should not be used (use itypfb=i_convective_inlet and icodcl=13 instead) as
the exact emission rate cannot be prescribed because the diffusive part (usually negligible) cannot be
quantified. Additionally, it requires that the boundary faces of the emission are explicitly represented
in the mesh.

Finally the third method does not take into account the jet effect of the emission and so must be used
only if it is sure that the emission does not modify the flow.

Whatever solution is chosen, the mass conservation should be verified by using for example the
cs_user_extra operations-scalar_balance_by_zone.f90 file.

4.13.7.2 Soil/atmosphere interaction model

This model is based on the force restore model (Deardorff [17]). It takes into account heat and
humidity exchanges between the ground and the atmosphere at daily scale and the time evolution
of ground surface temperature and humidity. Surface temperature is calculated with a prognostic
equation whereas a 2-layers model is used to compute surface humidity.

The parameter iatsoil in the file atini0.f90 needs to be equal to one to activate the model. Then,
the source file solvar.f90 is used.

Three variables need to be initialized in the file atini0.£90: deep soil temperature, surface tempera-
ture and humidity.

The user needs to give the values of the model constants in the file solcat.f90: roughness length,
albedo, emissivity...

In case of a 3D simulation domain, land use data has to be provided for the domain. Values of model
constants for the land use categories have also to be provided.

4.13.7.3 Radiative model (1D)

The 1D-radiative model calculates the radiative exchange between different atmospheric layers and the
surface radiative fluxes.

The radiative exchange is computed separately for two wave lengths intervals

e Calculation in the infrared spectral domain (file rayir.£90)

e Calculation in the spectral range of solar radiation (file rayso.£90)

This 1D-radiative model is needed if the soil/atmosphere interaction model is activated.

This model is activated if the parameter iatral is equal to one in the file cs_users_parameters.£90.

4.13.8 Atmospheric main variables
For more details on the topic of atmospheric boundary layers, see Stull [16].

e Definition of the potential temperature:

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 79/96

Definition of liquid potential temperature:

Definition of virtual temperature:
T,=(1+0.61q)T

o Gas law: R
P=p— (1+0,61q)T
PM(+7Q)
with R = Rde.
e Hydrostatic state:
orP

Constant name Symbol | Values | Unit
Gravity acceleration at sea level g 9.81 m.s2
Effective Molecular Mass for dry air | My 28.97 |kg.kmol™!
Standard reference pressure P, 10° Pa
Universal gas constant R 8.3143 [J. K Y.mol
Gas constant for dry air Ry 287 Jkg LK !

Table 5: Constant name

Variable name Symbol
Specific heat capacity of dry air
Atmospheric pressure

Specific humidity

Specific content for liquid water
Temperature

Virtual temperature

Potential temperature

Liquid potential temperature
Latent heat of vaporization
Density

Altitude z

HQ

NEEEEERE

S

Table 6: Variable name

4.13.9 Recommendations

This part is a list of recommendations for atmospheric numerical simulations.

e Enough probes at different vertical levels in the domain should be used to check the convergence
of the calculation.

e An inflow boundary condition at the top level of the domain should be set (symmetry and
automatic inlet/outlet are not appropriate).

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 80/96

e A Courant number too small or too big has to be avoided (see code_saturne Best Practice
Guidelines). That is the reason why the option variable time step in space and in time
is recommended for steady simulations when there are large differences of cell size inside the
domain (which is generally the case for atmospheric simulations). With this option, it can be
necessary to change the reference time step and the time step maximal increase (by default, the
time step increase rate is 10%).

In some cases, results can be improved with the following modifications:

e In some case, the turbulent eddy viscosity can drop to unrealistically low values (especially with
k — ¢ model in stable atmospheric condition). In those cases, it is suggested to put an artificial
molecular viscosity around 0.1m?2.s~!.

e If the main direction of wind is parallel to the boundary of your computing domain, try to set
symmetry boundary conditions for the lateral boundaries to avoid inflow and outflow on the
same boundary zone (side of your domain). Another possibility is to use a cylindrical mesh.

e To avoid inflow and outflow on the same boundary zone (side of your domain), avoid the case
of vertical profile in the input data meteo file with changes of the sign of velocity of wind (V
or/and V).

4.14 Turbomachinery computations
4.14.1 Introduction

Two classical models are available in code_saturne for rotor/stator interactions modelling in turboma-
chinery computations: the steady approach which is based on the so-called Frozen Rotor modelling
and the transient rotor/stator approach which is based on a sliding mesh technique.

Warning: This section describes these functionalities based on a single code_saturne computation. An
alternative rotor/stator coupling based on coupling of boundary conditions is also possible (and only
briefly described in this section) but it is not recommended.

4.14.2 Meshing reccomendations

Periodicity The rotational periodicity treatment is possible only in Frozen Rotor. However, the
interface plane between rotor and stator must match in the azimutal 8 direction:

arotor(z) — estator (Z), erotor (Z) — estator(z>

min min max max

for all z through the rotation axis direction.

Rotor/stator interface

o Unsteady rotor/stator: in the input mesh(es), the interface between rotor and stator domains
has to be composed of boundary faces. Then the interface boundary faces are joined during the
computation and become internal faces, as is usual for mesh joining in the preprocessing stage.
A simple way to ensure joining is not done prematurely is to provide separated meshes for each
rotor or stator domain.

e [Frozen Rotor: the interface can be composed of boundary faces (in which case the interface
boundary faces are joined at the beginning of the computation) or of internal faces.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 81/96

Meshing of the interface region As mentioned above, when a rotor/stator interface boundary
exists (in particular for the unsteady rotor/stator model), boundary faces are joined by the solver
during the computation, based on the current rotor position. It is thus important to be aware that
the success of a joining operation is strongly dependant on the quality of the mesh at the interface.
More precisely, the refinement must be as similar as possible at both sides of the interface. Moreover,
it is reminded that the tolerance parameter of a joining is a fraction of the shortest edge linked with a
vertex of a joined face. Consequently, cells with high aspect ratios where the refinement in the azimutal
0 direction is much coarser than those in one of the two others can also lead to a joining failure. In
particular, the user should be careful to avoid elongated viscous layer type cells in curved areas such
as a rotor-stator interface.

If the meshes at both sides of the interface are very different such that the joining fails, advanced joining
parameters are available. However, modifying the mesh is more likely to succeed. The introduction of a
somekind of buffer cells layer on both sides of the interface should be very valuable. Ideally, each of the
two layers should have the same refinement and a constant azimutal step (this latter recommandation
is relevant only for unsteady rotor/stator model).

Alternative rotor/stator coupling If the meshes at both sides of the interface are very different
and can not be modified, a fallback solution is to use the rotor/stator model based on the boundary
conditions coupling.

Warning: Contrarily to the mesh joining approach, the boundary conditions coupling approach is not
fully conservative.

4.14.3 Turbomachinery dedicated postprocessing functions

Useful postprocessing functions relative to the machinery characteristics are available: postprocessing
of the couple on the rotor walls and postprocessing of the head generated by the machinery.

4.14.4 Data setting, keywords and examples

Data setting, keywords and examples for turbomachinery computations (mesh joining or boundary
conditions coupling), are provided in the dedicated doxygen documentation.

4.15 Cavitation module

The cavitation module is based on an homogeneous mixture model. The physical properties (density
and dynamic viscosity) of the mixture depends on a resolved void fraction and constant reference
properties of the liquid phase and the gas phase.

For a description of the user management of the cavitation module, please refer to the dedicated
doxygen documentation.

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
Page 82/96

guide

Internal coupling with a simplified structure model | External coupling with code_aster

Internal coupling

Maximum number of sub-terations for implicit 1
coupling with internal structures
Relative precision for implicit coupling 1e-05

with internal structures
Advanced options é{{
Structures definition

Structure number Label Location

Welocity and position

Initial position Position of Equilibrium Initial Velocity
% i Wy
Y| e oy
Z Zc Vz

Structure characteristics

Mass matrix Damping matrix | . Stiffness matrix

Force applied to the structure

Figure 40: Boundary conditions - internal coupling

EDF R&D

code_saturne version 6.2 practical user’s

guide

code_saturne
documentation
Page 83/96

Internal coupling with a simplified structure mode|

External coupling

Structures definition

Structure number

Fix force components

Label

External coupling with code_aster

Location

Figure 41: Boundary conditions - external coupling

STUDY
[: L
CASE_1 MESH POST
I I : ' L
DATA | | RESU | | SRC || SCRIPTS
File.xml LUser files L runcase
Meteo

Figure 42: Organization of a study (specific files of atmospheric version in bold type)

B
» |} Calculation environment = Flow Models
» [1] Mesh -
SR EEE T Es Standard Eulerian single phase

| 4 Turbulence models

|4 Body forces

|4 Atmospheric flows

|_4 Species transport
P44 Fluid properties

» ®, Volume zones
¥ ++ Boundary zones

Atmospheric
Electric arcs

Groundwater

constant density

Reactive flows (combustion)

Homogeneous Eulerian - VoF model

Figure 43: Selection of atmospheric model

code_saturne
. . , 3
EDF R&D code_saturne version 6.2 practical user’s documentation
.
B

b | 4 Calculation environment
b [Mesh
b o Calculation features LIEERIE BRI Constant h

4t Fluid properties Velocity-Pressure algorithm | SIMPLEC ~
b "y Volume zones
b ++ Boundary zones

|4 Start/Restart Reference time step |0.05 s

b Ay Numerical parameters
» -7 Postprocessing

Performance settings

Stopping criterion | Mumber of time steps ~ | |15000

Figure 44: Selection of steady/unsteady flow algorithm

(@]
b | 4 Calculation environment E Atmospheric flows
b [Mesh
« ¢ Calculation features v Read the file of meteorological data | -~
| 4 Turbulence models Name of the data file: [metea | Select the meteorological

| Body forces data file to read (meteo file,

5| f see [DATA/REFERENCE/meteo
| S for an example). This file

[Species transport must be put in the DATA
| & Fans =4 directory and must be called
14 [meteo.

Figure 45: Selection of the meteo file

[Z]E3]
-
b |2 Calculation environment Boundary conditions
b Mesh = o —
b @ Calculation features , one re ctlon crliera
P4t Fluid properties BC 2 2 wall walll buildingl
b ®, Volume zones BC_3 3 wall wall
~ »+ Boundary zones BC_4 4 wall wall buildingl
= B i BC 5 5 inlet North
B Boundary conditions BC 6 5 inlet West
P At Time settings BC 7 7 wall Ground
b Ax Numerical parameters BC_8 8 inlet Top
» -7 Postprocessing
Performance settings
Atmospheric flows
¥ | Meteorological profile from data
v | Autematic inlet/outlet nature from data =
1 »

Figure 46: Selection of automatic inlet/ outlet for boundary conditions

@
-
» | Calculation environment Boundary conditions
» @é Mesh
» ¢ Calculation features L;;:bil fcne I;\:;JFS g:l:tct\on ELtErE
AH Fluid properties BC_2 2 wall walll buildingl
b Wy Volume zones BC 3 3 wall wall
~ == Boundary zones BC_4 4 wall wall buildingl
B Boundary conditions gg—g g :m:g \I;.I;;r;cth
b At Time settings BC 7 7 wall Ground
¥ Ax Numerical parameters BC B El inlet Top
L 'gPostpmcessing
Performance settings
Atmospheric flows
¥| Meteorelogical profile from data
Automatic inlet/outlet nature from data =
[] »

Figure 47: Selection of the boundary condition for the top of the domain

code_saturne
. . , 3
EDF R&D code_saturne version 6.2 practical user’s documentation
.
guide Page 85/96
[=]E]]
» [} Calculation environment Label Zone Nature Selection criteria =
BC_ 1 1 inlet East
» [Mesh 2 wall Walll buildingl
b ¢y Calculation features BC_3 3 wall Wall
! Fluid i BC_4 4 waill Wall buildingl
R B Ceparopertes BCS 5 inlet North
s Volume zones BC 6 6 inlet West
~ =+ Boundary zones BC_7 7 wall Ground
e E nlet Top

b At Time settings

P Az Numerical parameters

» 7 Postprocessing

#k Performance settings

Figure 48: Selection of the boundary condition for building walls

sSmooth or rough wall

() Smocth wall (e Rough wall

Roughness height 0.001 m

[Z]E3]
- - Zone Nature Selection criteria

b | 4 Calculation environment T inlet East
» [Mesh 2 wall Walll buildingl
b oy Calculation features 3 wall al

£t Fluid properties 4 w’TxII Wallrl:uw\dingl

T 5 inlet Mort
b Mg Volume zones 5 ISR West
* ==+ Boundary zones 7

B Boundary conditions 8 inlet Top

b Ai Time settings

» Ax Numerical parameters

» |7 Postprocessing

Performance settings

Smooth or rough wall

) Smeoth wall (e Rough wall

Roughness height 0.02 m

Figure 49: Selection of the boundary condition for the ground

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 86/96

5 Keyword list

The keywords are classified under relevant headings. For each keyword of code_saturne Kernel, the
following informations are given:

Variable name Type Allowed values [Default) 0/C Level
Description
Potential dependences

e Variable name: Name of the variable containing the keyword.
e Type: a (Array), i (Integer), r (Real number), ¢ (Character string).
e Allowed values: list or range of allowed values.

e Default: value defined by the code before any user modification (every keyword has one). In
some cases, a non-allowed value is given (generally —999 or —10'2), forcing the user to specify a
value. If he does not do it, the code may:

- automatically use a recommended value (for example, automatic choice of the variables for
which chronological records will be generated).

- stop, if the keyword is essential.
e O/C: Optional/Compulsory

- O: optional keyword, whose default value may be enough.

- C: keyword which must imperatively be specified.
e Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 keywords are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 keywords are all optional.

- L3 (level 3): the developers may have to modify it; it keeps its default value in any other
case. The L3 keywords are all optional.

e Description: keyword description, with its potential dependences.
The L1 keywords can be modified through the Graphical Use Interface or in the cs_user_parameters.f90
file. L2 and L3 keywords can only be modified through the cs_user_parameters.f90 file, even if they

do not appear in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the keywords which do not belong to the L1 level.

The alphabetical keyword list is displayed in the index, in the end of this report.

NOTES
e The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
e The notation “grand” (which can be used in the code) corresponds to 102,

5.1 Input-output

NOTES

e Two different files can not use the same unit number (in Fortran) nor the same name.

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 87/96

5.1.1 ”Calculation” files

GENERAL

THERMOCHEMISTRY

For the calculation file related to the thermochemistry, please refer to the dedicated Doxygen docu-
mentation.

5.2 Numerical options
5.2.1 Calculation management

The following Doxygen documentation provides information about the various calculation management
options available in code_saturne such as ntmabs, ntcabs, etc.

5.2.2 Scalar unknowns

Several keywords refering to the scalar unknowns are detailed in the following Doxygen documentation.
The Doxygen page of the Stokes model structure also contains some keywords such as icpsyr, iclvfl
or itbrrb. For other keywords, please refer to the following Doxygen pages refering to nscaus and
iscacp.

5.2.3 Definition of the equations

For informations about istat, iconv, idiff or idifft, please refer to the following Doxygen docu-
mentation.

Moreover, one can find details about the idircl keyword here and about the ivisse keyword there.

5.2.4 Definition of the time advancement

idilat i 1,2,3,4 [1] O L1
Algorithm to take into account the density variation in time
= 1: steady dilatable flow algorithm (default)
= 2: unsteady dilatable flow algorithm
= 3: low-Mach number algorithm
= 4: non conservative algorithm for fire simulation
always useful

cdtvar ra strictly positive real number [1] 0) L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity/pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar (isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly not recommended
useful if and only if nscal > 1

./doxygen/src/group__main__variables.html#nscaus
./doxygen/src/group__scalar__params.html#iscacp
./doxygen/src/group__linear__solver.html#idircl
./doxygen/src/structcs__stokes__model__t.html#ivisse

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 88/96
varrdt r strictly positive real number [0.1] @) L3

maximum allowed relative increase in the calculated time step value between two
successive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)

useful if idtvar # 0

For details about time stepping options, please refer to the dedicated Doxygen documentation.

NON-CONSTANT TIME STEP
The calculation of the time step uses a reference time step dtref (at the calculation beginning). Later,
every time step, the time step value is calculated by taking into account the different existing limits,
in the following order:

e coumax, foumax: the more restrictive limit between both is used (in the compressible module,
the acoustic limitation is added),

e varrdt: progressive increase and immediate decrease in the time step,

e iptlro: limitation by the thermal time step,

e dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

5.2.5 Turbulence

The k — ¢ (standard and linearized production) and R;; —e (LRR and SSG) turbulence models imple-
mented in code_saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sub-layer (at
the wall, y™ > 2.5 is required as a minimum, and preferably between 30 and 100)!°. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. keyword iwallf) may help avoiding this problem.

The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sub-layer (y* < 1).
The k — w SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the keyword icdpar for more details about the potential limitations.

The k — € model with linear production allows to correct the known flaw of the standard & — & model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).

With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sub-layer, where the
boundary conditions are simple natural no-slip conditions.

Concerning the LES model, the user may refer to the subroutine ussmag for complements about the
dynamic model. Its usage and the interpretation of its results require particular attention. In addi-
tion, the user must pay further attention when using the dynamic model with the least squares method
based on a partial extended neighbourhood (imrgra=3). Indeed, the results may be degraded if the
user does not implement his own way of averaging the dynamic constant in ussmag (i.e. if the user
keeps the local average based on the extended neighbourhood).

For further details, please refer to the following Doxygen documentation dealing with turbulence options
and turbulence constants.

5.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modelling. On the other hand, when “specific physics” (gas combustion, pulverised coal,

*

15While creating the mesh, y*t = yz is generally unknown. It can be roughly estimated as y—[{/, where U is the
characteristic velocity, v is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 89/96

compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modelling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

Please refer to the dedicated Doxygen documentation for detailed informations about the time stepping
parameters.

5.2.7 Gradient reconstruction

The gradient reconstruction keywords such as imrgra, nswrgr, epsrgr, imligr, climgr or extrag
are members of the cs_var_cal_opt_t structure for which informations can be found in the following
Doxygen documentation.

Details on the anomax keyword can be found here as well.

5.2.8 Solution of the linear systems

See the dedicated Doxygen documentation for most settings related to linear solver options.

More informations on these settings can also be found here.

5.2.9 Convective scheme

For informations on the keywords related to the convective scheme (i.e. blencv, ischcv, isstpc)
please refer to the following Doxygen documentation.

5.2.10 Pressure-continuity step

Several options related to the pressure-continuity step are available and can be modified by the user.
These options can be found in the following Doxygen documentation. For details about the porosity
keyword iporos, please refer to the dedicated Doxygen documentation.

5.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each!®. These scalars indicate the areas (cells) in which some error types may be impor-
tant. They are stored using the cs_field API (see field get val s(iestim(iestim), c_estim)).
For each estimator, the code writes the minimum and maximum values in the log and generates post-
processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates
an additional cost of 15 to 20 % on the CPU time'”; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

16Choice made by the user
17Indeed, all the first-order in space differential terms have to be recalculated at the time ¢!

./doxygen/src/structcs__space__disc__t.html#anomax
./doxygen/src/structcs__var__cal__opt__t.html#epsilo
./doxygen/src/group__additional__source__terms.html#iporos

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 90/96

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding),
the estimator 775 zed@), local variable calculated at every cell €, is created from RP"°*(%), which
represents the residual of the equation solved during this step:

T — um

Te o~ nﬁ ~ n . n ~ n
R @) = p"=x N @) (pw)" —div (4)" Y (@) +V(P)
rest of the right-hand side(u™, P™, other variables™)

By definition:
red j~ k—2)/2 r ~
NPt @) = | FT2 RPN @) |2 o

e The first family, ¥ = 1, suppresses the volume |Q;| which intrinsically appears with the norm
L2(9;).

e The second family, k¥ = 2, exactly represents the norm L2(£;). The size of the cell therefore
appears in its calculation and induces a weighting effect.
ny "4(@) is ideally equal to zero when the reconstruction methods are perfect and the associated system
is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator nfj;(g "+1) is based on the following

quantity (intrinsic to the code):

ngir(@”+1) = | (k_z)/2||div (corrected mass flow after the pressure step) — I'[|z2(q,)

(®)

|2] (1_k)/2|div(corrected mass flow after the pressure step) — T

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.

iest = iescor: correction (default name: EsCor). The estimator 7§5" (u"*") comes directly from

the mass flow calculated with the updated velocity field:
neGT (W) = | 02k |div(p) — T

The velocities u™+! are taken at the cell centers, the divergence is calculated after projection on the
faces.
09, represents the Kronecker symbol.

e The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the
mass source term.

e The second family, k£ = 2, represents a physical property and allows to evaluate the difference in
kg.s 1.
Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

iest = iestot: total (default name: EsTot). The estimator 7% (u"""), local variable calculated at

every cell €, is based on the quantity R (u™*t1), which represents the residual of the equation using
the updated values of u and P:

n+1

R w1 = p" S + (@) - (o)™ = div (4)" L) + TP

—rest of the right-hand side(u"*!, P"*1 other variables™)

By definition:

tot

oY) = | B2 || R (Y

| |]L2(Qi)

The mass flux in the convective term is recalculated from u™*! expressed at the cell centres (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

code_saturne

EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 91/96

e The first family, k¥ = 1, suppresses the volume |€;| which intrinsicly appears with the norm
L2(Q;).

e The second family, k = 2, exactly represents the norm L2(£);). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

5.2.12 Calculation of the distance to the wall

The options related to the calculation of the distance to the wall are described in the following Doxygen
documentation. Some options are used only in the case of the calculation of the non-dimensional dis-
tance to the wall y* (LES model with van Driest damping). Most of the keywords are simple copies
of the keywords for the numerical options of the general equations, with a potentially specific value in
the case of the calculation of the distance to the wall.

5.2.13 Others

Informations concerning the remaining keywords can be reached through the following Doxygen pages:

e iccvfg and ipucou

e nterup and epsup

e imvisf

e irclu, nswrsm and epsrsm

e isuitl
5.3 Numerical, physical and modelling parameters

5.3.1 Numeric parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.
5.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

For a list of these physical parameters, please refer to the following Doxygen documentation.

5.3.3 Physical variables

Most physical variables are listed in the following Doxygen documentation.

Other physical variables such as diftl0, srrom, vislsO, sigmas or rvarfl are described in the
following Doxygen pages :

e diftl0,

./doxygen/src/structcs__space__disc__t.html#imvisf
./doxygen/src/group__optcal.html#isuit1
./doxygen/src/group__thermophysical.html#diftl0

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 92/96
e srrom,

e vislsO, sigmas, rvarfl.

5.3.4 Modelling parameters

Please refer to the following Doxygen documentation for more informations about modelling parameters
such as xlomlg, almax or uref.

5.4 ALE

For further details about the ALE calculation options, please refer to the dedicated Doxygen pages
here and there. The following Doxygen documentation might be useful as well.

5.5 Thermal radiative transfers: global settings
Most of radiative module keywords may be modified in the user subroutines cs_user_radiative_* (or,
for some of them, through the thermochemical data files).

For a detailed list of these keywords, please refer to the following Doxygen documentation.

5.6 Electric module (Joule effect and electric arcs): specificities
The electric module is composed of a Joule effect module (ippmod(ieljou)) and an electric arcs
module (ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impulse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arcs module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The different keywords used in the electric module are detailed in the following Doxygen documentation.

5.7 Compressible module: specificities

The keywords used in the global settings are quite few. They are found in the subroutines uscfx1 and
uscfx2, in the cs_user_parameters.f90 file (see the description of these user subroutines, §4.7.1).
Detailed informations can be found here for the keywords igrdpp, viscvO and icfgrp.

For iviscv, ieos and xmasmr, please refer to the dedicated Doxygen documentation.

./doxygen/src/group__enthalpy.html#srrom
./doxygen/src/group__conv__scheme.html#iflxmw

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 93/96

6
[1]

Bibliography

F. ARCHAMBEAU, N. MECHITOUA, M. SAKIZ,
code_saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows,
Industrial Applications, International Journal on Finite Volumes, Vol. 1, 2004.

F. ARCHAMBEAU, et al.,
Note de validation de code_saturne version 1.1.0,
EDF Report HI-83/04/003/A, 2004 (in French).

S. BENHAMADOUCHE,
Modélisation de sous-maille pour la LES - Validation avec la Turbulence Homogéne Isotrope (THI)

dans une version de développement de code_saturne,
EDF Report HI-83/01/033/A, 2001 (in French).

M. BOUCKER, F. ARCHAMBEAU, N. MECHITOUA,
Quelques éléments concernant la structure informatique du Solveur Commun - Version 1.0_init0,
Compte-rendu express EDF 181-00-8, 2000 (in French).

M. BOUCKER, J.D. MATTEI,
Proposition de modification des conditions auzx limites de paroi turbulente pour le Solveur Commun

dans le cadre du modéle k — ¢ standard,
EDF Report HI-81/00/019/A, 2000 (in French).

A. DoUCE, N. MECHITOUA,
Mise en ceuvre dans code_saturne des physiques particuliéres. Tome8 : Transfert thermique radiatif

en milieu gris semi-transparent,
EDF Report HI-81/02/019/A, 2002 (in French).

A. DOUCE,
Physiques particuliéres dans code_saturne 1.1, Tome 5 : modélisation stochastique lagrangienne

d’écoulements turbulents diphasiques polydispersés,
EDF Report, HI-81/04/03/A, 2005 (in French).

A. EscaicH, P. PLION, Mise en ccuvre dans code_saturne des modélisations physiques particuliéres.
Tome 1 : Combustion en phase gaz,
EDF Report, HI-81/02/03/A, 2002 (in French).

A. EscAIcH, Mise en ceuvre dans code_saturne des modélisations physiques particuliéres. Tome 2 :
Combustion du charbon pulvérisé,
EDF Report, HI-81/02/09/A, 2002 (in French).

[10] N. MECHITOUA, F. ARCHAMBEAU,

Prototype de solveur volumes finis co-localisé sur maillage non-structuré pour les équations de
Navier-Stokes 3D incompressibles et dilatables avec turbulence et scalaire passif,

EDF Report HE-41/98/010/B, 1998 (in French).

[11] CODE_SATURNE DOCUMENTATION,

code_saturne 6.2 Theory and Programmer’s guide,
on line with the release of code_saturne 6.2 (code_saturne info --guide theory).

[12] M. SAKIZ, VALIDATION TEAM,

Validation de code_saturne version 1.2 : note de synthese,
EDF Report H-183-2006-00818-FR, 2006 (in French).

[13] M. TAGORTI., S. DAL-SECCO, A. DOUCE, N. MECHITOUA,

Physiques particuliéres dans code_saturne, tome 4 : le modéle P-1 pour la modélisation des trans-
ferts thermiques radiatifs en milieu gris semi-transparent,
EDF Report HI-81/03/017/A, 2003 (in French).

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 94/96

[14] CODE_SATURNE DOCUMENTATION,
code_saturne tutorial, in line on main code_saturne website (http://www.paraview.org).

[15] E. BOUZEREAU,
Représentation des nuages chauds dans le modéle météorologique “Mercure”: Application aux

panaches d’aéroréfrigérants et aux précipitations orographiques,
EDF,Universite Pierre et Marie Curie-Paris VI, PHD, 2004 (in French).

[16] R. STULL,
An introduction to boundary layer meteorology ,
Springer, 1988.

[17] J.W. DEARDORFF,
Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vege-
tation,
Journal of Geophysical Research,83:1889-1903 , 1978.

http://www.paraview.org

Index of the main variables and keywords

— Symbols —
ISVhD ..o 11
ISVED oot 11
COCJOU vttt ittt 15
dpot ... 15
icdpar ... 15
1codCl i 23
ISCaPD vviii 10
AEYPED © e 23
TCOdCL .. 23
_ A _
ales L. 34
atgaze ... 44
_ B _
bles ..o 34
_ C _
cdtvar 87
CEDU o 54
ckabsg ... 45
10 411 007 - 44
COUIIIID e vttt ettt e e 66
CSINALZO v vttt ettt ittt ettt e 34
_ D _
diftld ..o 54
distch o 51
divukw ... 12
At oo 12
B -
ehgazg 45
epptld .o 12
_F —
fment 51
BS(1) oo 45
_ H _
hbordo 11
N
i_convective_inlet 24
faltyb ..o 71
ibfixe oo 71
iccoal ... 43
fedpar .o 88
ICEESIML oottt 39
icfuel ..o o 43
ickabs ... 53
ICod3D v 42
1ICoEbU .. 42

1COIWE 42
icompf ... 43
IEpI3C w o 43
idebty ..o 29
idiam2 ... 53
idilat ..o 87
TECAUK .« vttt et 14
felarc ... 43, 92
feljou ..o 43, 92
ientat ... 51
IENECD « ottt 51
fentfu ... 51
fentgb ... 50
fentgf ... 51
IeNtOX ..o 51
IENETE .. 24, 50
TESCOT v 90
1eSAET « e 90
IESPTE « vttt 90
Iestot ..o 90
Hlm oo 49, 54
H2m .o 49, 54
f3m .. 49, 54
H3p2m .o 54
HAp2m ... 49
fApm ..o 54
Hinty ..o 29
fmo 47, 53
ifmeel ... 12
Hp2m oo 47, 53
HP3m oo 49
Hptld e 12
ifrent 24
ifresf ... 24, 71
igfuel ... 44
Il et 71
igmdeh ... 53
igmdvl .o 53
igmdv2 .o 53
igmhet 54
12004 44
Th2 49, 53
Tthm . 53
findef ... 24
Hleaux ..o 14
immel ... 53
Indjon ... 44
00 PP 49, 53
IPArOl .« 24
IPATUE oottt e 24
ippmod ... 42
IIMP o 51

code_saturne
EDF R&D code_saturne version 6.2 practical user’s documentation
guide Page 96/96
irom2 ... 53 -Q -
iscalt ... 10 qimp .oeeei 51
iSOlib .« 24 gimpat ... 51
ISymet oo il 24 qIMPCP . 51
B3M 53
BAmM o 53 - R -
TEEIID .« oot 53 rcodel ..o 51
itempl ..o 54
HemP2 oo 53 -S -
FEFIFD Lo 29 SZKW .. 12
FEYPSIIL e v oo 39 smacel ... 39
T e 51 SITOML o 54
BV 51 SEOCE o 44
IVIMPO oo 71
I e e 51 - T-
. thord ... 11
IX 54 th A5
ixch ..o 47, 53 tim.I;E;,t’: """"""""""""""""""""""" 51
ixek oo 49, 53 BIIPED - vvv oo oo 51
ixkabe ... R
FYBE A7, 53 t%nfue .. 51
PINOXY ..o 51
Iym(l) o 53 K 51
FYI(2) © et 53 tkent ...
BINAX « ot 44
Iym(3) o 53 frmin m
Iyml(1) oo b T T
IymI(2) .o 54 —-V —
IymL(3) o DA Attt .« 88
IymI(4) oo 54
IymI(5) .o 54 - W —
lym1(6) «...oooiii 54 wmolat ... 44
lymL(7) ..o 4 wmolg ... 45
TZOMIE e 50
- X —
- K- KCO2 ottt e 45
kabse A4 YN0 .« o 45
xkabe ... 45
-N- XKADEL oo 45
DALO vt A el o 34
NICESITID .+ v v vve et 39
NCEESIM .« ettt e 39
ncharm 43
nelpch oo 43
10167076300 b: QPP 43
NESEINX oot 89
nfptld ... 12
NEAZE ettt 44
NEAZE ottt 44, 45
1010) 00 T¢o Y- PN 44
NIPO 44, 45
npptld ... 12
NIZAZ ettt ettt et 44
NEYPINX .ottt 26
_P -

	Flyleaf
	Abstract
	Table of contents
	Introduction
	Practical information about code_saturne
	User source files needed without the GUI
	Example routines
	Main variables

	Basic modelling setup
	Initialisation of the main parameters
	Non-default variables initialisation
	Manage boundary conditions
	Coding of standard boundary conditions
	Coding of non-standard boundary conditions
	Checking of the boundary conditions
	Sorting of the boundary faces
	Boundary conditions with LES

	Manage the variable physical properties
	Basic variable physical properties
	Modification of the turbulent viscosity
	Modification of the variable C of the dynamic LES model

	User source terms
	In Navier-Stokes
	For k and
	For Rij and
	For and f
	For k and
	For t
	For user scalars

	Pressure drops (head losses) and porosity
	Head losses
	Porosity

	Management of the mass sources
	User law editor of the GUI
	Modification of the variables at the end of a time step

	Advanced modelling setup
	Use of a specific physics
	Pulverised coal and gas combustion module
	Boundary conditions
	Initialisation of the options of the variables

	Heavy fuel oil combustion module
	Initialisation of transported variables
	Boundary conditions

	Radiative thermal transfers in semi-transparent gray media
	Initialisation of the radiation main parameters
	Radiative transfers boundary conditions
	Absorption coefficient of the medium, boundary conditions for the luminance and calculation of the net radiative flux

	Conjugate heat transfer
	Thermal module in a 1D wall
	Fluid-Thermal coupling with SYRTHES

	Particle-tracking (Lagrangian) Module
	General information
	Activating the particle-tracking module
	Basic guidelines for standard simulations
	Prescribing the main modelling parameters
	Prescribing particle boundary conditions
	Advanced particle-tracking set-up

	Compressible module
	 Initialisation of the options of the variables
	Management of the boundary conditions
	Initialisation of the variables
	Management of variable physical properties

	Management of the electric arcs module
	Activating the electric arcs module
	Initialisation of the variables
	Variable physical properties
	Boundary conditions
	Initialisation of the variable options
	EnSight output

	code_saturne-code_saturne coupling
	Fluid-Structure external coupling
	ALE module
	Initialisation of the options
	Mesh velocity boundary conditions
	Modification of the mesh viscosity
	Fluid - Structure internal coupling

	Management of the structure property
	Management of the atmospheric module
	Directory structure
	The atmospheric mesh features
	Atmospheric flow model and steady/unsteady algorithm
	Physical properties
	Boundary and initial conditions
	User subroutines
	Physical models
	Atmospheric main variables
	Recommendations

	Turbomachinery computations
	Introduction
	Meshing reccomendations
	Turbomachinery dedicated postprocessing functions
	Data setting, keywords and examples

	Cavitation module

	Keyword list
	Input-output
	''Calculation'' files

	Numerical options
	Calculation management
	Scalar unknowns
	Definition of the equations
	Definition of the time advancement
	Turbulence
	Time scheme
	Gradient reconstruction
	Solution of the linear systems
	Convective scheme
	Pressure-continuity step
	Error estimators for Navier-Stokes
	Calculation of the distance to the wall
	Others

	Numerical, physical and modelling parameters
	Numeric parameters
	Physical parameters
	Physical variables
	Modelling parameters

	ALE
	Thermal radiative transfers: global settings
	Electric module (Joule effect and electric arcs): specificities
	Compressible module: specificities

	Bibliography
	Index of the main variables and keywords

