6.2
general documentation
cs_prototypes.h
Go to the documentation of this file.
1 #ifndef __CS_PROTOTYPES_H__
2 #define __CS_PROTOTYPES_H__
3 
4 /*============================================================================
5  * Prototypes for Fortran functions and subroutines callable from C
6  *============================================================================*/
7 
8 /*
9  This file is part of Code_Saturne, a general-purpose CFD tool.
10 
11  Copyright (C) 1998-2020 EDF S.A.
12 
13  This program is free software; you can redistribute it and/or modify it under
14  the terms of the GNU General Public License as published by the Free Software
15  Foundation; either version 2 of the License, or (at your option) any later
16  version.
17 
18  This program is distributed in the hope that it will be useful, but WITHOUT
19  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
20  FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
21  details.
22 
23  You should have received a copy of the GNU General Public License along with
24  this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
25  Street, Fifth Floor, Boston, MA 02110-1301, USA.
26 */
27 
28 /*----------------------------------------------------------------------------*/
29 
30 /*----------------------------------------------------------------------------
31  * Local headers
32  *----------------------------------------------------------------------------*/
33 
34 #include "cs_base.h"
35 #include "cs_domain.h"
36 #include "cs_field.h"
37 #include "cs_mesh.h"
38 #include "cs_mesh_quantities.h"
39 #include "cs_mesh_bad_cells.h"
40 #include "cs_probe.h"
41 #include "cs_volume_zone.h"
42 
43 /*----------------------------------------------------------------------------*/
44 
46 
47 /*============================================================================
48  * Macro definitions
49  *============================================================================*/
50 
51 /*=============================================================================
52  * Fortran function/subroutine prototypes
53  *============================================================================*/
54 
55 /*----------------------------------------------------------------------------
56  * Main Fortran subroutine
57  *----------------------------------------------------------------------------*/
58 
59 extern void CS_PROCF (caltri, CALTRI)
60 (
61  void
62 );
63 
64 /*----------------------------------------------------------------------------
65  * Convert gas temperature to and from enthalpy based on concentrations
66  *----------------------------------------------------------------------------*/
67 
68 extern void CS_PROCF (cpthp1, CPTHP1)
69 (
70  const int *mode, /* <-- 1: h to t, 2: t to h */
71  cs_real_t *eh, /* <-> enthalpy of gas mix */
72  cs_real_t *xesp, /* <-- mas fraction of species */
73  cs_real_t *f1mc, /* <-- mean f1 */
74  cs_real_t *f2mc, /* <-- mean f2 */
75  cs_real_t *tp /* <-- gas temperature (K) */
76 );
77 
78 /*----------------------------------------------------------------------------
79  * Initialize Fortran base common block values
80  *----------------------------------------------------------------------------*/
81 
82 extern void CS_PROCF (csinit, CSINIT)
83 (
84  const int *irgpar, /* <-- MPI Rank in parallel, -1 otherwise */
85  const int *nrgpar /* <-- Number of MPI processes, or 1 */
86 );
87 
88 /*----------------------------------------------------------------------------
89  * Compute distance to wall by solving a 3d diffusion equation.
90  *----------------------------------------------------------------------------*/
91 
92 extern void CS_PROCF (distpr, DISTPR)
93 (
94  const int *itypfb, /* <-- boudnary face types */
95  cs_real_t *distpa /* <-- wall distance */
96 );
97 
98 /*----------------------------------------------------------------------------
99  * Developer function for output of variables on a post-processing mesh
100  *----------------------------------------------------------------------------*/
101 
102 extern void CS_PROCF (dvvpst, DVVPST)
103 (
104  const int *nummai, /* <-- number or post-processing mesh */
105  const int *numtyp, /* <-- number or post-processing type
106  * (-1 as volume, -2 as boundary, or nummai) */
107  const int *nvar, /* <-- number of variables */
108  const cs_lnum_t *ncelps, /* <-- number of post-processed cells */
109  const cs_lnum_t *nfbrps, /* <-- number of post processed boundary faces */
110  const cs_lnum_t lstcel[], /* <-- list of post-processed cells */
111  const cs_lnum_t lstfbr[], /* <-- list of post-processed boundary faces */
112  cs_real_t tracel[], /* --- work array for output cells */
113  cs_real_t trafbr[] /* --- work array for output boundary faces */
114 );
115 
116 /*----------------------------------------------------------------------------
117  * Find the nearest cell's center from a node
118  *----------------------------------------------------------------------------*/
119 
120 extern void CS_PROCF (findpt, FINDPT)
121 (
122  const cs_lnum_t *ncelet, /* <-- number of extended (real + ghost) cells */
123  const cs_lnum_t *ncel, /* <-- number of cells */
124  const cs_real_t *xyzcen, /* <-- cell centers */
125  const cs_real_t *xx, /* <-- node coordinate X */
126  const cs_real_t *yy, /* <-- node coordinate Y */
127  const cs_real_t *zz, /* <-- node coordinate Z */
128  cs_lnum_t *node, /* --> node we are looking for, zero if error */
129  int *ndrang /* --> rank of associated process */
130 );
131 
132 /*----------------------------------------------------------------------------
133  * Check necessity of extended mesh from FORTRAN options.
134  *
135  * Interface Fortran :
136  *
137  * SUBROUTINE HALTYP (IVOSET)
138  * *****************
139  *
140  * INTEGER IVOSET : <-- : Indicator of necessity of extended mesh
141  *----------------------------------------------------------------------------*/
142 
143 extern void
144 CS_PROCF (haltyp, HALTYP)(const int *ivoset);
145 
146 /*----------------------------------------------------------------------------
147  * Main Fortran options initialization
148  *----------------------------------------------------------------------------*/
149 
150 extern void CS_PROCF (initi1, INITI1)
151 (
152  void
153 );
154 
155 /*----------------------------------------------------------------------------
156  * User function for enthalpy <-> temperature conversion
157  *----------------------------------------------------------------------------*/
158 
159 void CS_PROCF (usthht, USTHHT)
160 (
161  const int *mode, /* <-- -1 : t -> h ; 1 : h -> t */
162  cs_real_t *enthal, /* <-- enthalpy */
163  cs_real_t *temper /* <-- temperature */
164 );
165 
166 /*----------------------------------------------------------------------------*/
176 /*----------------------------------------------------------------------------*/
177 
178 void
179 cs_user_head_losses(const cs_zone_t *zone,
180  cs_real_t cku[][6]);
181 
182 /*----------------------------------------------------------------------------
183  * Absorption coefficient for radiative module
184  *----------------------------------------------------------------------------*/
185 
186 void
187 cs_user_rad_transfer_absorption(const int bc_type[],
188  cs_real_t ck[]);
189 
190 /*----------------------------------------------------------------------------
191  * Compute the net radiation flux
192  *----------------------------------------------------------------------------*/
193 
194 void
196  const cs_real_t coefap[],
197  const cs_real_t coefbp[],
198  const cs_real_t cofafp[],
199  const cs_real_t cofbfp[],
200  const cs_real_t twall[],
201  const cs_real_t qincid[],
202  const cs_real_t xlam[],
203  const cs_real_t epa[],
204  const cs_real_t eps[],
205  const cs_real_t ck[],
206  cs_real_t net_flux[]);
207 
208 /*----------------------------------------------------------------------------
209  * Convert temperature to enthalpy at boundary
210  *----------------------------------------------------------------------------*/
211 
212 void CS_PROCF (b_t_to_h, B_T_TO_H)
213 (
214  const cs_lnum_t *nlst, /* --> number of faces in list */
215  const cs_lnum_t *lstfac, /* --> list of boundary faces at which
216  conversion is requested */
217  const cs_real_t *t_b, /* --> temperature at boundary */
218  cs_real_t *h_b /* --> enthalpy at boundary */
219 );
220 
221 /*----------------------------------------------------------------------------
222  * Convert enthalpy to temperature at cells
223  *----------------------------------------------------------------------------*/
224 
225 void CS_PROCF (c_h_to_t, C_H_TO_T)
226 (
227  const cs_real_t *h, /* --> enthalpy */
228  cs_real_t *t /* --> temperature */
229 );
230 
231 /*----------------------------------------------------------------------------
232  * Convert enthalpy to temperature at boundary.
233  *
234  * If conversion is done in-place, h and t may point to the same arrays.
235  *
236  * parameters:
237  * h <-- enthalpy
238  * t --> temperature
239  *----------------------------------------------------------------------------*/
240 
241 void CS_PROCF (b_h_to_t, B_H_TO_T)
242 (
243  const cs_real_t *h, /* --> enthalpy */
244  cs_real_t *t /* --> temperature */
245 );
246 
247 /*----------------------------------------------------------------------------
248  * Add field indexes associated with a new non-user solved variable,
249  * with default options
250  *
251  * parameters:
252  * f_id <-- field id
253  *
254  * returns:
255  * scalar number for defined field
256  *----------------------------------------------------------------------------*/
257 
258 int
260 
261 /*----------------------------------------------------------------------------
262  * Return Lagrangian model status.
263  *
264  * parameters:
265  * model_flag --> 0 without Lagrangian, 1 or 2 with Lagrangian
266  * restart_flag --> 1 for Lagrangian restart, 0 otherwise
267  * frozen_flag --> 1 for frozen Eulerian flow, 0 otherwise
268  *----------------------------------------------------------------------------*/
269 
270 void
271 cs_lagr_status(int *model_flag,
272  int *restart_flag,
273  int *frozen_flag);
274 
275 /*============================================================================
276  * User function prototypes
277  *============================================================================*/
278 
279 /*----------------------------------------------------------------------------
280  * Data Entry of the 1D wall thermal module.
281  *----------------------------------------------------------------------------*/
282 
283 void
284 cs_user_1d_wall_thermal(int iappel,
285  int isuit1);
286 
287 /*----------------------------------------------------------------------------
288  * This function is called at each time step for boundary conditions.
289  *----------------------------------------------------------------------------*/
290 
291 void
293  int icodcl[],
294  int bc_type[],
295  cs_real_t rcodcl[]);
296 
297 /*----------------------------------------------------------------------------*/
309 /*----------------------------------------------------------------------------*/
310 
311 void
313 
314 /*----------------------------------------------------------------------------*/
323 /*----------------------------------------------------------------------------*/
324 
325 void
327 
328 /*----------------------------------------------------------------------------*/
337 /*----------------------------------------------------------------------------*/
338 
339 void
341 
342 /*----------------------------------------------------------------------------*/
348 /*----------------------------------------------------------------------------*/
349 
350 void
352 
353 /*----------------------------------------------------------------------------*/
359 /*----------------------------------------------------------------------------*/
360 
361 void
363 
364 /*----------------------------------------------------------------------------*/
373 /*----------------------------------------------------------------------------*/
374 
375 void
377 
378 /*----------------------------------------------------------------------------*/
387 /*----------------------------------------------------------------------------*/
388 
389 void
391 
392 /*----------------------------------------------------------------------------*/
398 /*----------------------------------------------------------------------------*/
399 
400 void
402 
403 /*----------------------------------------------------------------------------*/
413 /*----------------------------------------------------------------------------*/
414 
415 void
417  int f_id,
418  cs_real_t *st_exp,
419  cs_real_t *st_imp);
420 
421 /*----------------------------------------------------------------------------*/
431 /*----------------------------------------------------------------------------*/
432 
433 void
435 
436 /*----------------------------------------------------------------------------
437  * Define mesh joinings.
438  *----------------------------------------------------------------------------*/
439 
440 void
441 cs_user_join(void);
442 
443 /*----------------------------------------------------------------------------
444  * Define linear solver options.
445  *
446  * This function is called at the setup stage, once user and most model-based
447  * fields are defined.
448  *----------------------------------------------------------------------------*/
449 
450 void
452 
453 /*----------------------------------------------------------------------------*/
459 /*----------------------------------------------------------------------------*/
460 
461 void
463 
464 /*----------------------------------------------------------------------------
465  * Tag bad cells within the mesh based on geometric criteria.
466  *----------------------------------------------------------------------------*/
467 
468 void
470  cs_mesh_quantities_t *mesh_quantities);
471 
472 /*----------------------------------------------------------------------------
473  * Define mesh files to read and optional associated transformations.
474  *----------------------------------------------------------------------------*/
475 
476 void
477 cs_user_mesh_input(void);
478 
479 /*----------------------------------------------------------------------------
480  * Modifiy geometry and mesh.
481  *----------------------------------------------------------------------------*/
482 
483 void
485 
486 /*----------------------------------------------------------------------------
487  * Insert boundary wall into a mesh.
488  *----------------------------------------------------------------------------*/
489 
490 void
492 
493 /*----------------------------------------------------------------------------
494  * Mesh smoothing.
495  *
496  * parameters:
497  * mesh <-> pointer to mesh structure to smoothe
498  *----------------------------------------------------------------------------*/
499 
500 void
502 
503 /*----------------------------------------------------------------------------
504  * Enable or disable mesh saving.
505  *
506  * By default, mesh is saved when modified.
507  *
508  * parameters:
509  * mesh <-> pointer to mesh structure
510  *----------------------------------------------------------------------------*/
511 
512 void
514 
515 /*----------------------------------------------------------------------------
516  * Set options for cutting of warped faces
517  *
518  * parameters:
519  * mesh <-> pointer to mesh structure to smoothe
520  *----------------------------------------------------------------------------*/
521 
522 void
524 
525 /*----------------------------------------------------------------------------*/
533 /*----------------------------------------------------------------------------*/
534 
535 void
537  cs_mesh_quantities_t *mesh_quantities);
538 
539 /*----------------------------------------------------------------------------
540  * Select physical model options, including user fields.
541  *
542  * This function is called at the earliest stages of the data setup.
543  *----------------------------------------------------------------------------*/
544 
545 void
546 cs_user_model(void);
547 
548 /*----------------------------------------------------------------------------
549  * Define advanced mesh numbering options.
550  *----------------------------------------------------------------------------*/
551 
552 void
553 cs_user_numbering(void);
554 
555 /*----------------------------------------------------------------------------
556  * Define parallel IO settings.
557  *----------------------------------------------------------------------------*/
558 
559 void
560 cs_user_parallel_io(void);
561 
562 /*----------------------------------------------------------------------------
563  * Define advanced partitioning options.
564  *----------------------------------------------------------------------------*/
565 
566 void
567 cs_user_partition(void);
568 
569 /*----------------------------------------------------------------------------
570  * Define sparse matrix tuning options.
571  *----------------------------------------------------------------------------*/
572 
573 void
575 
576 /*----------------------------------------------------------------------------
577  * Define or modify general numerical and physical user parameters.
578  *
579  * At the calling point of this function, most model-related most variables
580  * and other fields have been defined, so specific settings related to those
581  * fields may be set here.
582  *----------------------------------------------------------------------------*/
583 
584 void
586 
587 /*----------------------------------------------------------------------------
588  * User function for input of radiative transfer module options.
589  *----------------------------------------------------------------------------*/
590 
591 void
593 
594 /*-----------------------------------------------------------------------------
595  * User subroutine for input of radiative transfer boundary conditions
596  *----------------------------------------------------------------------------*/
597 
598 void
600  const int bc_type[],
601  int icodcl[],
602  int isothp[],
603  cs_real_t *tmin,
604  cs_real_t *tmax,
605  cs_real_t *tx,
606  const cs_real_t dt[],
607  cs_real_t rcodcl[],
608  const cs_real_t thwall[],
609  const cs_real_t qincid[],
610  cs_real_t hfcnvp[],
611  cs_real_t flcnvp[],
612  cs_real_t xlamp[],
613  cs_real_t epap[],
614  cs_real_t epsp[],
615  cs_real_t textp[],
616  cs_real_t tintp[]);
617 
618 /*----------------------------------------------------------------------------
619  * Define periodic faces.
620  *----------------------------------------------------------------------------*/
621 
622 void
623 cs_user_periodicity(void);
624 
625 /*----------------------------------------------------------------------------
626  * Define post-processing writers.
627  *
628  * The default output format and frequency may be configured, and additional
629  * post-processing writers allowing outputs in different formats or with
630  * different format options and output frequency than the main writer may
631  * be defined.
632  *----------------------------------------------------------------------------*/
633 
634 void
636 
637 /*-----------------------------------------------------------------------------
638  * Define monitoring probes and profiles. A profile is seen as a set of probes.
639  *----------------------------------------------------------------------------*/
640 
641 void
643 
644 /*----------------------------------------------------------------------------
645  * Define post-processing meshes.
646  *
647  * The main post-processing meshes may be configured, and additional
648  * post-processing meshes may be defined as a subset of the main mesh's
649  * cells or faces (both interior and boundary).
650  *----------------------------------------------------------------------------*/
651 
652 void
654 
655 /*----------------------------------------------------------------------------
656  * User function for output of values on a post-processing mesh.
657  *----------------------------------------------------------------------------*/
658 
659 void
660 cs_user_postprocess_values(const char *mesh_name,
661  int mesh_id,
662  int cat_id,
663  cs_probe_set_t *probes,
664  cs_lnum_t n_cells,
665  cs_lnum_t n_i_faces,
666  cs_lnum_t n_b_faces,
667  cs_lnum_t n_vertices,
668  const cs_lnum_t cell_list[],
669  const cs_lnum_t i_face_list[],
670  const cs_lnum_t b_face_list[],
671  const cs_lnum_t vertex_list[],
672  const cs_time_step_t *ts);
673 
674 /*----------------------------------------------------------------------------
675  * Override default frequency or calculation end based output.
676  *
677  * This allows fine-grained control of activation or deactivation,
678  *
679  * parameters:
680  * nt_max_abs <-- maximum time step number
681  * nt_cur_abs <-- current time step number
682  * t_cur_abs <-- absolute time at the current time step
683  *----------------------------------------------------------------------------*/
684 
685 void
686 cs_user_postprocess_activate(int nt_max_abs,
687  int nt_cur_abs,
688  double t_cur_abs);
689 
690 /*----------------------------------------------------------------------------
691  * Set user solver.
692  *----------------------------------------------------------------------------*/
693 
694 int
695 cs_user_solver_set(void);
696 
697 /*----------------------------------------------------------------------------
698  * Main call to user solver.
699  *----------------------------------------------------------------------------*/
700 
701 void
703  const cs_mesh_quantities_t *mesh_quantities);
704 
705 /*----------------------------------------------------------------------------
706  * Define couplings with other instances of Code_Saturne.
707  *----------------------------------------------------------------------------*/
708 
709 void
711 
712 /*----------------------------------------------------------------------------
713  * Define couplings with SYRTHES code.
714  *----------------------------------------------------------------------------*/
715 
716 void
718 
719 /*----------------------------------------------------------------------------*/
729 /*----------------------------------------------------------------------------*/
730 
731 void
732 cs_user_syrthes_coupling_volume_h(int coupling_id,
733  const char *syrthes_name,
734  cs_lnum_t n_elts,
735  const cs_lnum_t elt_ids[],
736  cs_real_t h_vol[]);
737 
738 /*----------------------------------------------------------------------------
739  * Define time moments.
740  *----------------------------------------------------------------------------*/
741 
742 void
744 
745 /*----------------------------------------------------------------------------
746  * Define rotor/stator model.
747  *----------------------------------------------------------------------------*/
748 
749 void
751 
752 /*----------------------------------------------------------------------------
753  * Define rotor axes, associated cells, and rotor/stator faces.
754  *----------------------------------------------------------------------------*/
755 
756 void
758 
759 /*----------------------------------------------------------------------------
760  * Define rotation velocity of rotor.
761  *----------------------------------------------------------------------------*/
762 
763 void
765 
766 /*----------------------------------------------------------------------------*/
770 /*----------------------------------------------------------------------------*/
771 
772 void
773 cs_user_zones(void);
774 
775 /*----------------------------------------------------------------------------*/
779 /*----------------------------------------------------------------------------*/
780 
781 void
783  const cs_mesh_quantities_t *mesh_quantities,
784  cs_real_t *dt);
785 
786 /*----------------------------------------------------------------------------
787  * Computation of the relaxation time-scale to equilibrium in the frame of
788  * the homogeneous two-phase model.
789  *----------------------------------------------------------------------------*/
790 
791 void
793  const cs_real_t *alpha_eq,
794  const cs_real_t *y_eq,
795  const cs_real_t *z_eq,
796  const cs_real_t *ei,
797  const cs_real_t *v,
798  cs_real_t *relax_tau);
799 
800 /*============================================================================
801  * CDO User function prototypes
802  *============================================================================*/
803 
804 /*----------------------------------------------------------------------------*/
812 /*----------------------------------------------------------------------------*/
813 
814 void
816 
817 /*----------------------------------------------------------------------------*/
818 
819 /*============================================================================
820  * MEG function prototypes
821  *============================================================================*/
822 
823 /*----------------------------------------------------------------------------*/
836 /*----------------------------------------------------------------------------*/
837 
838 cs_real_t *
840  const char *field_name,
841  const char *condition);
842 
843 /*----------------------------------------------------------------------------*/
851 /*----------------------------------------------------------------------------*/
852 
853 void
855  cs_field_t *f[]);
856 
857 /*----------------------------------------------------------------------------*/
865 /*----------------------------------------------------------------------------*/
866 
867 cs_real_t *
868 cs_meg_initialization(const cs_zone_t *zone,
869  const char *field_name);
870 
871 /*----------------------------------------------------------------------------*/
883 /*----------------------------------------------------------------------------*/
884 
885 cs_real_t *
886 cs_meg_source_terms(const cs_zone_t *zone,
887  const char *name,
888  const char *source_type);
889 
890 /*----------------------------------------------------------------------------*/
902 /*----------------------------------------------------------------------------*/
903 
904 void
906  const char *object_name,
907  cs_real_t xyz[3],
908  cs_real_t t);
909 
910 /*----------------------------------------------------------------------------*/
920 /*----------------------------------------------------------------------------*/
921 
922 void
923 cs_meg_fsi_struct(const char *object_type,
924  const char *name,
925  const cs_real_t fluid_f[],
926  cs_real_t val[]);
927 
928 /*----------------------------------------------------------------------------*/
932 /*----------------------------------------------------------------------------*/
933 
934 void
936 
937 /*----------------------------------------------------------------------------*/
945 /*----------------------------------------------------------------------------*/
946 
947 void
948 cs_meg_post_profiles(const char *name,
949  int n_coords,
950  cs_real_t coords[][3]);
951 
952 /*----------------------------------------------------------------------------*/
953 
955 
956 #endif /* __CS_PROTOTYPES_H__ */
void cs_user_finalize_setup(cs_domain_t *domain)
Define or modify output user parameters. For CDO schemes, specify the elements such as properties...
Definition: cs_user_parameters.c:125
void cs_user_partition(void)
Define advanced partitioning options.
Definition: cs_user_performance_tuning.c:87
cs_real_t * cs_meg_initialization(const cs_zone_t *zone, const char *field_name)
Evaluate GUI defined mathematical expressions over volume zones for initialization.
Definition: cs_meg_initialization.c:70
void cpthp1(const int *mode, cs_real_t *eh, cs_real_t *xesp, cs_real_t *f1mc, cs_real_t *f2mc, cs_real_t *tp)
void b_t_to_h(const cs_lnum_t *nlst, const cs_lnum_t *lstfac, const cs_real_t *t_b, cs_real_t *h_b)
void cs_user_internal_coupling_add_volumes(cs_mesh_t *mesh)
Define volumes as internal coupling zones.
Definition: cs_internal_coupling.c:2940
time step descriptor
Definition: cs_time_step.h:64
integer, save ncel
Definition: mesh.f90:50
void cs_user_extra_operations_finalize(cs_domain_t *domain)
This function is called at the end of the calculation.
Definition: cs_user_extra_operations.c:126
void initi1(void)
Definition: initi1.f90:29
void cs_user_internal_coupling(void)
Define internal coupling options.
Definition: cs_user_parameters.c:180
void cs_user_physical_properties(cs_domain_t *domain)
This function is called each time step to define physical properties.
Definition: cs_user_physical_properties.c:81
void cs_user_periodicity(void)
Define periodic faces.
Definition: cs_user_mesh.c:108
void cs_user_extra_operations(cs_domain_t *domain)
This function is called at the end of each time step.
Definition: cs_user_extra_operations.c:108
void cs_user_turbomachinery(void)
Define rotor/stator model.
Definition: cs_user_turbomachinery.c:77
Field descriptor.
Definition: cs_field.h:125
void cs_user_rad_transfer_absorption(const int bc_type[], cs_real_t ck[])
Absorption coefficient for radiative module.
Definition: cs_user_radiative_transfer.c:108
void caltri(void)
Definition: caltri.f90:36
void usthht(const int *mode, cs_real_t *enthal, cs_real_t *temper)
#define BEGIN_C_DECLS
Definition: cs_defs.h:495
void cs_user_parameters(cs_domain_t *domain)
Define or modify general numerical and physical user parameters.
Definition: cs_user_parameters.c:107
void cs_user_source_terms(cs_domain_t *domain, int f_id, cs_real_t *st_exp, cs_real_t *st_imp)
Additional user-defined source terms for variable equations (momentum, scalars, turbulence...).
Definition: cs_user_source_terms.c:155
void cs_user_postprocess_activate(int nt_max_abs, int nt_cur_abs, double t_cur_abs)
Definition: cs_user_postprocess.c:177
void haltyp(const int *ivoset)
void cs_user_postprocess_meshes(void)
Define post-processing meshes.
Definition: cs_user_postprocess.c:86
void cs_user_model(void)
Select physical model options, including user fields.
Definition: cs_user_parameters.c:84
void cs_user_rad_transfer_net_flux(const int itypfb[], const cs_real_t coefap[], const cs_real_t coefbp[], const cs_real_t cofafp[], const cs_real_t cofbfp[], const cs_real_t twall[], const cs_real_t qincid[], const cs_real_t xlam[], const cs_real_t epa[], const cs_real_t eps[], const cs_real_t ck[], cs_real_t net_flux[])
Compute the net radiation flux.
Definition: cs_user_radiative_transfer.c:146
void dvvpst(const int *nummai, const int *numtyp, const int *nvar, const cs_lnum_t *ncelps, const cs_lnum_t *nfbrps, const cs_lnum_t lstcel[], const cs_lnum_t lstfbr[], cs_real_t tracel[], cs_real_t trafbr[])
void cs_user_mesh_modify(cs_mesh_t *mesh)
Modify geometry and mesh.
Definition: cs_user_mesh.c:151
void cs_user_join(void)
Define mesh joinings.
Definition: cs_user_mesh.c:95
void cs_user_syrthes_coupling_volume_h(int coupling_id, const char *syrthes_name, cs_lnum_t n_elts, const cs_lnum_t elt_ids[], cs_real_t h_vol[])
Compute a volume exchange coefficient for SYRTHES couplings.
Definition: cs_user_coupling.c:114
void cs_user_postprocess_values(const char *mesh_name, int mesh_id, int cat_id, cs_probe_set_t *probes, cs_lnum_t n_cells, cs_lnum_t n_i_faces, cs_lnum_t n_b_faces, cs_lnum_t n_vertices, const cs_lnum_t cell_list[], const cs_lnum_t i_face_list[], const cs_lnum_t b_face_list[], const cs_lnum_t vertex_list[], const cs_time_step_t *ts)
User function for output of values on a post-processing mesh.
Definition: cs_user_postprocess.c:134
void cs_user_scaling_elec(const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities, cs_real_t *dt)
Define scaling parameter for electric model.
Definition: cs_user_electric_scaling.c:75
void cs_user_radiative_transfer_parameters(void)
User function for input of radiative transfer module options.
Definition: cs_user_radiative_transfer.c:81
double cs_real_t
Floating-point value.
Definition: cs_defs.h:307
void cs_user_numbering(void)
Define advanced mesh numbering options.
Definition: cs_user_performance_tuning.c:74
integer, save ncelet
Definition: mesh.f90:46
void cs_user_mesh_save(cs_mesh_t *mesh)
Enable or disable mesh saving.
Definition: cs_user_mesh.c:183
Definition: cs_mesh.h:74
void csinit(const int *irgpar, const int *nrgpar)
void b_h_to_t(const cs_real_t *h, cs_real_t *t)
double precision, dimension(:,:), pointer xyzcen
Definition: mesh.f90:110
double precision, dimension(:,:,:), allocatable v
Definition: atimbr.f90:114
void cs_user_extra_operations_initialize(cs_domain_t *domain)
Initialize variables.
Definition: cs_user_extra_operations.c:90
void cs_user_matrix_tuning(void)
Define sparse matrix tuning options.
Definition: cs_user_performance_tuning.c:113
void cs_user_mesh_warping(void)
Set options for cutting of warped faces.
Definition: cs_user_mesh.c:121
void cs_user_solver(const cs_mesh_t *mesh, const cs_mesh_quantities_t *mesh_quantities)
Main call to user solver.
Definition: cs_user_solver.c:92
void cs_meg_immersed_boundaries_inout(int *ipenal, const char *object_name, cs_real_t xyz[3], cs_real_t t)
void cs_user_postprocess_probes(void)
Define monitoring probes and profiles.
Definition: cs_user_postprocess.c:101
void cs_lagr_status(int *model_flag, int *restart_flag, int *frozen_flag)
int cs_user_solver_set(void)
Set user solver.
Definition: cs_user_solver.c:75
Definition: cs_field_pointer.h:97
Definition: cs_field_pointer.h:65
Definition: cs_field_pointer.h:99
void cs_meg_fsi_struct(const char *object_type, const char *name, const cs_real_t fluid_f[], cs_real_t val[])
This function is used to query FSI internal coupling structure values for a given boundary and struct...
Definition: cs_meg_fsi_struct.c:70
void cs_user_linear_solvers(void)
Define linear solver options.
Definition: cs_user_parameters.c:148
Definition: cs_mesh_quantities.h:89
void cs_user_internal_coupling_from_disjoint_meshes(cs_mesh_t *mesh)
Define volumesi from separated meshes as internal coupling zones.
Definition: cs_internal_coupling.c:2959
integer, dimension(:), pointer, save itypfb
Definition: pointe.f90:100
integer, save isuit1
Definition: optcal.f90:295
Structure storing the main features of the computational domain and pointers to the main geometrical ...
Definition: cs_domain.h:88
integer, save nvar
number of solved variables (must be lower than nvarmx)
Definition: dimens.f90:42
cs_real_t * cs_meg_boundary_function(const cs_zone_t *zone, const char *field_name, const char *condition)
Definition: cs_meg_boundary_function.c:71
void cs_meg_post_profiles(const char *name, int n_coords, cs_real_t coords[][3])
This function is used to define profile coordinates.
Definition: cs_meg_post_profile.c:68
void cs_user_time_moments(void)
Define time moments.
Definition: cs_user_parameters.c:165
Definition: cs_field_pointer.h:189
void c_h_to_t(const cs_real_t *h, cs_real_t *t)
void cs_user_mesh_input(void)
Define mesh files to read and optional associated transformations.
Definition: cs_user_mesh.c:82
void cs_user_mesh_bad_cells_tag(cs_mesh_t *mesh, cs_mesh_quantities_t *mesh_quantities)
Tag bad cells within the mesh based on user-defined geometric criteria.
Definition: cs_user_mesh.c:199
void cs_user_postprocess_writers(void)
Define post-processing writers.
Definition: cs_user_postprocess.c:69
int cs_lnum_t
local mesh entity id
Definition: cs_defs.h:301
cs_real_t * cs_meg_source_terms(const cs_zone_t *zone, const char *name, const char *source_type)
Definition: cs_meg_source_terms.c:71
void cs_user_radiative_transfer_bcs(int nvar, const int bc_type[], int icodcl[], int isothp[], cs_real_t *tmin, cs_real_t *tmax, cs_real_t *tx, const cs_real_t dt[], cs_real_t rcodcl[], const cs_real_t thwall[], const cs_real_t qincid[], cs_real_t hfcnvp[], cs_real_t flcnvp[], cs_real_t xlamp[], cs_real_t epap[], cs_real_t epsp[], cs_real_t textp[], cs_real_t tintp[])
User definition of radiative transfer boundary conditions.
Definition: cs_user_radiative_transfer_bcs.c:150
int cs_add_model_field_indexes(int f_id)
#define END_C_DECLS
Definition: cs_defs.h:496
void cs_meg_volume_function(const cs_zone_t *zone, cs_field_t *f[])
This function is used to compute user defined values for fields over a given volume zone...
Definition: cs_meg_volume_function.c:68
void cs_meg_post_activate(void)
This function is used to activate postprocessing writers.
Definition: cs_meg_post_output.c:64
void cs_user_turbomachinery_set_rotation_velocity(void)
Define rotation velocity of rotor.
Definition: cs_user_turbomachinery.c:103
struct _cs_probe_set_t cs_probe_set_t
Definition: cs_probe.h:53
void cs_user_hgn_thermo_relax_time(const cs_mesh_t *mesh, const cs_real_t *alpha_eq, const cs_real_t *y_eq, const cs_real_t *z_eq, const cs_real_t *ei, const cs_real_t *v, cs_real_t *relax_tau)
Computation of the relaxation time-scale.
Definition: cs_user_hgn.c:82
#define CS_PROCF(x, y)
Definition: cs_defs.h:509
void cs_user_mesh_boundary(cs_mesh_t *mesh)
Insert boundaries into a mesh.
Definition: cs_user_mesh.c:136
void cs_user_syrthes_coupling(void)
Define couplings with SYRTHES code.
Definition: cs_user_coupling.c:95
Definition: cs_field_pointer.h:98
void cs_user_turbomachinery_rotor(void)
Define rotor axes, associated cells, and rotor/stator faces.
Definition: cs_user_turbomachinery.c:90
void cs_user_gwf_setup(cs_domain_t *domain)
Specify for each soil and tracer how is defined each term of the the tracer equation. Soils and tracer equations have to be added previously.
Definition: cs_user_gwf.c:87
void findpt(const cs_lnum_t *ncelet, const cs_lnum_t *ncel, const cs_real_t *xyzcen, const cs_real_t *xx, const cs_real_t *yy, const cs_real_t *zz, cs_lnum_t *node, int *ndrang)
void cs_user_parallel_io(void)
Define parallel IO settings.
Definition: cs_user_performance_tuning.c:100
Definition: cs_field_pointer.h:71
void cs_user_head_losses(const cs_zone_t *zone, cs_real_t cku[][6])
Compute GUI-defined head losses for a given volume zone.
Definition: cs_user_head_losses.c:92
void cs_user_saturne_coupling(void)
Define couplings with other instances of Code_Saturne.
Definition: cs_user_coupling.c:79
void cs_user_mesh_smoothe(cs_mesh_t *mesh)
Mesh smoothing.
Definition: cs_user_mesh.c:166
void cs_user_1d_wall_thermal(int iappel, int isuit1)
Definition: cs_user_1d_wall_thermal.c:88
void cs_user_boundary_conditions(int nvar, int icodcl[], int bc_type[], cs_real_t rcodcl[])
User definition of boundary conditions.
Definition: cs_user_boundary_conditions.c:78
Definition: mesh.f90:26
void cs_user_mesh_modify_partial(cs_mesh_t *mesh, cs_mesh_quantities_t *mesh_quantities)
Apply partial modifications to the mesh after the preprocessing and initial postprocessing mesh build...
Definition: cs_user_mesh.c:218
void distpr(const int *itypfb, cs_real_t *distpa)
void cs_user_porosity(cs_domain_t *domain)
Compute the porosity (volume factor when the porosity model is activated. (cs_glob_porous_model > 0)...
Definition: cs_user_porosity.c:86
void cs_user_initialization(cs_domain_t *domain)
This function is called one time step to initialize problem.
Definition: cs_user_initialization.c:88
Definition: cs_field_pointer.h:190
Definition: cs_zone.h:55
void cs_user_zones(void)
Define volume and surface zones.
Definition: cs_user_zones.c:63