EDF R&D

q
* SEeDF

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER

F-78401 CHATOU CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16

Code_Saturne documentation

Code_Saturne version 6.0 installation guide

contact: saturne-support@edf.fr

_ODE
SATURN

MAY 2021

EDF R&D

Code_Saturne version 6.0 installation guide

Code_Saturne
documentation

Page 1/20

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dO;umegt/&;téon
age

TABLE OF CONTENTS

1 Code_Saturne Automated or manual installation 3
2 Installation basics v 0 i L e e e e e e e e e e e e e e e e e e 3
3 Compilers and interpreters i e e 3
4 Loading an environment 00 e e e e e e e e e e e 4
5 Third-Party libraries 0 0 v i i i i ittt e e e e e e e e e e 4
5.1 INSTALLING THIRD-PARTY LIBRARIES FOR Code_Saturne 4
5.2 LIST OF THIRD-PARTY LIBRARIES USABLE BY Code_Saturne 5
5.3 NOTES ON SOME THIRD-PARTY TOOLS AND LIBRARIES 7

5.3.1 PYTHON AND PYQT e 7

5.3.2 SCOTCH AND PT-SCOTCH i it 7

5.3.3 MED e 8

5.3.4 LIBCCMIO 0 e 8

5.3.5 FREESTEAM« . v v v ittt e b e e e e e e e 9

5.3.6 COOLPROP e 9

5.3.7 PARAVIEW OR CATALYST« t v v v vt et e e e e e e e 10
6 Preparing for build o oo e e s e 11
6.1 SOURCE TREES OBTAINED THROUGH A SOURCE CODE REPOSITORY 11
7 Configuration 0 0 i i i e e e e e e e e e e e e e e e e 11
7.1 DEBUG BUILDS L oo 00 o e e 12
7.2 SHARED OR STATIC BUILDS . . + « « © v v vt e et e e e e e e e e e 12
7.3 RELOCATABLE BUILDS v v v vt ittt e e e e e e e e e e e 12
7.4 COMPILER FLAGS AND ENVIRONMENT VARIABLES« « o v v v v v oo . 13
7.5 MPI COMPILER WRAPPERS . . . « « v v v v vt e e e e e e e e e e 13
7.6 ENVIRONMENT MODULES o o i vttt e e e e e e e e e 13
7.7 REMARKS FOR VERY LARGE MESHES o vt v v v i oo 14
7.8 INSTALLATION WITH THE SALOME PLATFORM 14
7.9 EXAMPLE CONFIGURATION COMMANDS v v v v v e e e e e e e e e e e 15
7.10 CROSS-COMPILING .+ v v v v v e e e e e e e e e e e e 16

7.10.1 COMPILING FOR CRAY X SERIES « v v v v v i i e et e e e 16
7.11 TROUBLESHOOTING .« « « v v v v v e ettt e e e e e e e e e e e 17
8 Compile and install 0 e e 17
8.1 INSTALLING TO A SYSTEM DIRECTORY v v v v v et et et 17
9 Post-install o e e e e e e e e e e e e e e 18
10 Imstalling for SYRTHES coupling v 18

11 Shell configuration L e e e e 18

Code_Saturne
EDF R&D Code_Saturne version 6.0 installation guide documentation
Page 3/20
12 Caveats . . v v v v i i e 19
12.0.1 Moving an existing installation 0000, 19
12.0.2 Dynamic linking and path issues on some systems 19

1 Code _Saturne Automated or manual installation

Code_Saturne may be installed either directly through its GNU Autotools based scripts (the traditional
configure, make, make install) sequence), or using an automated installer (install_saturne.py),
which generates an initial setup file when run a first time, and builds and installs Code_Saturne and
some optional libraries based on the edited setup when run a second time. The use of this automated
script is briefly explained in the top-level README file of the Code_Saturne sources, as well as in the
comments of setup file. It is not detailed further in this documentation, which details the manual
installation, allowing a finer control over installation options.

Note that when the automatic installer is run, it generates a build directory, in which the build may
be modified (re-running configure, possibly adapting the command logged at the beginning of the
config.status file) and resumed.

2 Installation basics

The installation scripts of Code_Saturne are based on the GNU Autotools, (Autoconf, Automake, and
Libtool), so it should be familiar for many administrators. A few remarks are given here:

e As with most software with modern build systems, it is recommended to build the code in a
separate directory from the sources. This allows multiple builds (for example production and
debug), and is considered good practice. Building directly in the source tree is not regularly
tested, and is not guaranteed to work, in addition to “polluting” the source directory with build
files.

e By default, optional libraries which may be used by Code_Saturne are enabled automatically if
detected in default search paths (i.e. /usr/ and /usr/local. To find libraries associated with a
package installed in an alternate path, a ——with-<package>=... option to the configure script
must given. To disable the use of a library which would be detected automatically, a matching
—--without-<package> option must be passed to configure instead.

e Most third-party libraries usable by Code_Saturne are considered optional, and are simply not
used if not detected, but the libraries needed by the GUI are considered mandatory, unless the
--disable-gui or --disable-frontend option is explicitly used.

When the prerequisites are available, and a build directory created, building and installing Code_Saturne
may be as simple as running:

$../../code_saturne-6.0/configure
$ make
$ make install

The following chapters give more details on Code_Saturne’s recommended third-party libraries, config-
uration recommendations, troubleshooting, and post-installation options.

3 Compilers and interpreters

For a minimal build of Code_Saturne on a Linux or Posix system, the requirements are:

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumejt/ztéon
age

e A C compiler, conforming at least to the C99 standard.

e A Fortran compiler, conforming at least to the Fortran 95 standard and supporting the ISO_C_BINDING
Fortran 2003 module.

e A Python interpreter, with Python version 2.6 or above.

For parallel runs, an MPI library is also necessary (MPI-2 or MPI-3 conforming). To build and use
the GUI, PyQt 4 or 5 (which in turn requires Qt 4 or 5 and SIP) are required. Other libraries may be
used for additional mesh format options, as well as to improve performance. A list of those libraries
and their role is given in §5.2.

For some external libraries, such as Catalyst (see 5.2), a C++ compiler is also required.

The SALOME platform V9 and above requires Python 3, older versions Python 2, and a matching
version should be used when building with SALOME support.

In practice, the code is known to build and function properly at least with the GNU compilers 4.4 and
above (up to 9.x at this date), Intel compilers 11 and above (up to 2019 at this date), andd Clang
(tested with 3.7 or above).

Note also that while Code_Saturne makes heavy use of Python, this is for scripts and for the GUI only;
The solver only uses compiled code, so we could for example use a 32-bit version of Python with 64-bit
Code_Saturne libraries and executables. Also, the version of Python used by ParaView/Catalyst may
be independent from the one used for building Code_Saturne.

4 Loading an environment

If installing and running Code_Saturne requires sourcing a given environment or loading environement
modules (see §5.1), the ——with-shell-env option allows defining the path for a file to source, or if no
path is given, loading default modules.

By default, the main code_saturne command is a Python script. When sourcing an environment, a
launcher shell script is run first, loads the required environment, then calls Python with the code_saturne.py
script.

5 Third-Party libraries

For a minimal build of Code_Saturne, a Linux or Posix system with C and Fortran compilers (C99
and Fortran 95 with Fortran 2003 ISO C bindings conforming respectively), a Python (2.6 or later)
interpreter and a make tool should be sufficient. For parallel runs, an MPI library is also necessary
(MPI-2 or MPI-3 conforming). To build and use the GUI, Qt 4 or 5 with PyQt 4 or 5 Python bindings
(which in turn requires SIP) are required. Other libraries may be used for additional mesh format
options, as well as to improve performance. A list of those libraries and their role is given in §5.2.

5.1 Installing third-party libraries for Code_Saturne
Third-Party libraries usable with Code_Saturne may be installed in several ways:

e On many Linux systems, most of libraries listed in §5.2 are available through the distribution’s
package manager.! This requires administrator privileges, but is by far the easiest way to install
third-party libraries for Code_Saturne.

10n Mac OS X systems, package managers such as Fink or MacPorts also provide package management, even though
the base system does not.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumef;t/zgon
age

Note that distributions usually split libraries or tools into runtime and development packages,
and that although some packages are installed by default on many systems, this is generally not
the case for the associated development headers. Development packages usually have the same
name as the matching runtime package, with a -dev postfix added. Names might also differ
slightly. For example, on a Debian system, the main package for Open MPI is openmpi-bin, but
libopenmpi-dev must also be installed for the Code_Saturne build to be able to use the former.

e On some systems, especially compute clusters, Environment Modules allow the administrators
to provide multiple versions of many scientific libraries, as well us compilers or MPI libraries,
using the module command. More details on Environment Modules may be found at http:
//modules.sourceforge.net or https://github.com/TACC/Lmod. When being configured and
installed Code_Saturne checks for modules loaded with the module command, and records the
list of loaded modules. Whenever running that build of Code_Saturne, the modules detected at
installation time will be used, rather than those defined by default in the user’s environment.
This allows using versions of Code_Saturne built with different modules safely and easily, even if
the user may be experimenting with other modules for various purposes.

e If not otherwise available, third-party software may be compiled an installed by an administrator
or a user. An administrator will choose where software may be installed, but for a user without
administrator privileges or write access to usr/local, installation to a user account is often
the only option. None of the third-party libraries usable by Code_Saturne require administrator
privileges, so they may all be installed normally in a user account, provided the user has sufficient
expertise to install them. This is usually not complicated (provided one reads the installation
instructions, and is prepared to read error messages if something goes wrong), but even for an
experienced user or administrator, compiling and installing 5 or 6 libraries as a prerequisite
significantly increases the effort required to install Code_Saturne.

Even though it is more time-consuming, compiling and installing third-party software may be
necessary when no matching packages or Environment Modules are available, or when a more
recent version or a build with different options is desired.

e When Code_Saturne is configured to use the SALOME platform, some libraries inclued in that
platform may be used directly; this is described in §7.8.

5.2 List of third-party libraries usable by Code_Saturne

The list of third-party software usable with Code_Saturne is provided here:

e PyQt version 4 or 5 is required by the Code_Saturne GUI. PyQt in turn requires Qt (4 or 5),
Python, and SIP. Without this library, the GUI may not be built, although XML files generated
with another install of Code_Saturne may be used.

If desired, Using PySide instead of PyQt4/SIP should require a relatively small porting effort,
as most of the preparatory work has been done. The development team should be contacted in
this case.

e HDF5 is necessary for MED, and may also be used by CGNS.

e CGNSIib is necessary to read or write mesh and visualization files using the CGNS format,
available as an export format with many third-party meshing tools. CGNS version 3.1 or above
is required.

e MED is necessary to read or write mesh and visualization files using the MED format, mainly
used by the SALOME platform (www.salome-platform.org).

e 1ibCCMIO is necessary to read or write mesh and visualization files generated or readable by
STAR-CCM-+ using its native format.

http://modules.sourceforge.net
http://modules.sourceforge.net
https://github.com/TACC/Lmod
www.salome-platform.org

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumefét/ztéon
age

e SCOTCH or PT-SCOTCH may be used to optimize mesh partitioning. Depending on the mesh,
parallel computations with meshes partitioned with these libraries may be from 10% to 50%
faster than using the built-in space-filling curve based partitioning.

As ScoTcH and PT-SCOTCH use symbols with the same names, only one of the 2 may be used.
If both are detected, PT-ScOTCH is used. Versions 6.0 and above are supported.

e METIS or PARMETIS are alternative mesh partitioning libraries. These libraries have a separate
source tree, but some of their functions have identical names, so only one of the 2 may be used.
If both are available, PARMETIS will be used. Partitioning quality is similar to that obtained
with Scorcu or PT-ScoTcH.

Though broadly available, the PARMETIS license is quite restrictive, so PT-SCOTCH may be
preferred (Code_Saturne may be built with both METIS and SCOTCH libraries). Also, the METIS
license was changed in March 2013 to the Apache 2 license, so it would not be surprising for future
PARMETIS versions to follow. METIS 5.0 or above and PARMETIS 4.0 or above are supported.

e Catalyst (http://www.paraview.org/in-situ/) or full ParaView may be used for co-visualization
or in-situ visualization. This requires ParaView 4.2 or above.

e eos-1.2 may be used for thermodynamic properties of fluids. it is not currently free, so usually
available only to users at EDF, CEA, or organisms participating in projects with those entities.

o freesteam (http://freesteam.sourceforge.net) is a free software thermodynamic properties
library, implementing the IAPWS-IF97 steam tables, from the International Association for the
Properties of Water and Steam (IAPWS). Version 2.0 or above may be used.

e CoolProp (http://www.coolprop.org) is a quite recent library open source library, which pro-
vides pure and pseudo-pure fluid equations of state and transport properties for 114 components
(as of version 5.1), mixture properties using high-accuracy Helmholtz energy formulations (or
cubic EOS), and correlations of properties of incompressible fluids and brines. Its validation is
based at least in part on comparisons with REFPROP.

e BLAS (Basic Linear Algebra Subroutines) may be used by the cs_blas_test unit test to compare
the cost of operations such as vector sums and dot products with those provided by the code and
compiler. If no third-party BLAS is provided, Code_Saturne reverts to its own implementation
of BLAS routines, so no functionality is lost here. Optimized BLAS libraries such as Atlas,
MKL, ESSL, or ACML may be very fast for BLAS3 (dense matrix/matrix operations), but
the advantage is usually much less significant for BLAS 1 (vector/vector) operations, which are
almost the only ones Code_Saturne has the opportunity of using. Code_Saturne uses its own dot
product implementation (using a superblock algorithm, for better precision), and y « az + y
operations, so external BLASI are not used for computation, but only for unit testing (so as to
be able to compare performance of built-in BLAS with external BLAS). The Intel MKL BLAS
may also be used for matrix-vector products, so it is linked with the solver when available, but
this is also currently only used in unit benchmark mode. Note that in some cases, threaded
BLAS routines might oversubscribe processor cores in some MPI calculations, depending on the
way both Code_Saturne and the BLAS were configured and interact, and this can actually lead
to lower performance. Use of BLAS libraries is thus useful as a unit benchmarking feature, but
has no influence on full calculations.

e PETSc (Portable, Extensible Toolkit for Scientific Computation, http://www.mcs.anl.gov/
petsc/) consists of a variety of libraries, which may be used by Code_Saturne for the resolution
of linear equation systems. In addition to providing many solver options, it may be used as a
bridge to other major solver libraries.

For developers, the GNU Autotools (Autoconf, Automake, Libtool) as well as gettext will be necessary.
To build the documentation, pdfIATEX and Doxygen will be necessary.

http://www.paraview.org/in-situ/
http://freesteam.sourceforge.net
http://www.iapws.org
http://www.iapws.org
http://www.coolprop.org
http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/petsc/

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumef;t/ztéon
age

5.3 Notes on some third-party tools and libraries
5.3.1 Python and PyQt

The GUI is written in PyQt (Python bindings for Qt), so Qt (version 4 or 5) and the matching Python
bindings must be available. On most modern Linux distributions, this is available through the package
manager, which is by far the preferred solution.

On systems on which both PyQt4 and Pyqth are available, PyQt5 will be selected by default, but the
selection may be forced by defining QT_SELECT=4 or QT_SELECT=5.

When running on a system which does not provide these libraries, there are several alternatives:

e build Code_Saturne without the GUI. XML files produced with the GUI are still usable, so if an
install of Code_Saturne with the GUI is available on an other machine, the XML files may be
copied on the current machine. This is certainly not an optimal solution, but in the case where
users have a mix of desktop or virtual machines with modern Linux distributions and PyQt
installed, and a compute cluster with an older system, this may avoid requiring a build of Qt
and PyQt on the cluster if users find this too daunting.

e Install a local Python interpreter, and add Qt5 bindings to this interpreter.

Python (http://www.python.org) and Qt (https://www.qt.io) must be downloaded and in-
stalled first, in any order. The installation instructions of both of these tools are quite clear, and
though the installation of these large packages (especially Qt) may be a lengthy process in terms
of compilation time, but is well automated and usually devoid of nasty surprises.

Once Python is installed, the SIP bindings generator (http://riverbankcomputing.co.uk/
software/sip/intro) must also be installed. This is a small package, and configuring it simply
requires running python configure.py in its source tree, using the Python interpreter just
installed.

Finally, the PyQt bindings (http://riverbankcomputing.co.uk/software/pyqt/intro) may
be installed, in a manner similar to SIP.

When this is finished, the local Python interpreter contains the PyQt bindings, and may be used
by Code_Saturne’s configure script by passing PYTHON=<path_to_python_executable.

e add Python Qt bindings as a Python extension module for an existing Python installation. This
is a more elegant solution than the previous one, and avoids requiring rebuilding Python, but if
the user does not have administrator privileges, the extensions will be placed in a directory that
is not on the default Python extension search path, and that must be added to the PYTHONPATH
environment variable. This works fine, but for all users using this build of Code_Saturne, the
PYTHONPATH environment variable will need to be set.?

The process is similar to the previous one, but SIP and PyQt installation requires a few additional
configuration options in this case. See the SIP and PyQt reference guides for detailed instructions,
especially the Building a Private Copy of the SIP Module section of the SIP guide.

5.3.2 Scotch and PT-Scotch

Note that both ScoTcH and PT-SCOTCH may be built from the same source tree, and installed together
with no name conflicts.

For better performance, PT-SCOTCH may be built to use threads with concurrent MPI calls. This
requires initializing MPI with MPI_Init_thread with MPI_THREAD MULTIPLE (instead of the more
restrictive MPT_THREAD_SERIALIZED, MPI_THREAD FUNNELED, or MPI_THREAD SINGLE, or simply using
MPI Init). As Code_Saturne does not support thread models in which different threads may call MPI

2In the future, the Code_Saturne installation scripts could check the PYTHONPATH variable and save its state in the build
so as to ensure all the requisite directories are searched for.

http://www.python.org
https://www.qt.io
http://riverbankcomputing.co.uk/software/sip/intro
http://riverbankcomputing.co.uk/software/sip/intro
http://riverbankcomputing.co.uk/software/pyqt/intro

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumefét/zgon
age

functions simultaneously, and the use of MPI_THREAD MULTIPLE may carry a performance penalty, we
prefer to sacrifice some of PT-SCcOTCH’s performance by requiring that it be compiled without the
-DSCOTCH_PTHREAD flag. This is not detected at compilation time, but with recent MPI libraries,
PT-ScorcH will complain at run time if it notices that the MPI thread safety level in insufficient.

Detailed build instructions, including troubleshooting instructions, are given in the source tree’s
INSTALL.txt file. In case of trouble, note especially the explanation relative to the dummysizes
executable, which is run to determine the sizes of structures. On machines with different front-end
and compute node architectures, it may be necessary to start the build process, let it fail, run this
executable manually using mpirun, then pursue the build process.

5.3.3 MED

The Autotools installation of MED is simple on most machines, but a few remarks may be useful for
specific cases.

Note that up to MED 3.3.1, HDF5 1.8 is required, while MED 4.x uses HDF5 1.10.

MED has a C API, is written in a mix of C and C++ code, and provides both a C (1ibmedC) and
an Fortran API (1ibmed). Both libraries are always built, so a Fortran compiler is required, but
Code_Saturne only links using the C API, so using a different Fortran compiler to build MED and
Code_Saturne is possible.

MED does require a C++ runtime library, which is usually transparent when shared libraries are used.
When built with static libraries only, this is not sufficient, so when testing for a MED library, the
Code_Saturne configure script also tries linking with a C++ compiler if linking with a C compiler
fails. This must be the same compiler that was used for MED, to ensure the runtime matches. The
choice of this C4++ compiler may be defined passing the standard CXX variable to configure.

Also, when building MED in a cross-compiling situation, --med-int=int or --med-int=int64_t (de-
pending on whether 32 or 64 bit ids should be used) should be passed to its configure script to avoid
a run-time test.

5.3.4 libCCMIO

Different versions of this library may use different build systems, and use different names for library
directories, so using both the -—with-ccm= or ——with-ccm-include= and --with-ccm-1ib= options
to configure is usually necessary. Also, the include directory should be the toplevel library, as header
files are searched under a libccmio subdirectory?®

A 1libCCMIO distribution usually contains precompiled binaries, but recompiling the library is recom-
mended. Note that at least for version 2.06.023, the build will fail building dump utilities, due to the
-1 adf option being placed too early in the link command. To avoid this, add LDLIBS=-1adf to the
makefile command, for example:

make -f Makefile.linux SHARED=1 LDLIBS=-ladf
(SHARED=1 and DEBUG=1 may be used to force shared library or debug builds respectively).

Finally, if using libCCMIO 2.6.1, remove the libcgns* files from the libCCMIO libraries directory if
also building Code_Saturne with CGNS support, as those libraries are not required for CCMIO, and
are are an obsolete version of CGNS, which may interfere with the version used by Code_Saturne.

Note that libCCMIO uses a modified version of CGNS’s ADF library, which may not be compatible with
that of CGNS. When building with shared libraries, the reader for libCCMIO uses a plugin architecture

3this is made necessary by libCCMIO version 2.6.1, in which this is hard-coded in headers including other headers.
In more recent versions such as 2.06.023, this is not the case anymore, and an include subdirectory is present, but it
does not contain the libccmioversion.h file, which is found only under the libcecmio subdirectory, and is required by
Code_Saturne to handle differences between versions, so that source directory is preferred to the installation include.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dolcjumegt/zgon
age

to load the library dynamically. For a static build with both libCCMIO and CGNS support, reading
ADF-based CGNS files may fail. To work around this issue, CGNS files may be converted to HDF5
using the adf2hdf utility (from the CGNS tools). By default, CGNS post-processing output files use
HDF5, so this issue is rarer on output.

5.3.5 freesteam

This library’s build instructions mention bindings with ascend, but those are not necessary in the
context of Code_Saturne, so building without them is simplest. Its build system is based on scons, and
builds on relatively recent systems with Python 2.7 should be straightforward.

With Python versions lower than 2.6, the command-line arguments allowing to choose the installation
prefix (so as to place it in a user directory) are ignored, and its SConstruct file is not complete enough
to allow setting flags for linking with an alternative, user-installed Python library outside the default
linker search path. In this case, editing the SConstruct file to change the default paths is an ugly, but
simple solution.

5.3.6 CoolProp

This library’s build system is based on CMake, and building it is straightforward, though some versions
seem to have build issues (the 5.1.0 release is missing a file, while 5.1.1 release builds fine). CoolProp
uses submodules which are downloaded using git clone https://github.com/CoolProp/CoolProp.git
--recursive, but may be missing when downloading a zip file.

Its user documentation is good, but its installation documentation is poor, so recommendations are
provided here

To download and prepare CoolProp for build, using an out-of-tree build (so as to avoid polluting the
source tree with cache files), the following commands are recommended:

$ git clone https://github.com/CoolProp/CoolProp.git --recursive
$ cd CoolProp

$ git checkout release

$ cd ..

$ mkdir CoolProp_build

$ cd CoolProp_build

Then configure, build, and install, run:

$ cmake \

-DCOOLPROP_INSTALL PREFIX=$INSTALL PATH/arch/$machine name \
-DCOOLPROP_SHARED_LIBRARY=0N \

$COOLPROP_SRC_PATH

Followed by:

$ make
$ make install
$ make clean

CoolProp’s installer only installs one C wrapper header, not the C++ headers required for lower-level
access, so the following commands must also be run:

$ cp -rp $COOLPROP_SRC_PATH/include $INSTALL_PATH/arch/$machine name
$ rm -f $INSTALL PATH/arch/$machine name/CoolPropLib.h

Alternatively, to copy less files and avoid changing the structure provided by CoolProp:

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dc;:umefg?;iém
age

$ cp -r $COOLPROP_SRC_PATH/include $INSTALL_PATH/arch/$machine name

\

$ cp -r $COOLPROP_SRC PATH/externals/fmtlib/fmt \
$INSTALL_PATH/arch/$machine name/include/

To install CoolProp’s Python bindings (used by the GUI when available), the straigthforward method
is to go into the CoolProp source directory, into the wrappers/Python subdirectory, then run:

$ export PYTHONPATH=COOLPROP_INSTALL_PREFIX/lib/$python_version/site -
packages :PYTHONPATH $ python setup.py install --prefix=$COOLPROP_INSTALL_PREFIX

Although this is not really an out-of-tree build, the Python setup also cleans the directory.

5.3.7 Paraview or Catalyst

By default, this library is built with a GUI, but it may also be be built using OSMesa for offscreen
rendering. The build documentation on the ParaView website and Wiki details this. For use with
Code_Saturne, the recommended solution is to build or use a standard ParaView build for interactive
visualization, and to use its CatalystScriptGeneratorPlugin to generate Python co-processing scripts.
A second build, using OSMesa, may be used for in-situ visualization. This is the Version Code_Saturne
will be linked to. A recommended cmake command for this build contains:

$ cmake \

-DCMAKE_INSTALL PREFIX=$INSTALL PATH/arch/$machine name osmesa \
-DPARAVIEW BUILD_QT_GUI=OFF \

-DPARAVIEW USE MPI=0N \

-DPARAVIEW ENABLE PYTHON=0N \

-DPARAVIEW_INSTALL DEVELOPMENT FILES=0N \
-DVTK_USE_X=0FF \

-DOPENGL_INCLUDE DIR=IGNORE \

-DOPENGL_xmesa_INCLUDE DIR=IGNORE \

-DOPENGL_gl LIBRARY=IGNORE \

-DOSMESA_INCLUDE DIR=$MESA_INSTALL PREFIX/include \
~DOSMESA_LIBRARY=$MESA_INSTALL_PREFIX/1ib/1ibOSMesa.so \
-DVTK_OPENGL_HAS_OSMESA=0N \

-DVTK_USE_OFFSCREEN=0FF \

$PARAVIEW_SRC_PATH

More info may also be found on the ParaView Wiki: (http://www.paraview.org/Wiki/ParaView/
ParaView_And_Mesa_3D).

Catalyst editions (http://www.paraview.org/Wiki/ParaView/Catalyst/BuildCatalyst) may be
used instead of a full ParaView build, but some coprocessing scripts may not work depending on
what is included in the editions, so this is recommended only for advanced users.

On some systems, loading the Catalyst module as a plug-in (which is the default) seems to
interfere with the detection of required OpenGL2 features or extensions required by ParaView
5.2 an above. In this case, Catalyst support may be linked in the standard manner by using
the --disable-catalyst-as-plugin configuration option. A less extreme option is to use the
--enable-dlopen-rtld-global option, which changes the system options with which libraries are
loaded (possibly impacting all plugins). This seems to be sufficient with OSMesa 17.x versions. Using
the DL_PRELOAD environment variable at runtime to preload the OSMesa library also avoids the issue.

http://www.paraview.org/Wiki/ParaView/ParaView_And_Mesa_3D
http://www.paraview.org/Wiki/ParaView/ParaView_And_Mesa_3D
http://www.paraview.org/Wiki/ParaView/Catalyst/BuildCatalyst

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide dogumeflt?;i;n
age

6 Preparing for build

If the code was obtained as an archive, it must be unpacked:
tar xvzf saturne.tar.gz

If for example you unpacked the directory in a directory named /home/user/Code_Saturne, you will
now have a directory named /home/user/Code_Saturne/saturne.

It is recommended to build the code in a separate directory from the source. This also allows multiple
builds, for example, building both an optimized and a debugging version. In this case, choose a
consistent naming scheme, using an additional level of sub-directories, for example:

mkdir saturne_build
cd saturne_build
mkdir prod

cd prod

¥ H P P

Some older system’s make command may not support compilation in a directory different from the
source directory (VPATH support). In this case, installing and using the GNU gmake tool instead of the
native make is recommended.

6.1 Source trees obtained through a source code repository

For developers obtaining the code was obtained through a Git repository, an additional step is required:

$ cd saturne
$./sbin/bootstrap
$ cd ..

In this case, additional tools need to be available:

e GNU Autotools: Autoconf, Automake, Libtool (2.2 or 2.4), and Gettext.

e Bison (or Yacc) and Flex (or Lex)

e PdfLaTeX and TransFig

e Doxygen (1.8.7 or more recent). The path to Doxygen can be specified during the configure
phase with configure DOXYGEN=PATH_TO_DOXYGEN.

These tools are not necessary for builds from tarballs; they are called when building the tarball (using
make dist), so as to reduce the number of prerequisites for regular users, while developers building
the code from a repository can be expected to need a more complete development environment.

Also, to build and install the documentation when building the code from a repository instead of a
tarball, the following stages are required:

$ make doc
$ make install-doc

7 Configuration

Code_Saturne uses a build system based on the GNU Autotools, which includes its own documentation.
To obtain the full list of available configuration options, run: configure --help.

Note that for all options starting with --enable-, there is a matching option with --disable-.
Similarly, for every —-with-, ——without- is also possible.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umefzt%gm
age

Select configuration options, then run configure, for example:

$ /home/user/Code_Saturne/6.0/src/code_saturne-6.0/configure \
--prefix=/home/user/Code_Saturne/6.0/arch/prod \
--with-med=/home/user/opt/med-4.0 \
CC=/home/user/opt/mpich-3.2/bin/mpicc FC=gfortran

In the rest of this section, we will assume that we are in a build directory separate from sources, as
described in §6. In different examples, we assume that third-party libraries used by Code_Saturne are
either available as part of the base system (i.e. as packages in a Linux distribution), as Environment
Modules, or are installed under a separate path.

7.1 Debug builds

It may be useful to install debug builds alongside production builds of Code_Saturne, especially when
user subroutines are used and the risk of crashes due to user programming error is high. Running the
code using a debug build is significantly slower, but more information may be available in the case of
a crash, helping understand and fix the problem faster.

Here, having a consistent and practical naming scheme is useful. For a side-by-side debug build for
the example above, we simply replace prod by dbg in the --prefix option, and add --enable-debug
to the configure command:

$cd ..

$ mkdir dbg

$ cd dbg

$../../code_saturne-6.0/configure \
--prefix=/home/user/Code_Saturne/6.0/arch/dbg \
--with-med=/home/user/opt/med-4.0 \
--enable-debug \
CC=/home/user/opt/mpich-3.2/bin/mpicc FC=gfortran

7.2 Shared or static builds

By default, on most architectures, Code_Saturne will be built with shared libraries. Shared libraries may
be disabled (in which case static libraries are automatically enabled) by adding --disable-shared to
the options passed to configure. On some systems, the build may default to static libraries instead.

It is possible to build both shared and static libraries by not adding --disable-static to the
configure options, but the executables will be linked with the shared version of the libraries, so
this is rarely useful (the build process is also slower in this case, as each file is compiled twice).

In some cases, a shared build may fail due to some dependencies on static-only libraries. In this case,
--disable-shared will be necessary. Disabling shared libraries is also necessary to avoid issues with
linking user functions on Mac OSX systems.

In any case, be careful if you switch from one option to the other: as linking will be done with shared
libraries by default, a build with static libraries only will not completely overwrite a build using shared
libraries, so uninstalling the previous build first is recommended.

7.3 Relocatable builds

By default, a build of Code_Saturne is not movable, as not only are library paths hard-coded using
rpath type info, but the code’s scripts also contain absolute paths.

To ensure a build is movable, pass the -—enable-relocatable option to configure.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umeg?;gm
age

Movable builds assume a standard directory hierarchy, so when running configure, the --prefix op-
tion may be used, but fine tuning of installation directories using options such as -—-bindir, --1ibdir,
or -—docdir must not be used (these options are useful to install to strict directory hierarchies, such
as when packaging the code for a Linux distribution, in which case making the build relocatable would
be nonsense anyways, so this is not an issue. *

7.4 Compiler flags and environment variables

As usual when using an Autoconf-based configure script, some environment variables may be used.
configure --help will provide the list of recognized variables. CC and FC allow selecting the C and
Fortran compiler respectively (possibly using an MPI compiler wrapper).

Compiler options are usually defined automatically, based on detection of the compiler (and depend-
ing on whether --enable-debug was used). This is handled in a config/cs_auto_flags.sh and
libple/config/ple_auto_flags.sh scripts. These files are sourced when running configure, so any
modification to it will be effective as soon as configure is run. When installing on an exotic ma-
chine, or with a new compiler, adapting this file is useful (and providing feedback to the Code_Saturne
development team will enable support of a broader range of compilers and systems in the future.

The usual CPPFLAGS, CFLAGS, FCCFLAGS, LDFLAGS, and LIBS environment variables may also be used,
an flags provided by the user are appended to the automatic flags. To completely disable automatic
setting of flags, the —-~disable-auto-flags option may be used.

7.5 MPI compiler wrappers

MPI environments generally provide compiler wrappers, usually with names similar to mpicc for C,
mpicxx for C++, and mpif90 for Fortran 90. Wrappers conforming to the MPI standard recommen-
dations should provide a -show option, to show which flags are added to the compiler so as to enable
MPI. Using wrappers is fine as long as several third-party tools do not provide their own wrappers, in
which case either a priority must be established. For example, using HDF5’s hbpcc compiler wrapper
includes the options used by mpicc when building HDF5 with parallel 10, in addition to HDF5’s own
flags, so it could be used instead of mpicc. On the contrary, when using a serial build of HDF5 for
a parallel build of Code_Saturne, the h6cc and mpicc wrappers contain different flags, so they are in
conflict.

Also, some MPI compiler wrappers may include optimization options used to build MPI, which may
be different from those we wish to use that were passed.

To avoid issues with MPI wrappers, it is possible to select an MPI library using the --with-mpi
option to configure. For finer control, ——with-mpi-include and --with-mpi-1ib may be defined
separately.

Still, this may not work in all cases, as a fixed list of libraries is tested for, so using MPI compiler
wrappers is the simplest and safest solution. Simply use a CC=mpicc or similar option instead of
--with-mpi.

There is no need to use an FC=mpif90 or equivalent option: in Code_Saturne, MPI is never called
directly from Fortran code, so Fortran MPI bindings are not necessary.

7.6 Environment Modules

As noted in §5.1, on systems providing Environment Modules with the module command,
Code_Saturne’s configure script detects which modules are loaded and saves this list so that future

4In the special case of packaging the code, which may require both fine-grained control of the installation directories
and the possibility to support options such as dpgg’s --instdir, it is assumed the packager has sufficient knowledge to
update both rpath information and paths in scripts in the executables and python package directories of a non-relocatable
build, and that the packaging mechanism includes the necessary tools and scripts to enable this.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umefi%gm
age

runs of the code use that same environment, rather than the user’s environment, so as to allows using
versions of Code_Saturne built with different modules safely and easily.

Given this, it is recommended that when configuring and installing Code_Saturne, only the modules
necessary for that build of for profiling or debugging be loaded. Note that as Code_Saturne uses the
module environment detected and runtime instead of the user’s current module settings, debuggers
requiring a specific module may not work under a standard run script if they were not loaded when
installing the code.

The detection of environment modules may be disabled using the --without-modules option, or the
use of a specified (colon-separated) list of modules may be forced using the --with-modules= option.

7.7 Remarks for very large meshes

If Code_Saturne is to be run on large meshes, several precautions regarding its configuration and that
of third-party software must be taken.

in addition to local connectivity arrays, Code_Saturne uses global element ids for some operations, such
as reading and writing meshes and restart files, parallel interface element matching, and post-processing
output. For a hexahedral mesh with N cells, the number of faces is about 3N (6 faces per cell, shared
by 2 cells each). With 4 cells per face, the face — vertices array is of size of the order of 4 x 3N, so
global ids used in that array’s index will reach 23! for a mesh in the range of 231/12 = 178.10%. In
practice, we have encountered a limit with slightly smaller meshes, around 150 million cells.

Above 150 million hexahedral cells or so, it is thus imperative to configure the build to use 64-bit
global element ids. This is the default. Local indexes use the default int size. To slightly decrease
memory consumption if meshes of this size are never expected (for example on a workstation or a small
cluster), the -~—disable-long-gnum option may be used.

Recent versions of some third-party libraries may also optionally use 64-bit ids, independently of each
other or of Code_Saturne. This is the case for the ScoTcH and METIS, MED and CGNS libraries. In
the case of graph-based partitioning, only global cell ids are used, so 64-bit ids should not in theory
be necessary for meshes under 2 billion cells. In a similar vein, for post-processing output using
nodal connectivity, 64-bit global ids should only be an imperative when the number of cells or vertices
approaches 2 billion. Practical limits may be lower, if some intermediate internal counts reach these
limits earlier.

Partitioning a 158 million hexahedral mesh using serial METIS 5 or SCOTCH on a front-end node with
128 Gb memory is possible, but partitioning the same mesh on cluster nodes with “only” 24 Gb each
may not, so using parallel partitioning PT-SCOTCH or PARMETIS should be preferred.

7.8 Installation with the SALOME platform

To enable SALOME platform (http://www.salome-platform.org) integration, the ——with-salome
configuration option should be used, so as to specify the directory of the SALOME installation (note
that this should be the main installation directory, not the default application directory, also generated
by SALOME’s installers).

With SALOME support enabled, both the CFDSTUDY salome module (available by running
code_saturne salome) after install) and the code_aster coupling adapter should be available.

Note that the CFDSTUDY module will only be usable with a PyQt version similar to that used in
SALOME. PyQt5 is used by SALOME versions 8 and above, while PyQt4 is used for older versions.

Also, SALOME expects a specific directory tree when loading modules, so the CFDSTUDY and
code_aster coupling adapter my be ignored when installing with a specified (i.e. non-default)
--datarootdir path in the Code_Saturne configure options.

Note that specifying a SALOME directory does not automatically force the Code_Saturne configure

http://www.salome-platform.org

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide d(}fumefg%i(?n
age

script to find some libraries which may be available in the SALOME distribution, such as HDF5, MED,
or CGNS. To indicate that the versions from SALOME should be used, without needing to provide the
full paths, the following configuration options may be used for HDF5, CGNS, and MED respectively,
as well as for Catalyst when available in a given Salome platform variant.

--with-hdf5=salome
--with-cgns=salome
--with-med=salome
--with-catalyst=salome

As CGNS and MED file formats are portable, MED or CGNS files produced by either Code_Saturne
or SALOME remain interoperable.?

Unless a specific--with-medcoupling option is given, a compatible MEDCoupling library is also
searched for in the SALOME distribution.

Also note that for SALOME builds containing their own Python interpreter and library, using that
same interpreter for Code_Saturne may avoid some issues, but may then require sourcing the SALOME
environment or at least its Python-related LD_LIBRARY PATH for the main Code_Saturne script to be
usable.

7.9 Example configuration commands

Most available prerequisites are auto-detected, so to install the code to the default /usr/local sub-
directory, a command such as:

$../../code_saturne-6.0/configure

should be sufficient.

For the following examples, Let us define environment variables respectively reflecting the Code_Saturne
source path, installation path, and a path where optional libraries are installed:

$ SRC_PATH=/home/projects/Code_Saturne/6.0
$ INSTALL_PATH=/home/projects/Code_Saturne/6.0
$ CS_OPT=/home/projects/opt

For an install on which multiple versions and architectures of the code should be available, configure
commands with all bells and whistles (except SALOME support) for a build on a cluster named athos,
using the Intel compilers (made available through environment modules) may look like this:

$ module purge

$ module load intel_compilers/2019.0.045

$ module load openmpi/gcc/4.0.1

$ $SRC_PATH/code_saturne-6.0/configure \
--prefix=$INSTALL PATH/arch/athos_ompi \
--with-blas=/opt/mk1-2019.0.045/mkl \
--with-hdf5=$CS_0PT/hdf5-1.10/arch/athos \
--with-med=$CS_OPT/med-4.0/arch/athos \
--with-cgns=$CS_O0PT/cgns-3.4/arch/athos \
--with-ccm=$CS_0PT/libccmio-2.06.23/arch/athos \
--with-scotch=$CS_0PT/scotch-6.0/arch/athos_ompi \
--with-metis=$CS_OPT/parmetis-4.0/arch/athos_ompi \
--with-eos/$CS_OPT/eos-1.2.0/arch/athos_ompi \
CC=mpicc FC=ifort CXX=icpc

5At the least, files produced with a given version of CGNS or MED should be readable with the same or a newer
version of that library.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umefgjl;gm
age

In the example above, we have appended the _ompi postfix to the architecture name for libraries
using MPI, in case we intend to install 2 builds, with different MPI libraries (such as Open MPI and
MPICH-based Intel MPI). Note that optional libraries using MPI must also use the same MPI library.
This is the case for PT-SCOTCH or PARMETIS, but also HDF5, CGNS, and MED if they are built
with MPI-IO support. Similarly, C++ and Fortran libraries, and even C libraries built with recent
optimizing C compilers, may require runtime libraries associated to that compiler, so if versions using
different compilers are to be installed, it is recommended to use a naming scheme which reflects this.
In this example, HDF5, CGNS and MED were built without MPI-IO support, as Code_Saturne does
not yet exploit MPI-IO for these libraries.

To avoid copying platform-independent data (such as the documentation) from different builds multiple
times, we may use the same --datarootdir option for each build so as to install that data to the same
location for each build.

7.10 Cross-compiling

On machines with different front-end and compute node architectures, cross-compiling may be neces-
sary. To install and run Code_Saturne, 2 builds are then required:

e a “front-end” build, based on front-end node’s architecture. This is the build whose code_saturne
command, GUI, and documentation will be used, and with which meshes may be imported (i.e.
whose Preprocessor will be used). This build is not intended for calculations, though it could be
used for mesh quality criteria checks. This build will thus usually not need MPI.

e a “compute” build, cross-compiled to run on the compute nodes. This build does not need to
include the GUI, documentation, or the Preprocessor.

A debug variant of the compute build is also recommended, as always. Providing a debug variant of
the front-end build is not generally useful.

A post-install step (see §9) will allow the scripts of the front-end build to access the compute build in
a transparent manner, so it will appear to the users that they are simply working with that build.

Depending on their role, optional third-party libraries should be installed either for the front-end, for
the compute nodes, or both:

e BLAS will be useful only for the compute nodes, and are generally always available on large
compute facilities.
e Python and PyQt will run on the front-end node only.

e HDF5, MED, CGNSIlib, and libCCMIO may be used by the Preprocessor on the front-end node
to import meshes, and by the main solver on the compute nodes to output visualization meshes
and fields.

e SCOTCH or METIS may be used by a front-end node build of the solver, as serial partitioning of
large meshes requires a lot of memory.

e PT-ScoTCH or PARMETIS may be used by the main solver on the compute nodes.
7.10.1 Compiling for Cray X series

For Cray X series, when using the GNU compilers, installation should be similar to that on standard
clusters. Using The Cray compilers, options such as in the following example are recommended:

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umef;%?n
age

$ $SRC_PATH/code_saturne-6.0/configure \
--prefix=$INSTALL PATH/arch/xc30 \
--with-hdf5=$CS_OPT/hdf5-1.10/arch/xc30 \
--with-med=$CS_0PT/med-4.0/arch/xc30 \
--with-cgns=$CS_OPT/cgns-3.4/arch/xc30 \
-—with-scotch=$CS_0PT/scotch-6.0/arch/xc30 \
--disable-sockets --disable-nls \
--disable-shared \
--host=x86_64-unknown-linux-gnu \

CC=cc \

CXX=CC \

FC=ftn

In case the automated environment modules handling causes issues, adding the --without-modules
option may be necessary. In that case, caution must be exercised so that the user will load the same
modules as those used for installation. This is not an issue if modules for Code_Saturne is also built,
and the right dependencies handled at that level.

Note that to build without OpenMP with the Cray compilers, CFLAGS=-h noomp” and FCFLAGS=-h
noomp” need to be added.

7.11 Troubleshooting

If configure fails and reports an error, the message should be sufficiently clear in most case to
understand the cause of the error and fix it. Do not forget that for libraries installed using packages,
the development versions of those packages are also necessary, so if configure fails to detect a package
which you believe is installed, check the matching development package.

Also, whether it succeeds or fails, configure generates a file named config.log, which contains
details on tests run by the script, and is very useful to troubleshoot configuration problems. When
configure fails due to a given third-party library, details on tests relative to that library are found in
the config.log file. The interesting information is usually in the middle of the file, so you will need to
search for strings related to the library to find the test that failed and detailed reasons for its failure.

8 Compile and install

Once the code is configured, it may be compiled and installed; for example, to compile the code (using
4 parallel threads), then install it:

$ make -j 4 && make install

To compile the documentation, add:

$ make pdf && make install-pdf

To clean the build directory, keeping the configuration, use make clean; To uninstall an installed build,
use make uninstall. To clear all configuration info, use make distclean (make uninstall will not
work after this).

8.1 Installing to a system directory

When installing to a system directory, such as /usr or /usr/local, some Linux systems may require
running ldconfig as root or sudoer for the code to work correctly.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umefgj‘;gm
age

9 Post-install

Once the code is installed, a post-install step may be necessary for computing environments using a
batch system, for separate front-end and compute systems, for coupling with SYRTHES 4, or simply
to call a debug build from a main (production) build. The global default MPI execution commands
and options may also be overridden.

Copy or rename the <install-prefix>/etc/code_saturne.cfg.template to
<install-prefix>/etc/code_saturne.cfg, and uncomment and define the applicable sections.

If used, the name of the batch system should match one of the templates
in <install-prefix>/share/code_saturne/batch, and those may also be edited if necessary to match
the local batch configuration®

Also, the compute_versions section allows the administrator to define one or several alternate builds
which will be used for compute stages. All specified builds are then available from the GUI, which is
useful to switch from a production to a debug build. In this case the secondary builds do not need to
contain the full fromt-end (GUI, documentation, ...).

All default MPI execution commands and options may be overriden using the mpi section. Note that
only the options defined in this section are overridden; defaults continue to apply for all others.

For relocatable builds using ParaView/Catalyst, a CATALYST_ROOT_DIR environment variable may be
used to specify the Catalyst location in case that was moved also.

10 Installing for SYRTHES coupling

Coupling with SYRTHES 4 requires defining the path to SYRTHES 4 at the post-install stage.

When coupling with SYRTHES 4, both Code_Saturne and SYRTHES must use the same MPI library,
and must use the same version of the PLE (Parallel Location and Exchange) library from Code_Saturne.
By default, PLE is built as a sub-library of Code_Saturne, but a standalone version may be configured
and built, using the 1libple/configure script from the Code_Saturne source tree, instead of the top-
level configure script. Code_Saturne may then be configured to use the existing install of PLE using
the -—with-ple option. Similarly, SYRTHES must also be configured to use PLE.

Alternatively, SYRTHES 4 may simply be configured to use the PLE library from an existing
Code_Saturne install.

11 Shell configuration

If Code_Saturne is installed in a non-default system directory (i.e. outside /usr or /usr/local, it is
recommended to define an alias (in the user’s .alias or .profile file, so as to avoid needing to type
the full path when using the code:

alias code_saturne="$prefix/code_saturne-$version/bin/code_saturne"

Note that when multiple versions of the code are installed side by side, using a different alias for each
will allow using them simultaneously, with no risk of confusion.

If using the bash shell, you may also source a bash completion file, so as to benefit from shell completion
for Code_Saturne commands and options, either using

<install-prefix>/etc/bash_completion.d/code_saturne

or

6Some batch systems allow a wide range of alternate and sometimes incompatible options or keywords, and it is for
all practical purposes impossible to determine which options are allowed for a given setup, so editing the batch template
to match the local setup may be necessary.

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);umef;%?n
age

source <install-prefix>/etc/bash_completion.d/code_saturne

On some systems, only the latter syntax is effective. For greater comfort, you should save this setting
in your .bashrc or .bash_profile file.

12 Caveats
12.0.1 Moving an existing installation

Never move a non-relocatable installation of Code_Saturne. Using LD_LIBRARY_PATH or LD_PRELOAD may
allow the executable to run despite rpath info not being up-to-date, but in environments where different
library, versions are available, there is a strong risk of not using the correct library. In addition, the
scripts will not work unless paths in the installed scripts are updated.

To build a relocatable installation, see section 7.3.

If you are packaging the code and need both fine-grained control of the installation directories, and the
possibility to support options such as dpgg’s ——instdir, it is assumed you have sufficient knowledge to
update both rpath information and paths in scripts in the executables and python package directories,
and that the packaging mechanism includes the necessary tools and scripts to enable this.

In any other case, you should not even think about moving a non-relocatable build.

If you need to test an installation in a test directory before installing it in a production directory,
use the make install DESTDIR=<test_prefix> provided by the Autotools mechanism rather than
configuring an install for a test directory and then moving it to a production directory. Another less
elegant but safe solution is to configure the build for installation to a test directory, and once it is
tested, re-configure the build for installation to the final production directory, and rebuild and install.

12.0.2 Dynamic linking and path issues on some systems

On Linux systems and Unix-like, there are several ways for a library or executable to find dynamic
libraries, listed here in decreasing priority:

e the LD_PRELOAD environment variable explicitly lists libraries to be loaded with maximum priority,
before the libraries otherwise specified (useful mainly for instrumentation and debugging, and
should be avoided otherwise);

e the RPATH binary header of the dependent library or executable; (if both are present, the library
has priority);

e the LD_LIBRARY_PATH environment variable;
e the RUNPATH binary header of executable;
e /etc/ld.so.cache;
e base library directories (/1ib and //usr/1ib);
Note that changing the last two items usually require administrative privileges, and we have encoun-

tered cases where installing to //usr/1ib was not sufficient without updating /etc/1d.so.cache. We
do not consider LD_PRELOAD here, as it has other specific uses.

So basically, when using libraries in non-default paths, the remaining options are between RPATH or
RUNPATH binary headers, or the LD_LIBRARY_PATH environment variable.

The major advantage of using binary headers is that the executable can be run without needing to
source a specific environment, which is very useful, especially when running under MPI (where the

Code_Saturne

EDF R&D Code_Saturne version 6.0 installation guide df);ume%%gm
age

propagation of environment variables may depend on the MPI library and batch system’s configura-
tion), or running under debuggers (where library paths would have to be sourced first).

In addition, the RPATH binary header has priority over LD_LIBRARY PATH, allowing the installation
to be “protected” from settings in the user environment required by other tools. this is why the
Code_Saturne installation chooses this mode by default, unless the ——enable-relocatable option is
passed to configure.

Unfortunately, the ELF library spec indicates that the use of the DT_RPATH entry (for RPATH) has been
superseded by the DT_RUNPATH (for RUNPATH). Most systems still use RPATH, but some (such as SUSE
and Gentoo) have defaulted to RUNPATH, which provides no way of “protecting” an executable or library
from external settings.

Also, the --enable-new-dtags linker option allows replacing RPATH with RUNPATH, so adding
-Wl,--enable-new-dtags to the configure options will do this.

The addition of RUNPATH to the ELF specifications may have corrected the oversight of not being
able to supersede an executable’s settings when needed (though LD_PRELOAD is usually sufficient for
debugging, but the bright minds who decided that it should replace RPATH and not simply supplement
it did not provide a solution for the following scenario:

1. Code_Saturne in installed, along with the MED and HDF libraries, on a system where
--enable-new-dtags is enabled by default.

2. Another code is installed, with its own (older) versions of MED and HDF libraries; this second
code requires sourcing environment variables including LD_LIBRARY PATH to work at all, so the
user adds those libraries to his environment (or the admins add it to environment modules).

3. Code_Saturne now uses the older libraries, and is not capable of reading files generated with more
recent versions

The aforementioned scenario occurs with Code_Saturne and Syrthes, on some machines, and could
occur with Code_Saturne and some SALOME libraries, and there is no way around it short of changing
the installation logic of these other tools, or using a cumbersome wrapper to launch Code_Saturne,
which could still fail when Code_Saturne needs to load a Syrthes or SALOME environment for coupled
cases. A wrapper would lead to its own problems, as for example Qt is needed by the GUI but not the
executable, so to avoid causing issues with a debugger using its own version of Qt, separate sections
would need to be defined. None of those issues exist with RPATH.

To avoid most issues, the Code_Saturne scripts also update LD_LIBRARY_PATH before calling executable
modules, but you could be affected if running them directly from the command line.

	Flyleaf
	Table of contents
	Code_Saturne Automated or manual installation
	Installation basics
	Compilers and interpreters
	Loading an environment
	Third-Party libraries
	Installing third-party libraries for Code_Saturne
	List of third-party libraries usable by Code_Saturne
	Notes on some third-party tools and libraries
	Python and PyQt
	Scotch and PT-Scotch
	MED
	libCCMIO
	freesteam
	CoolProp
	Paraview or Catalyst

	Preparing for build
	Source trees obtained through a source code repository

	Configuration
	Debug builds
	Shared or static builds
	Relocatable builds
	Compiler flags and environment variables
	MPI compiler wrappers
	Environment Modules
	Remarks for very large meshes
	Installation with the SALOME platform
	Example configuration commands
	Cross-compiling
	Compiling for Cray X series

	Troubleshooting

	Compile and install
	Installing to a system directory

	Post-install
	Installing for SYRTHES coupling
	Shell configuration
	Caveats
	Moving an existing installation
	Dynamic linking and path issues on some systems

