EDF R&D RN

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER
F-78401 Cuatrou CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16

Code_Saturne documentation

Code_Saturne version 4.0.5 practical user’s guide

contact: saturne-support@edf.fr

_ODE
SATURN

APRIL 2016

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 1/201
ABSTRACT

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax-
isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady
or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars
and turbulent fluctuations of scalars can be taken into account. The code includes specific modules,
referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec-
tric arcs) and compressible flows. Code_Saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several kinds of elements) and may have
structural non-conformities (hanging nodes).

The present document is a practical user’s guide for Code_Saturne version 4.0.5. It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to run
a calculation with Code_Saturne version 4.0.5. It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 2/201

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 3/201

2.1
2.2

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.6
3.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.10
4
4.1

TABLE OF CONTENTS

Introduction o L e e e e e e e e e e e e
Quick start L e e e e e e e e e e e e e e e e
RUNNING A CALCULATION oo vttt e e e s e e
TROUBLESHOOTING v v ittt e e e e e e e e e e
Practical information about Code Saturne,
SYSTEM ENVIRONMENT FOR Code_Saturne
Preliminary settings
Configuration file
Standard directory hierarchy
Code_Saturne Kernel library files
SETTING UP AND RUNNING A CALCULATION« v v v i v e i e e
Step by step calculation
Temporary execution directory e
FExecution modes e e e e e e
Environment variables e
Interactive modification of selected parameters
CASE PREPARER v v vttt it e et e e
SUPPORTED MESH AND POST-PROCESSING OUTPUT FORMATS
Formats supported for input
Formats supported for input or output
Formats supported for output only
Meshing tools and associated formatso
Meshing remarks e e e e e e e
PREPROCESSOR COMMAND LINE OPTIONS« + v v v v v e e et e e e e e
KERNEL COMMAND LINE OPTIONS o v v vttt it e e e e e
LAUNCH SCRIPTS o v i ittt e e e e e e e e e e e
GRAPHICAL USER INTERFACE« v ittt e e e e e e
USER SUBROUTINES vttt it e e et e e s e e e
Preliminary comments o e e e e e e e e
Example routines L e e e
Main variables L
Using selection criteria in user subroutines
FACE AND CELL MESH-DEFINED PROPERTIES AND SELECTION
Importing and preprocessing meshes,

PREPROCESSOR OPTIONS v v v v v i e e e e e e e e e e e s s e s

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 4/201

4.1.1 Mesh selection L 53
4.1.2 Post-processing output Lo e 53
4.1.3 Element orientation correction e e e e 53
4.2 ENVIRONMENT VARIABLES o o ittt it e e s e e e 53
4.2.1 System environment variables 54
4.3 OPTIONAL FUNCTIONALITY o ottt i ettt e e e e e e o4
4.4 GENERAL REMARKS« v v v it e it et e e e e e e e 54
4.5 FILES PASSED TO THE KERNEL 55
4.6 MESH PREPROCESSING v v v v ettt i e e e e e e e e 95
4.6.1 Joining of non-conforming meshes. 55
4.6.2 Periodicity e e e 56
4.6.3 Parameters for conforming or non-conforming mesh joinings 56
4.6.4 Parameters for periodicity 59
4.6.5 Modification of the mesh geometry 59
4.7 MESH SMOOTHING UTILITIES ittt e e e e e e e 60
4.7.1 Fix by feature 60
4.7.2 Warped faces smoother 60
5 Partitioning for parallelruns. 0 oo o oo, 60
5.1 PARTITIONING STAGES o vttt b b e e e s e 61
5.2 PARTITIONER CHOICE v v vttt it i it e e e e e 61
5.3 EFFECT OF PERIODICITY « « ¢ v vt v it e ettt e e e e e 61
6 Basic modelling setup L o e e 62
6.1 INITIALISATION OF THE MAIN PARAMETERS« . . o oo v v 62
6.2 SELECTION OF MESH INPUTS: CS_USER_MESH_INPUT 67
6.3 NON-DEFAULT VARIABLES INITIALISATION o v v it e o 67
6.4 MANAGE BOUNDARY CONDITIONS oo v i it 71
6.4.1 Coding of standard boundary conditions 72
6.4.2 Coding of non-standard boundary conditions 74
6.4.3 Checking of the boundary conditions 7
6.4.4 Sorting of the boundary faces 77
6.4.5 Boundary conditions with LES 7
6.5 MANAGE THE VARIABLE PHYSICAL PROPERTIES 82
6.5.1 Basic variable physical propertieso 82
6.5.2 Modification of the turbulent viscosity 84
6.5.3 Modification of the variable C of the dynamic LES model 84
6.6 USER SOURCE TERMS v vt vttt et e e e e e e e 85
6.6.1 In Navier-Stokes e 86

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 5/201
6.6.2 Fork ande e 86
6.6.3 For Rijande e 86
6.6.4 Forp and f 86
6.6.5 Fork andw 87
6.6.6 For Dy . . o o e 87
6.0.7 For user scalars 87
6.7 PRESSURE DROPS (HEAD LOSSES) AND POROSITY oooovvvv vt 88
6.7.1 Head 10SSes o o o e e e e e 88
6.7.2 Porosity 89
6.8 MANAGEMENT OF THE MASS SOURCES v v v .. 89
6.9 USER LAW EDITOR OF THE GUIL 90
7 Results analysis. o o 0 i i e e e e 92
7.1 DEFINITION OF POST-PROCESSING AND MESH ZONES 92
7.1.1 Management of the post-processing intermediate outputs 94
7.2 DEFINITION OF THE VARIABLES TO POST-PROCESS 95
7.3 MODIFICATION OF THE VARIABLES AT THE END OF A TIME STEP 96
7.4 NON-STANDARD MANAGEMENT OF THE CHRONOLOGICAL RECORD FILES 96
8 Advanced modelling setup o o e 97
8.1 USE OF A SPECIFIC PHYSICS o i i ittt e e e e 97
8.2 PULVERISED COAL AND GAS COMBUSTION MODULE 102
8.2.1 Boundary conditions e e e e 104
8.2.2 Initialisation of the options of the variables 107
8.3 HEAVY FUEL OIL COMBUSTION MODULE« . o v i e vt oo o 110
8.3.1 Initialisation of transported variables 110
8.3.2 Boundary conditions L 110
8.4 RADIATIVE THERMAL TRANSFERS IN SEMI-TRANSPARENT GRAY MEDIA 110
8.4.1 Initialisation of the radiation main parameters 110
8.4.2 Radiative transfers boundary conditions 112

8.4.3 Absorption coefficient of the medium, boundary conditions for the luminance and
calculation of the net radiative flux 115
8.4.4 Encapsulation of the temperature-enthalpy conversion 115
8.4.5 Input of radiative transfer parameterso 116
8.5 CONJUGATE HEAT TRANSFER . . . « . . v v v v ittt e e e e e e e e 116
8.5.1 Thermal module in a 1D wall 116
8.5.2 Fluid-Thermal coupling with SYRTHES 117
8.6 PARTICLE-TRACKING (LAGRANGIAN) MODULE 118

8.6.1 General information L 118

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 6/201

8.6.2 Activating the particle-tracking module 118
8.6.3 Basic guidelines for standard simulations L. 119
8.6.4 Prescribing the main modelling parameters (GUI and/or uslagl) 119
8.6.5 Prescribing particle boundary conditions (GUI and/or uslag2) 120
8.6.6 Advanced particle-tracking set-up L 124
8.7 COMPRESSIBLE MODULE o o v v vttt et et e e e e e 126
8.7.1 Initialisation of the options of the variables 127
8.7.2 Management of the boundary conditions 127
8.7.3 Initialisation of the variables 128
8.7.4 Management of variable physical properties 128
8.8 MANAGEMENT OF THE ELECTRIC ARCS MODULE 128
8.8.1 Activating the electric arcs module 128
8.8.2 Initialisation of the variables 128
8.8.3 Variable physical properties 129
8.8.4 Boundary conditions 129
8.8.5 Initialisation of the variable options 130
8.8.6 EnSight output 130
8.9 Code_Saturne-Code_Saturne COUPLING o i v it 131
8.10 FLUID-STRUCTURE EXTERNAL COUPLING o v v et oo e 131
8.11 ALE MODULE o v i vttt e e e e e e e e e e 132
8.11.1 Initialisation of the options 132
8.11.2 Mesh velocity boundary conditions 133
8.11.3 Modification of the viscosity 134
8.11.4 Fluid - Structure internal coupling 134
8.12 MANAGEMENT OF THE STRUCTURE PROPERTY 135
8.13 MANAGEMENT OF THE ATMOSPHERIC MODULE « .« v v v v v v v v v v o 136
8.13.1 Initialisation of the variables 136
8.13.2 Management of the boundary conditions 136
8.14 CAVITATION MODULE . .« .« . v v v v vt e it e et e e e e e e e e e 137
9 Keyword list 0 0 0 i i e e e e e e e 140
9.1 INPUT-OUTPUT o oot et e e e s e e e 140
9.1.1 ?Calculation” files L 141
9.1.2 Post-processing for EnSight or other tools 142
9.1.3 Chronological records of the variables on specific points 142
9.1.4 Time averages e e e e e e e e 144
9.1.5 Others o 144

9.2 NUMERICAL OPTIONS v v v o v e et e e e e e e e e e e s e 145

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 7/201

9.2.1 Calculation managemento e 145
9.2.2 Scalar unknowns 147
9.2.3 Definition of the equations 148
9.2.4 Definition of the time advancement 149
9.2.5 Turbulence e 151
9.2.6 Time scheme 156
9.2.7 Gradient Teconstructiono 161
9.2.8 Solution of the linear systems e 163
9.2.9 Convective scheme 163
9.2.10 Pressure-continuity stepo o o e e e e e 163
9.2.11 Error estimators for Navier-Stokeso 165
9.2.12 Calculation of the distance to the wall 166
9.2.18 Others o o 169
9.3 NUMERICAL, PHYSICAL AND MODELLING PARAMETERS« « . o v o o o . . . 170
9.3.1 Numeric parameters e e e e e e 170
9.3.2 Physical parameters 171
9.3.83 Physical variables e e e 171
9.8.4 Modelling parameters e 175
9.4 ALE . .« . e 179
9.5 THERMAL RADIATIVE TRANSFERS: GLOBAL SETTINGS 179
9.6 ELECTRIC MODULE (JOULE EFFECT AND ELECTRIC ARCS): SPECIFICITIES 182
9.7 COMPRESSIBLE MODULE: SPECIFICITIES ¢ v v v v v et e e e e o 183
9.8 LAGRANGIAN MULTIPHASE FLOWS vttt e e e e 184
9.8.1 Global settings 184
9.8.2 Specific physics models associated with the particles 186
9.8.3 Options for two-way coupling 187
9.8.4 Numerical modelling 187
9.8.5 Volume statistics 188
9.8.6 Display of particles and trajectories 189
9.8.7 Display of the particle/boundary interactions and the statistics at the boundaries . . . 190

10

Bibliography 0 0 o e e e e e e e e e e e e 193

Index of the main variables and keywords 195

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 8/201

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 9/201

1 Introduction

Code_Saturne is an application designed to solve the Navier-Stokes equations in the cases of 2D, 2D
axi-symmetric and 3D flows. Its main module is designed for the simulation of flows which may be
steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not.
Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific
modules, referred to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-
transparent radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule
effect and electric arcs) and compressible flows.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.!

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

Code_Saturne is composed of two main elements and an optional GUI, as shown on Figure 1:

e the Kernel module is the numerical solver

e the Preprocessor module is in charge of mesh import

GUI Kernel
Configure run script ‘ imulati Mesh modification
Define simulation options options Mesh and data setup
(XML) Mesh partitioning
Navier—Stokes resolution
User—defined functions
Preprocessor

Turbulence

Specific physics

Post—processing output

MPI communication

—

Verification
Descending connectivity Visualization
Verification output

Post
processing

Intermediate

Mesh domain

and restart

structure number

Figure 1: Code_Saturne elements

Code_Saturne also relies on the PLE (Parallel Location and Exchange) library (developed by the same
team, under LGPL license) for the management of code coupling; this library can also be used inde-
pendently.

This document is a practical user guide for Code_Saturne version 4.0.5. It is the result of the joint effort
of all the members in the development team.

This document provides practical information for the usage of Code_Saturne. For more details about
the algorithms and their numerical implementation, please refer to the reports [1], [4] and [10], and to
the theoretical documentation [11].

You should have received a copy of the GNU General Public License along with Code_Saturne; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 10/201

The latest updated version of this document is available on-line with the version of Code_Saturne and
accessible through the command code_saturne info --guide theory.

This document first presents all the necessary elements to run a calculation with Code_Saturne version
4.0.5. It then lists all the variables of the code which may be useful for more advanced users. The user
subroutines of all the modules within the code are then documented. Eventually, for each keyword and
user-modifiable parameter in the code, their definition, allowed values, default values and conditions
for use are given. These keywords and parameters are grouped under headings based on their function.
An alphabetical index is also given at the end of the document for easier reference.

2 Quick start
2.1 Running a calculation

We assume in this section that the user has at his disposal the calculation data file (calculation set
up) or already prepared it following for instance the step-by-step guidance provided in Code_Saturne
tutorial. The steps described below are intended to provide the user a way to run quickly on a
workstation a calculation through the Graphical User Interface (GUT).

The first thing to do before running Code_Saturne is to define an alias to the code_saturne script (see
§3.1.1), for example:

alias cs=’${prefix}/bin/code_saturne’.
When using the bash shell, a completion file may be sourced so as to allow for syntax auto-completion:
source ${prefix}/etc/bash completion.d/code _saturne’.

The second thing is to prepare the computation directories. For instance, the study directory T_JUNCTION,
containing a single calculation directory CASE1, will be created by typing the command (see §3.3):

code_saturne create -s T_JUNCTION

The mesh files should be copied in the directory MESH (though they may also be selected from another
directory, see §3.2.1), and the Fortran user files necessary for the calculation in the directory CASE1/SRC.
Finally, the calculation data file case name.xml read by the GUI should be copied to the directory
CASE1/DATA. Once these steps completed, the user should go in the directory CASE1/DATA and type de
command line ./SaturneGUI case_name.zxml to load the calculation file into the interface. A window
similar to Figure2 will appear. Click on the heading “Calculation management”, select the heading
“Prepare batch calculation”, see Figure 3. After having chosen the number of processors, press “start
calculation” to run the calculation.

If no problem arises, the simulation results can be found in the directory CASE1/RESU and be read
directly by ParaView or EnSight in CASE1/RESU/<YYYYMMDD-hhmm>/postprocessing. Calculation
history can be found in the file <YYYYMMDD-hhmm>/listing.

2.2 Troubleshooting

If the calculation does not run properly, the user is advised to check the following points in
CASE1/RESU/<YYYYMMDD-hhmm>:

e if the calculation stops in the pre-processor, the user should check for error messages in the file
preprocessorx*.log.

e if the problem is related to boundary conditions, the user should visualise the file error.ensight
with EnSight or ParaView,

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 11/201
®

Directory of the case

|2 1dentity and paths

b By Calculation emironment ' Is/SATURNE/USER_DOCUMENTATION/STUDY/CASEL | |BSy
b F Thermophysical models o
b [Physical properties Associated sub-directories of the case

I £ volume conditions

b £ Boundary conditions Data [DATA

P £ Numerical parameters
P [calculation control

J

Results [resu]

b £ calculation management User subroutines [SRC]
J

Running scripts | SCRIPTS

Figure 2: Identity and paths

®
Script file

|4 Identity and paths
Calculation environment Select the script file
Thermophysical models
Physical properties Calculation script parameters
volume conditions
Boundary conditions Run type | standard o8|

Numerical parameters Number of processes |
P FJ calculation control ~
- Calculation management Threads per task CE|

|4 Start/Restart —
| Performance tuning Advanced options 6}@

||

—
|',_'—,'| runcase

VTV YV

Calculation start

Start calculation |

Figure 3: Prepare execution

e if the calculation stops in the Code_Saturne core, the user should look for messages at the end
of the files 1listing and error*. In addition, the user can track the following keywords in the
listing; these are specific error signals:

- SIGFPE: a floating point exception occurred. It happens when there is a division by 0,

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 12/201

when the calculation did not converge, or when a real number reached a value over 1030,
Depending on the architecture Code_Saturne is running on, this type of exception may be
caught or ignored.

- SIGSEGV: a memory error such as a segmentation violation occurred. An array may have
exceeded its allocated memory size and a memory location in use was overwritten.

In order to easily find the problem, it is also advised to use a debug version of Code_Saturne
(see the installation documentation) in combination with the use of the valgrind tool (if it is
installed). The use of valgrind can be specified in the GUI in the advanced options of the item
“Prepare batch calculation” under the heading “Calculation management” or without the GUI,
in the cs_user_scripts.py file (this file can be found in DATA/REFERENCE and should be copied
in DATA, see §3.2.1).

3 Practical information about Code_Saturne
3.1 System Environment for Code_Saturne
3.1.1 Preliminary settings

In order to use Code_Saturne, the user should define the following alias (in their .bashrc, or equivalent,
or .alias file, depending on the environment):

alias cs=’${install directory}/bin/code_saturne’

where install directory is the base directory where Code_Saturne and its components have been
installed?.

This step may be skipped if ${install directory} is in a standard location (such as /usr or
/usr/local.

3.1.2 Configuration file

A configuration file for Code_Saturne is available in ${install_directory}/etc. This file can be useful
as a post-install step for computing environments using a batch system, for separate front-end and
compute systems (such as Blue Gene systems), or for coupling with SYRTHES 4 or Code_Aster (see
the installation documentation for more details).

To use this file, copy or rename the ${install directory}/etc/code_saturne.cfg.template to
${install directory}/etc/code_saturne.cfg, and uncomment and define the applicable sections.
Two other options in the code_saturne.cfg file could be useful for the user:

e Set the temporary directory (see §3.2.2 for more details on the temporary execution directory).

e Set the mesh database directory: it is possible to indicate a path where meshes are stored. In
this case, the GUI will propose this directory automatically for mesh selection. Without the
GUI, it is then possible to fill in the cs_user_scripts.py file (see §3.2.1) with the name of the
desired mesh of the database directory and the code will find it automatically (be careful if you
have the same name for a mesh in the database directory and in the MESH directory, the mesh in
MESH will be used).

3.1.3 Standard directory hierarchy

The standard architecture for the simulation studies is:

An optional study directory containing:

2Without this step, using the absolute path is still possible

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 13/201

e A directory MESH containing the mesh(es) necessary for the study
e A directory POST for the potential post-processing scripts (not used directly by the code)

e One or several calculation directories
Every calculation directory contains:

e A directory SRC for the potential user subroutines necessary for the calculation

A directory DATA for the calculation data (data file from the interface, input profiles, thermo-
chemical data, ...), the user script and the XML file.

A directory SCRIPTS for the launch script

A directory RESU for the results

To improve the calculation traceability, the files and directories sent to RESU after a calculation
are placed in a subdirectory named after that run’s “id”, which is by default based on the run
date and time, using the format: YYYYMMDD-hhmm. It is also possible to force a specific run id,
using the --id option of code_saturne run.

In the standard cases, RESU/<run_id> contains a postprocessing directory with the post-processing
(visualization) files, a restart directory for the calculation restart files, a monitoring directory for
the files of chronological record of the results at specific locations (probes),

preprocessor.log and listing files reporting the Preprocessor and the Kernel execution. All files
from the DATA directory not in subdirectories are also copied. For a tracing of the modifications in
prior calculations, the user-subroutines used in a calculation are stored in a src_saturne subdirectory.
The data files (such as the XML Interface data file and thermo-chemical data files) and launch script
are also copied into the results directory. compil.log and summary are respectively reports of the
compilation stage and general information on the calculation (type of machine, user, version of the
code, ...).

When running, the code may use additional files or directories inside its execution directory, set by the
execution script, which include a mesh_input file or directory, as well as a restart directory (which
is a link or copy of a previous run’s checkpoint directory), as well as a run_solver.sh script.

For coupled calculations, whether with Code_Saturne itself or SYRTHES, each coupled calculation
domain is defined by its own directory (bearing the same name as the domain), but results are placed
in a RESU_COUPLING directory, with a subdirectory for each run, itself containing one subdirectory per
coupled domain. Coupled cases are run through the standard the code_saturne run command, but
require a coupling parameters file (coupling _parameters.py) specified using the --coupling option.
The run command must be called from the toplevel (STUDY) directory, so an additional STUDY/runcase
launch script is used in this case. Note that case-local scripts (such as STUDY/CASE1/SCRIPTS/runcase)
are still used by the master script to determine which parameter file to use.

So in the coupled case, calculation results would not be placed in STUDY/CASE1/RESU/ YYYYMMDD-hhmm,
but in STUDY/RESU_COUPLING/YYYYMMDD-hhmm/CASE1l, with the summary file being directly placed in
STUDY/RESU_COUPLING/ YYYYMMDD-hhmm (as it references all coupled domains).

3.1.4 Code_Saturne Kernel library files

Information about the content of the Code_Saturne base directories is given below. It is not of vital
interest for the user, but given only as general information. Indeed, the case preparer command
code_saturne create automatically extracts the necessary files and prepares the launch script without
the user having to go directly into the Code_Saturne base directories (see §3.3). The code_saturne info
command gives direct access to the most needed information (especially the user’s and programmer’s
guides and the tutorial) without the user having to look for them in the Code_Saturne directories.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 14/201

Below are typical contents of a case directory CASE] in a study STUDY

STUDY/CASE1/DATA:
SaturneGUI
study.xml
REFERENCE

STUDY/CASE1/SRC:

REFERENCE

EXAMPLES
cs_user_boundary_conditions.f90
cs_user_parameters.f90
STUDY/CASE1/RESU/ YYYYMMDD-hhmm:
postprocessing

src_saturne
monitoring
checkpoint
compile.log
study.xml

runcase

preprocessor.log

listing

summary
STUDY/CASE1/SCRIPTS:

runcase

Code_Saturne data

Graphical User Interface launch script

Graphical User Interface parameter file

Example of user scripts and meteorological

or thermochemical date files (used with the
specific physics modules)

Code_Saturne user subroutines

Available user subroutines

Examples of user subroutines

User subroutines used for the present calculation

Results for the calculation YYYYMMDD-hhmm

Directory containing the Code_Saturne post-processing output

in the EnSight, MED, or CGNS format (both volume and boundary);
copy of the Code_Saturne user subroutines used for the calculation
Directory containing the chronological records for Code_Saturne
Directory containing the Code_Saturne restart files

Compilation log

Graphical User Interface parameter file used for the

calculation

Copy of the launch script used for the calculation

Execution report for the Code_Saturne Preprocessor

Execution report for the Kernel module of Code_Saturne

General information (machine, user, version, ...)

Launch script

Launch script (which may contain batch system keywords)

Below are typical additional contents with a coupled SYRTHES case SOLID1 in a study STUDY

STUDY/runcase_coupling

STUDY/SOLID1/DATA:
syrthes_data.syd
syrthes.py
usr_examples

Coupled launch script

SYRTHES data

SYRTHES data file

SYRTHES script

SYRTHES user subroutine examples

STUDY/RESU_COUPLING/ YYYYMMDD-hhmm /SOLID1: results (file names defined in syrthes.env)

src
compile.log
listsyr
geoms
histosl
resusl
resuscl

SYRTHES user subroutines used in the calculation

SYRTHES compilation report

Execution log

SYRTHES solid geometry file

SYRTHES chronological records at specified monitoring points
SYRTHES calculation restart file (1 time step)

SYRTHES chronological solid post-processing file

(may be transformed into the EnSight

or MED format with the syrthes4ensight

or syrthesfmed30 utility)

The subdirectories {install_directory}/1lib and {install directory}/bin contain the libraries

and compiled executables respectively.

The data files (for instance thermochemical data) are located in the directory data.

The user subroutines are available in the directory users, under subdirectories corresponding to each
module: base (general routines), cfbl (compressible flows), cogz (gas combustion), cplv (pulverised
coal combustion), ctwr (cooling towers modelling), elec (electric module), fuel (heavy fuel oil combus-
tion module), lagr (Lagrangian module, pprt (general specific physics routines) and rayt (radiative

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 15/201

heat transfer). The case preparer command code_saturne create copies all these files in the user
directory SRC/REFERENCE during the case preparation.

The directory bin contains an example of the launch script, the compilation parameter files and various

utility programs.

3.2 Setting up and running a calculation

3.2.1 Step by step calculation

This paragraph summarises the different steps which are necessary to prepare and run a standard case:

e Check the version of Code_Saturne set for use in the environment variables (code_saturne info
--version). If it does not correspond to the desired version, update the user profile or aliases
to get the required version, logging out of the session and in again if necessary (cf. §3.1.1).

e Prepare the different directories using the code_saturne create command (see §3.3).

e It is recommended to place the mesh(es) in the directory MESH, but they may be selected from
other directories, either with the Graphical User Interface (GUI) or the cs_user_scripts.py file
(see below). Make sure they are in a format compliant with Code_Saturne (see §3.4.5). There can
be several meshes in case of mesh joining or coupling with SYRTHESS.

e Go to the directory DATA and launch the GUI using the command ./SaturneGUI.

e If not using the GUI, copy the DATA/REFERENCE/cs_user_scripts.py file to DATA and edit it,
so that the correct run options and paths may be set. For advanced uses, this file may also be
used in conjunction with the GUIL. Just as with user Fortran subroutines below, settings defined
in this file have priority over those defined in the GUI.

e Place the necessary user subroutines in the directory SRC (see §3.9). When not using the Interface,
some subroutines are compulsory.

For all physics:

compulsory without Graphical User Interface:

- usipph (in cs_user_parameters.f90) to specify the turbulence and temperature
models

- usipsu (in cs_user_parameters.f90) to define most user parameters
- cs_user_boundary_conditions to manage the boundary conditions
very useful without Graphical User Interface:
- cs_user model.c (in cs_user_parameters.c) to define user scalars (species)

- usipes (in cs_user_parameters.f90) to define monitoring points and additional
parameters for results outputs

very useful:

- usphyv (in cs_user_physical_properties.f90) to manage variable physical prop-
erties (fluid density, viscosity ...)

- cs_user_initialization to manage the non-standard initialisations
For the “gas combustion” specific physics:

compulsory without Graphical User Interface:

- usppmo (in cs_user_parameters.f90) to select a specific physics module and com-
bustion model

very useful:

3SYRTHES 4 uses meshes composed of 4-node tetrahedra

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 16/201

- cs_user_combustion (in cs_user_parameters.f£90), depending on the selected com-
bustion model, to specify the calculation options for the variables corresponding to
combustion model

For the “pulverized fuel combustion” specific physics:

compulsory without Graphical User Interface:
- usppmo (in cs_user_parameters.f90) to select the specific physics module
very useful:
- cs_user_combustion (in cs_user_parameters.f90) to specify the calculation op-
tions for the variables corresponding to pulverized fuel combustion

or cs_user_combustion

For the “heavy fuel combustion” specific physics:
(not accessible through the Graphical User Interface in version 4.0.5)

compulsory:
- usppmo (in cs_user_parameters.f90) to select the specific physics module
- cs_user_combustion (in cs_user_parameters.f90) to specify the calculation op-
tions for the variables corresponding to heavy fuel combustion
For the “atmospheric module” specific physics:

compulsory without Graphical User Interface:
- usppmo (in cs_user_parameters.f90) to select the specific physics module
very useful:
- usatil (in cs_user_parameters.f90) to manage the reading of the meteo file
- usadtvor usatsoil (in cs_user_atmospheric model.f90) to manage the options
to the specific physics
For the “electric module” specific physics (Joule effect and electric arcs):

compulsory without Graphical User Interface:
- usppmo (in cs_user_parameters.f90) to select the specific physics module
- cs_user_initialization to initialise the enthalpy in case of Joule effect

- uselph (in cs_user_physical_properties.f90) to define the physical properties
in case of Joule effect

very useful:
- uselil (in cs_user_parameters.f90) to manage the options related to the vari-
ables corresponding to the electric module
For the “Lagrangian module” (dispersed phase):
(the continuous phase is managed in the same way as for a case of standard physics)

compulsory without Graphical User Interface:
- uslagl to manage the calculation conditions
- uslag? to manage the boundary conditions for the dispersed phase

For the “compressible module”:

compulsory without Graphical User Interface:
- usppmo (in cs_user_parameters.f90) to select the specific physics module
very useful:

- uscfxl and uscfx2 (in cs_user_parameters.f90) to manage the calculation pa-
rameters

- usphyv (in cs_user_physical_properties to manage the variable physical prop-
erties

A comprehensive list of the user subroutines and their instructions for use are given in §3.9.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 17/201

If necessary, place in the directory DATA the different external data (input profiles, thermochemical
data files, ...)

e Prepare the launch script runcase, directly or through the Graphical Interface (see §3.7), or
prepare the DATA/cs_user_scripts.py file.

Run the calculation and analyse the results

If necessary, purge the temporary files (in RESU/<run_id> or <scratch>/<run_id> directory)
(see §3.2.2).

3.2.2 Temporary execution directory

During a calculation, Code_Saturne may use a temporary directory for the compilation and the execution
if such a “scratch” directory is defined in the GUI, by setting the CS_SCRATCHDIR environment variable,
or in the code_saturne.cfg file. In this case, it is only at the end of the compilation that the result
files are only copied at the end in the directory RESU. This is recommended if the compute environment
includes different file-systems, some better suited to data storage, others to intensive I/O. If this is not
the case, there is no point in running in a scratch directory rather than the results directory, as this
incurs additional file copies.

If the environment variable CS_SCRATCHDIR is defined, its value has priority over that defined in the
preference file so if necessary, it is possible to define a setting specific to a given run using this
mechanism.

WARNING: in case of an error, the temporary directories are not deleted after a calculation, so that
they may be used for debugging. They may then accumulate and may hinder the correct operation of
the machine.

It is therefore essential to remove them regularly.

3.2.3 Execution modes

As explained before, Code_Saturne is composed of two main modules, the Preprocessor and the Kernel
(solver). The Preprocessor reads the meshes. The resulting data is transferred to the Kernel through
specific files, named mesh_input, or placed in a directory of that name when multiple meshes are
imported. In a standard calculation, the files are not copied from the temporary execution directory
to the results directory, as they have no interest for data analysis, and are considered “internal” files,
whose format or contents is not guaranteed not to change between Code_Saturne versions.

Yet, the Preprocessor does not run in parallel and may require a large amount of memory. The launch
scripts therefore allows specifically choosing which modules to run, either through the GUI or through
the cs_user_scripts.py file:

If a mesh_input file or directory is defined (which may be either a mesh_input from a previous
Preprocessor run or a mesh_output from a previous solver run), the script will copy or link it to the
execution directory, and the Preprocessor will not be rerun.

If domain.exec kernel = False, the Kernel will not be run. This is useful when only the mesh
import stage is required.

In a similar manner, the Kernel accepts several command-line options relative to execution mode,
notably domain.solver_args kernel = ’--preprocess’ or ’--quality’, restricting the run to the
preprocessing stages, or preprocessing stages augmented by mesh quality criteria computation. When-
ever the preprocessing stages defined lead to an effective mesh modification, a mesh_output file is
produced, which can be used directly as an input for a successive calculation.

The GUI presents the range of options in the form of four execution modes:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 18/201

e mesh import: the Preprocessor is run to transform one or more meshes into an internal
mesh_input file (or directory in case of multiple meshes).

e mesh preprocessing: the Kernel is run in preprocessing mode, so as to handle all mesh modi-
fication operations, such as joining, periodicity, smoothing, etc. If a mesh_input file or directory
is provided, it is used directly; otherwise, mesh import is run first.

e mesh quality criteria: similar to preprocessing, with the addition of mesh quality criteria
computation, and post-processing output of those criteria. Some additional mesh consistency
checks are also run.

e standard: this includes preprocessing, followed by a standard computation.

Note that to allow preprocessing in multiple passes, all defined preprocessing operations are run even
on previously preprocessed meshes. In most cases, those will not produce additional changes (such as
joining already joined meshes), but in the case of mesh smoothing, they might lead to small changes.
So when using a previously preprocessed mesh it is recommended not to define any preprocessing
operations, so as to skip the preprocessing stage.

It is encouraged to separate the preprocessing and calculation runs, as this not only speeds up calcula-
tions, but also ensures that the mesh is identical, regardless of the architecture or number of processors
it is run on. Indeed, when running the same pre-processing stages such as mesh joining on a different
machine or a different number of processors, very minor floating-point truncation errors may lead to
very slightly different preprocessed meshes.

Note also that mesh partitioning is done directly by the Kernel. Depending on the partitioning algo-
rithm used, a partition map (partition_output/domain number_x) may be output, allowing the use
of the same partitioning in future calculations. By default, this file is output when using graph-based
partitioners, which may use randomization and do not guarantee a reproducible output, and is not
output when using a deterministic space-filling curve based partitioning.

If the code was built only with a serial partitioning library, graph-based partitioning may best be run
in a serial pre-processing stage. In some cases, serial partitioning might also provide better partitioning
quality than parallel partitioning, so if both are available, comparing the performance of the code may
be worthwhile, at least for calculations expected to run for many iterations.

3.2.4 Environment variables

Setting a few environment variables specific to Code_Saturne allows modifying its default behaviour.
The environment variables used by Code_Saturne are described here:

CS_SCRATCHDIR

Allows defining the execution directory (see §3.2.2), overriding the default path or settings from the
global or user code_saturne.cfg.

CS_MPIEXEC_OPTIONS

This variable allows defining extra arguments to be passed to the MPI execution command by the run
scripts. If this option is defined, it will have priority over the value defined in the preference file (or
by computed defaults), so if necessary, it is possible to define a setting specific to a given run using
this mechanism. This may be useful when tuning the installation to a given machine, for example
experimenting MPI mapping and “bind to core” features.

3.2.5 Interactive modification of selected parameters

During a calculation, it is possible to change the limit time step number (ntmabs) specified through
the GUI or in cs_user_parameters.f90. To do so, a file named control_file must be placed in the

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 19/201

execution directory (see §3.2.2). The existence of this file is checked at the beginning of each time step.

To change the maximum number of time steps, this file must contain a line indicating the value of the
new limit number of time steps.

If this new limit has already been reached, Code_Saturne will stop properly at the end of the current
time step (the results and restart files will be written correctly).

This procedure allows the user to stop a calculation in a clean and interactive way whenever they wish.

The control_file may also contain a few other commands, allowing the user to force checkpointing
or postprocessing at a given time step or physical time, or to force an update of log and listing
files. The following commands are available (using the common notations <> to indicate a required
argument, [] to indicate an optional argument).

max_time_step <time_step_number>
max_time_value <time_value>
checkpoint_time_step <time_step_number>
checkpoint_time_value <time_value>
checkpoint_wall_time <wall_clock_time>
checkpoint_time_step_interval <time_step-_interval>
checkpoint_time_value_interval <time_interval>
checkpoint_wall_time_interval <wall_time_interval>
control file wtime_interval <wall_time_interval>

flush logs [time_step_number]
postprocess_time_step <time_step_number> [writer_id]
postprocess_time_value <time_step_value> [writer_id]
time_step_limit <time_step_count>

The time_step-limit differs from the max_time_step command, in the sense that it allows reducing
the maximum number of time steps, but not increasing it.

Note that for the postprocess_time * options, the last argument (writer_id is optional. If not
defined, or 0, postprocessing is activated for all writers; if specified, only the writer with the specified
id is affected. Also, postprocessing output by one ore more writers at a future time step may be
cancelled using the negative value of that time step.

For the flush_logs option, the time step is also optional. If not specified, logs are updated at the
beginning of the next time step.

Multiple entries may be defined in this file, with one line per entry.

3.3 Case preparer

The case preparer command code_saturne create automatically creates a study directory according
to the typical architecture and copies and pre-fills an example of calculation launch script.

The syntax of code_saturne create is as follows:

code_saturne create --study STUDY CASE_NAME1 CASE_NAME2...
creates a study directory STUDY with case subdirectories CASE_NAME1 and CASE_NAME2... If no case
name is given, a default case directory called CASE1 is created.

code_saturne create --case Flow3 —--case Flow4

executed in the directory STUDY adds the case directories Flow3 and Flow4. Whenever multiple
cases are created simultaneously, it is assumed they may be coupled, so a runcase_coupling file
and RESU_COUPLING directory are also created.

In the directory DATA, the code_saturne create command places a subdirectory REFERENCE contain-
ing examples of thermochemical data files used for pulverised coal combustion, gas combustion, electric
arcs, or a meteo profile. The file to be used for the calculation must be copied directly in the DATA
directory and its name may either be unchanged, or be referenced using the GUI or using the usppmo

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 20/201

subroutine in cs_user_parameters.f90. As a rule of thumb, all files in DATA except for SaturneGUI
are copied, but subdirectories are not.

The code_saturne create command also places in the directory DATA the launch script for the Graph-
ical User Interface: SaturneGUI.

In the directory SRC, the code_saturne create command creates a subdirectory REFERENCE contain-
ing all the available user subroutines, and the subdirectory EXAMPLES containing examples of user
subroutines. Only the user subroutines placed directly under the directory SRC will be considered.
The others will be ignored.

In the directory SCRIPTS, the code_saturne create command copies an example of the launch script:
runcase. The XML file may be specified in the script (see §3.7), and using the GUI sets it automatically.

3.4 Supported mesh and post-processing output formats

Code_Saturne supports multiple mesh formats, all of these having been requested at some time by users
or projects based on their meshing or post-processing tools. All of these formats have advantages and
disadvantages (in terms of simplicity, functionality, longevity, and popularity) when compared to each
other. The following formats are currently supported by Code_Saturne:

- SIMAIL (NOPO)

- I-deas universal

- MED

- CGNS

- EnSight 6

- EnSight Gold

- GAMBIT neutral

- Gmsh

- STAR-CCM+

- Catalyst (co-processing)
These formats are described in greater detail in the following sections. Unless a specific option is used,
the Preprocessor determines the mesh format directly from the file suffix: “. case” for EnSight (6 or

Gold), “. cem” for STAR-CCM+, “.cgns” for CGNS, “.des” for SIMAIL, “.med” for MED, “.msh”
for Gmsh, “.neu” for GAMBIT neutral, “.unv” for I-deas universal.

Note that the preprocessor can read gzipped mesh files directly (for Formats other than MED or
CGNS, which use specific external libraries) on most machines.

3.4.1 Formats supported for input

3.4.1.1 NOPO/SIMAIL (INRIA/Distene)

This format is output by SIMAIL, which was used heavily at EDF until a few years ago. Code_Saturne
does not currently handle cylindrical or spherical coordinates, but it seems that SIMAIL always
outputs meshes in Cartesian coordinates, even if points have been defined in another system. Most
“classical” element types are usable, except for pyramids.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 21/201

Note that depending on the architecture on which a file was produced by SIMAIL?, it may not be
directly readable by SIMAIL on a different machine, while this is not a problem for the Preprocessor,
which automatically detects the byte ordering and the 32/64 bit variant and adjusts accordingly.

Default extension: .des

File type: semi-portable “Fortran” binary (IEEE integer and floating-point
numbers on 4 or 8 bytes, depending on 32 or 64 bit SIMAIL
version, bytes also ordered based on the architecture)

Surface elements: triangles, quadrangles (+ volume element face references)

Volume elements: tetrahedra, prisms, hexahedra

Zone selection: element face references and volume sub-domains
(interpreted as numbered groups)

Compatibility: all files of this type as long as the coordinate system used is
Cartesian and not cylindrical or spherical

Documentation: Simail user documentation and release notes or MODULEF
documentation: http://www-rocq.inria.fr/modulef
Especially:
http:
//www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

3.4.1.2 I-deas universal file

This format was very popular in the 1990’s and early 2000’s, and though the I-deas tool has not focused
on the CFD (or even meshing) market since many years, it is handled (at least in part) by many tools,
and may be considered as a major “legacy” format. It may contain many different datasets, relative
to CAD, meshing, materials, calculation results, or part representation. Most of these datasets are
ignored by Code_Saturne, and only those relative to vertex, element, group, and coordinate system
definitions are handled.

This format’s definition evolves with I-deas versions, albeit in a limited manner: some datasets are
declared obsolete, and are replaced by others, but the definition of a given dataset type is never
modified. Element and Vertex definitions have not changed for many years, but group definitions have
gone through several dataset variants through the same period, usually adding minor additional group
types not relevant to meshing. If one were to read a file generated with a more recent version of I-deas
for which this definitions would have changed with no update in the Preprocessor, as the new dataset
would be unknown, it would simply be ignored.

Note that this is a text format. Most element types are handled, except for pyramids.

Default extension: .unv

File type: text

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, prisms, hexahedra

Zone selection: colors (always) and named groups

Compatibility: I-deas (Master Series 5 to 9, NX Series 10 to 12) at least
Documentation: Online I-deas NX Series documentation

3.4.1.3 GAMBIT neutral

This format may be produced by Ansys FLUENT’s GAMBIT meshing tool. As this tool does not
export meshes to other formats directly handled by the Preprocessor (though FLUENT itself may
export files to the CGNS or I-deas universal formats), it was deemed useful to enable the Preprocessor
to directly read files in GAMBIT neutral format.

44ittle endian” on Intel or AMD processors, or “big endian” on most others, and starting with SIMAIL 7, 32-bit or
64-bit integer and floating-point numbers depending on architecture

http://www-rocq.inria.fr/modulef
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 22/201

Note that this is a text format. “Classical” element types are usable.

Default extension: .neu

File type: text

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra

Zone selection: boundary conditions for faces, element groups for cells
(interpreted as named groups)

Documentation: GAMBIT on-line documentation

3.4.1.4 EnSight 6

This format is used for output by the Harpoon meshing tool, developed by Sharc Ltd (also the distrib-
utor of EnSight for the United Kingdom). This format may represent all “classical” element types.

Designed for post processing, it does not explicitly handle the definition of surface patches or volume
zones, but allows the use of many parts (i.e. groups of elements) which use a common vertex list.
A possible convention (used at least by Harpoon) is to add surface elements to the volume mesh,
using one part per group. The volume mesh may also be separated into several parts so as to identify
different zones. As part names may contain up to 80 characters, we do not transform them into groups
(whose names could be unwieldy), so we simply convert their numbers to group names.

Also note that files produced by Harpoon may contain badly oriented prisms, so the Preprocessor
orientation correction option (--reorient) may must be used. Meshes built by this tool also contain
hanging nodes, with non-conforming elements sharing some vertices. Mesh joining must thus also be
used, and is not activated automatically, as the user may prefer to specify which surfaces should be
joined, and which ones should not (i.e. to conserve thin walls).

Default extension: .case

File type: text file (extension .case), and text, binary, or Fortran binary file
with (.geo extension), describing integers and floats in the IEEE
format, using 32 bits

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: part numbers interpreted as numbered groups
Compatibility: All files of this type

Documentation: on-line documentation, also available at:

www3.ensight.com/EnSight10_Docs/UserManual.pdf

3.4.1.5 Gmsh

This format is used by the free Gmsh tool. This tool has both meshing and post-processing function-
ality, but Code_Saturne only imports the meshes.

Note that some meshes produced by Gmsh man contain some badly oriented elements, so the Prepro-
cessor’s —reorient option may be necessary.

The Preprocessor handles versions 1 and 2 of this array. In version 1, two labels are associated with
each element: the first defines the element’s physical entity number, the second defines its elementary
entity number. Using version 2, it is possible to associate an arbitrary number of labels with each
element, but files produced by Gmsh use 2 labels, with the same meanings as with version 1.

The decision was taken to convert physical entity numbers to groups. It is possible to build a mesh
using Gmsh without defining any physical entities (in which case all elements will belong to the same
group, but the Gmsh documentation clearly says that geometric entities are to be used so as to group
elementary entities having similar “physical” meanings.

www3.ensight.com/EnSight10_Docs/UserManual.pdf
http://www.geuz.org/gmsh

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 23/201

To obtain distinct groups with a mesh generated by Gmsh, it is thus necessary for the user to define
physical entities. This requires an extra step, but allows for fine-grained control over the groups
associated with the mesh, while using only elementary entities could lead to a high number of groups.

Default extension: .msh

File type: text or binary file

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra

Zone selection: physical entity numbers interpreted as numbered groups

Compatibility: all files of this type

Documentation: included documentation, also available at:
http://www.geuz.org/gmsh

3.4.2 Formats supported for input or output

3.4.2.1 EnSight Gold

This format may represent all “classical” element types, as well as arbitrary polygons and convex
polyhedra.

This format evolves slightly from one EnSight version to another, keeping backwards compatibility.
For example, polygons could not be used in the same part as other element types prior to version
7.4, which removed this restriction and added support for polyhedra. Version 7.6 added support for
material type definitions.

This format offers many possibilities not used by Code_Saturne, such as defining values on part of
a mesh only (using “undefined” marker values or partial values), assigning materials to elements,
defining rigid motion, or defining per-processor mesh parts with ghost cells for parallel runs. Note
that some libraries allowing direct EnSight Gold support do not necessarily support the whole format
specification. Especially, VTK does not support material types. Also, both EnSight Gold (8.2 and
above) and VTK allow for automatic distribution, reducing the usefulness of pre-distributed meshes
with per-processor files.

Note than when using ParaView, if multiple parts (i.e. meshes) are present in a give case, using the
“Extract Blocks” filter is required to separate those parts and obtain a proper visualization. The
Vislt software does not seem to handle multiple parts in an EnSight case, so different meshes must be
assigned to different writers (see §7.1) when using this tool.

This format may be used as an input format, similar to EnSight 6. Compared to the latter, each part
has its own coordinates and vertex connectivity; hence as a convention, we consider that surface or
volume zones may only be considered to be part of the same mesh if the file defines vertex IDs (which
we consider to be unique vertex labels). In this case, part numbers are interpreted as group names.
Without vertex IDs, only one part is read, and no groups are assigned.

Default extension: directory {case_name}.ensight, containing a file with the .case
extension

File type: multiple binary or text files

Surface elements: triangles, quadrangles, polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra

Zone selection: possibility of defining element materials (not used), or interpret part
number as group name if vertex IDs are given

Compatibility: files readable by EnSight 7.4 to 10.0, as well as tools based on the
VTK library, especially ParaView (http://www.paraview.org)

Documentation: online documentation, also available at:
www3.ensight.com/EnSight10_Docs/UserManual.pdf

http://www.geuz.org/gmsh
http://www.vtk.org
http://www.paraview.org
www3.ensight.com/EnSight10_Docs/UserManual.pdf

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 24/201

3.4.2.2 MED

Initially defined by EDF R&D, this format (Modéle d’échanges de Données, or Model for Exchange
of Data) has been defined and maintained through a MED working group comprising members of
EDF R&D and CEA (the Code_Saturne team being represented). This is the reference format for the
SALOME environment. This format is quite complete, allowing the definition of all “classical” element
types, in nodal or descending connectivity. It may handle polygonal faces and polyhedral cells, as well
as the definition of structured meshes.

This format, which requires a library also depending on the free HDF5 library, allows both for reading
and writing meshes with their attributes (“families” of color/attribute and group combinations), as
well as handling calculation data, with the possibility (unused by Code_Saturne) of defining variables
only on a subset (“profile”) of a mesh.

The MED library is available under a LGPL license, and is even packaged in some Linux distributions
(at least Debian and Ubuntu). Code_Saturne requires at least MED 3.0.2, which in turn requires HDF5
1.8. This format is upwards-compatible with MED 2.3, so files in that version of the format may be
read, though not output.

Default extension: .med

File type: portable binary, based on the HDF5 library
(http://www.hdfgroup.org/HDF5/index.html)

Surface elements: triangles, quadrangles, simple polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, simple polyhedra

Zone selection: element families (i.e. colors and groups)

Input compatibility: MED 2.3, 3.0, or 3.1 (only unstructured nodal connectivity is
supported)

Output compatibility: MED 3.0 and above

Documentation: on-line documentation. Download link at http://files.
salome-platform.org/Salome/other/med-3.1.0.tar.gz

3.4.2.3 CGNS

Promoted especially by the ATAA, NASA, Boeing Commercial, and ANSYS ICEM CFD (as well as
ONERA in France), this format(CFD General Notation System) is quite well established in the world
of CFD. The concept is similar to that of MED, with a bigger emphasis on normalization of variable
names or calculation information, and even richer possibilities. Contrary to MED, the first version of

this format was limited to multi-bloc structured meshes, unstructured meshes having been added in
CGNS 2.

Slightly older than MED, this library was free from the start, with a good English documentation,
and is thus much better known. It is more focused on CFD, where MED is more generic. A certain
number of tools accompany the CGNS distribution, including a mesh visualizer (which does not handle
polygonal faces although the format defines them), and an interpolation tool.

Code_Saturne should be able to read almost any mesh written in this format, though meshes with
over-set interfaces may not be usable for a calculation (calculations with over-set interfaces may be
possible in the context of coupling Code_Saturne with itself but with two separate meshes). Other
(abutting) interfaces are not handled automatically (as there are at least 3 or 4 ways of defining them,
and some mesh tools do not export them?®), so the user is simply informed of their existence in the
Preprocessor’s log file, with a suggestion to use an appropriate conformal joining option. Structured
zones are converted to unstructured zones immediately after being read.

Boundary condition information is interpreted as groups with the same name. The format does not
yet provide for selection of volume elements, as only boundary conditions are defined in the model

5For example, ICEM CFD can join non-conforming meshes, but it exports joining surfaces as simple boundary faces
with user-defined boundary conditions.

http://www.opencascade.org/SALOME/Salome.html
http://www.gnu.org
http://www.hdfgroup.org/HDF5/index.html
http://files.salome-platform.org/Salome/other/med-3.1.0.tar.gz
http://files.salome-platform.org/Salome/other/med-3.1.0.tar.gz

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 25/201

(and can be assigned to faces in the case of unstructured meshes, or vertices in any case). Note that
boundary conditions defined at vertices are not ignored by the Preprocessor, but are assigned to the
faces of which all vertices bear the same condition.%

The Preprocessor also has the capability of building additional volume or surface groups, based on the
mesh sections to which cells or faces belong. This may be activated using a sub-option of the mesh
selection, and allows obtaining zone selection information from meshes that do not have explicit bound-
ary condition information but that are subdivided in appropriate zones or sections (which depends on
the tool used to build the mesh).

When outputting to CGNS, an unstructured connectivity is used for the calculation domain, with no
face joining information or face boundary condition information.”

Though many tools support CGNS, that support is often quite disappointing, at least for unstructured
meshes. Thus, some editors seem to use different means to mark zones to associate with boundary
conditions than the ones recommended in the CGNS documentation, and some behaviours are worse.
Also, many readers do not allow the user to choose between multiple CGNS bases (meshes in the
Code_Saturne sense), so when outputting to CGNS, it may be necessary to output each post-processing
mesh using a separate writer. Vislt 2.4.2 may fail to read a volume mesh output by Code_Saturne, but
read a surface mesh correctly, while the same volume mesh may be read with no problems by EnSight
10. The support of polygons (ngons in the CGNS standard), is even worse, and even the verification
tools published alongside the CGNS library were recently unable to handle them, and reported errors
in valid files containing such elements. For mesh input, some ICEM CFD versions used a CGNS 3 beta
library, which led to some issues. CGNS 3 output from ICEM CFD 13 is known to work well with
Code_Saturne, but that same version is unable to read files generated by Code_Saturne, as it seems to
“cheat” with CGNS version numbers and to confuse CGNS 3 and 3.1 specs. ICEM 14 seems to have
fixed that bug.

Default extension: .cgns

File type: portable binary (uses the ADF library specific to CGNS, or HDF5)

Surface elements: triangles, quadrangles, simple polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra (simple polyhedra allowed
by CGNS 3 but not supported yet)

Zone selection: Surface zone selection using boundary conditions, no volume zone

selection, but the Preprocessor allows creation of groups associated
to zones or sections in the mesh using mesh selection sub-options

Input compatibility: CGNS 2.5 or CGNS 3.1
Output compatibility: CGNS 3.1
Documentation: See CGNS site: http://www.cgns.org

3.4.2.4 STAR-CCM-+

This polyhedral format is the current CD-Adapco format, and is based on CD-Adapco’s libecemio,
which is based on ADF (the low-level file format used by CGNS prior to the shift to HDF-5). libccmio
comes with a version of ADF modified for performance, but also works with a standard version from
CGNS.

Currently, geometric entity numbers are converted to numbered groups, with the corresponding names
printed to the Preprocessor log. Depending on whether the names were generated automatically or set
by the user, it would be preferable to use the original group names rather than base their names on
their numbers.

S1f one of a face’s vertices does not bear a boundary condition, that condition is not transferred to the face.

7Older versions of the documentation specified that a field must be defined on all elements of a zone, so that adding
faces on which to base boundary conditions to a volume mesh would have required also defining volume fields on these
faces. More recent versions of the documentation make it clear that a field must be defined on all elements of maximum
dimension in a zone, not on all elements.

http://www.cgns.org

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 26/201

This format may also be used for output, though its limitations make this a less general solution than
other output formats: only 3D meshes are handled, though values can be output on boundary face
regions (which may not overlap). As such, to ensure consistency, output using this format is limited
as follows:

e output of the full volume mesh and cell or vertex data on that mesh is handled normally.

e output of the full surface mesh and per face data on that mesh handled normally, only if output
of the full volume mesh to this format is also enabled. It is ignored otherwise.

e output of sub-meshes or meshes built during the preprocessing stage and all other data is ignored.

As such, this formal may be useful for interoperability of data with a CCMIO-based tool-chain, but
simultaneously using another output format to visualize possible error output is recommended.

The CCMIO library is distributed freely by CD-Adapco upon demand.

Default extension: .ccm
File type: binary file using modified ADF library.
Surface elements: polygons
Volume elements: polyhedra
Zone selection: named face and cell sets
(interpreted as numbered groups, with names appearing in log)
Compatibility: all files of this type?
Documentation: documentation and source code provided by CD-Adapco

3.4.3 Formats supported for output only

3.4.3.1 Catalyst

This is not a “true” output format in the sense that output is not written directly to file, but is
exported to the Catalyst co-processor. In turn, this co-processor will execute operations based on a
special ParaView Python script, and directly generate output such as images or movies.

Co-processing scripts may be generated using ParaView 4, with the CoProcessing plugin, using initial
output in another format (such as EnSight Gold). A Code_Saturne postprocessing writer will try to
read a script named <writer_name>.py, which should be places in a case’s DATA directory.

Note that this output is still at an experimental stage, and is heavily dependent on ParaView. Some
operations may work very well, while other, similar operations may fail.

Default extension: not applicable

File type: co-processing

Surface elements: triangles, quadrangles, polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra

Compatibility: Catalyst from ParaView 4.0

Documentation: online documentation and Wiki, at:
http://paraview.org/Wiki/Main_Page

3.4.4 Meshing tools and associated formats

Most often, the choice of a mesh format is linked to the choice of a meshing tool. Still, some tools allow
exporting a mesh under several formats handled by Code_Saturne. This is the case of FLUENT and
ICEM CFD, which can export meshes to both the I-deas universal and CGNS formats (FLUENT’s
GAMBIT is also able to export to I-deas universal format).

http://paraview.org
http://paraview.org/Wiki/Main_Page

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 27/201

Traditionally, users exported files to the I-deas universal format, but it does not handle pyramid
elements, which are often used by these tools to transition from hexahedral to tetrahedral cells in the
case of hybrid meshes. The user is encouraged to export to CGNS, which does not have this limitation.

Tools related to the SALOME platform should preferably use SALOME’s native MED format (export
to I-deas universal is also possible, but has some limitations).

3.4.5 Meshing remarks

WARNING: Some turbulence models (k—e, R;;—¢ SSG, ...) used in Code_Saturne are “High-Reynolds”
models. Therefore the size of the cells neighbouring the wall must be greater than the thickness of the
viscous sub-layer (at the wall, y™ > 2.5 is required, and 30 < y™ < 100 is preferable). If the mesh does
not match this constraint, the results may be false (particularly if thermal phenomena are involved).
For more details on these constraints, see the keyword iturb.

3.5 Preprocessor command line options

The main options are:

e —-help: provides a summary of the different command line options

e <mesh>: the last argument is used to specify the name of the mesh file. The launch script
automatically calls the Preprocessor for every mesh in the MESHES[] list specified by the user.

e —-reorient: attempts to re-orient badly-oriented cells if necessary to compensate for mesh-
generation software whose output does not conform to the format specifications.

3.6 Kernel command line options

In the standard cases, the compilation of Code_Saturne and its execution are entirely controlled by the
launch script. The potential command line options are passed through user modifiable variables at the
beginning of the cs_user_scripts.py file (this file may be copied from the DATA/REFERENCE to the
DATA and edited). This way, the user only has to fill these variables and doesn’t need to search deep
in the script for the Kernel command line. For more advanced usage, the main options are described
below:

e ——app-name: specifies the application name. This is useful only in the case of code coupling,
where the application name is used to distinguish between different code instances launched
together.

e —-mpi: specifies that the calculation is running with MPI communications. The number of
processors used will be determined automatically by the Kernel. With most MPI implementa-
tions, the code will detect the presence of an MPI environment automatically, and this option is
redundant. It is only kept for the rare case in which the MPI environment might not be detected.

e —-preprocess: triggers the preprocessing-only mode. The code may run without any Interface
parameter file or any user subroutine. Only the initial operations such as mesh joining and
modification are executed.

e —q or ——quality: triggers the verification mode. The code may run without any Interface pa-
rameter file or any user subroutine. This mode includes the preprocessing stages, and adds
elementary tests:

- the quality criteria of the mesh are calculated (non-orthogonality angles, internal faces off-
set, ...) and corresponding visualizable post-processing output is generated.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 28/201

- a few additional mesh consistency tests are run.

e —-benchmark: triggers the benchmark mode, for a timing of elementary operations on the ma-
chine. A secondary option --mpitrace can be added. It is to be activated when the benchmark
mode is used in association with an MPI trace utility. It restricts the elementary operations to
those implying MPI communications and does only one of each elementary operation, to avoid
overfilling the MPI trace report.

This command is to be placed in the
textttdomain.solver_args variable in the cs_user_scripts.py file to be added automatically to
the Kernel command line.

e —-log n: specifies the destination of the output for a single-processor calculation or for the
processor of rank 0 in a parallel calculation.
n=0: output directed towards the standard output
n=1: output redirected towards a file listing (default behaviour)
This option can be specified in the domain.logging args field of the user script.

e —-logp n: specifies the destination of the output for the processors of rank 1 to N — 1 in a

calculation in parallel on N processors (i.e. the redirection of all but the first processor).

n=-1: no output for the processors of rank 1 to N — 1 (default behaviour).

n=0: no redirection. Every processor will write to the standard output. This might be useful
in case a debugger is used, with separate terminals for each processor.

n=1: one file for the output of each processor. The output of the processors of rank 1 to
N — 1 are directed to the files 1isting n0002 to listing n/N. This option can be specified in
the domain.logging args field of the user script.

e —p <filename> or —-param <filename>: specifies the name of the GUI parameter file to use for
the calculation.
The value of <filename> is to be defined by the —-param option of code_saturne run, either
directly or in the standard runcase script (the file will be searched for in the data directory,
though an absolute path name may also be defined).

e -h or —-help: displays a summary of the different command line options.

3.7 Launch scripts

The case preparer command code_saturne create places an example of launch script, runcase, in
the SCRIPTS directory. This script is quite minimalist and is known to work on every architecture
Code_Saturne has been tested on. If a batch system is available, this script will contain options for
batch submission. The script will then contain a line setting the proper PYTHONPATH variable for
Code_Saturne to run. Finally, it simply contains the code_saturne run command, possible with a
—--param option when a parameters file defined by the GUI is used. Other options recognized by
code_saturne run may be added.

In the case of a coupled calculation, this script also exists, and may be used for preprocessing stages,
but an additional runcase_coupling is added in the directory above the coupled case directories, and
may be used to define the list of coupled cases, as well as global options, such as MPI options of
the temporary execution directory. An additional runcase batch file will contain batch submission
options when a batch system is available (and is the file that should be submitted when using a batch
system).

When not using the GUI, or if additional options must be accessed, the cs_user_scripts.py file
may be copied from the DATA/REFERENCE to the DATA and edited. This file contains several Python
functions:

e define domain parameter_file allows defining the choice of a parameters file produced by the
GUI. This is generally not useful, as the parameters file may be directly defined in runcase

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 29/201

or runcase_coupling, or passed as an option to code_saturne run, but could be useful when
running more complex parametric scripts, and is provided for the sake of completeness.

e define domain_parameters allows defining most parameters relative to case execution for the
current domain, including advanced options not accessible through the GUI. This function is
the most important one in the user scripts file, and contains descriptions of the various options.
Note that in most examples, setting of options is preceded by a if domain.param == None: line,
ensuring the settings are only active if no GUI-defined parameters file is present. This is used to
prevent accidental override of parameters defined by the GUI: parameters defined through the
user script have priority over the GUI parameters file, so if both are used, these tests may be
removed for parameters which should be defined through user scripts.

e define _case_parameters allows defining most parameters relative to the global calculation,
such as the number of processors or the execution directory. To avoid potentially conflicting
definitions, this function is ignored for coupled calculations, where the corresponding parameters
may be defined in the runcase_coupling script.

e define mpi_environment allows defining advanced MPI parameters or redefining MPI options
if the automatic settings are incorrect, and its use should only rarely be necessary. To avoid
potentially conflicting definitions, this function is ignored for coupled calculations, where the
corresponding parameters may be defined in the runcase_coupling script.

3.8 Graphical User Interface

A Graphical User Interface is available with Code_Saturne. This Interface creates or reads an XML file
according to a specific Code_Saturne schema which is then interpreted by the code.

In version 4.0.5, the Graphical Interface manages calculation parameters, standard initialisation values
and boundary conditions for standard physics, pulverised fuel combustion, gas combustion, atmo-
spheric flows, Lagrangian module, electrical model, compressible model and radiative transfers (user
subroutines can still be completed though).

The Interface is optional. Every data that can be specified through the Interface can also be specified
in the user subroutines. In case of conflict, all calculation parameters, initialisation value or boundary
condition set directly in the user subroutines will prevail over what is defined by the Interface. However,
it is no longer necessary to redefine everything in the user subroutines. Only what was not set or could
not be set using the Graphical Interface should be specified.

WARNING: There are some limitations to the changes that can be made between the Interface and
the user routines. In particular, it is not possible to specify a certain number of solved variables in
the Interface and change it in the user routines (for example, it is not possible to specify the use of
a k — e model in the Interface and change it to R;; — ¢ in cs_user_parameters.f90, or to define
additional scalars in cs_user_parameters.f90 with respect to the Interface). Also, all boundaries
should be referenced in the Interface, even if the associated conditions are intended to be modified
in cs_user boundary conditions, and their nature (entry, outlet, wall®, symmetry) should not be
changed.

For example, in order to set the boundary conditions of a calculation corresponding to a channel flow
with a given inlet velocity profile, one should:

- set the boundary conditions corresponding to the wall and the output using the Graphical Interface
- set a dummy boundary condition for the inlet (uniform velocity for instance) - set the proper velocity
profile at inlet in cs_user_boundary_conditions. The wall and output areas must not appear in
cs_user_boundary_conditions. The dummy velocity entered in the Interface will not be taken into
account.

The Graphical User Interface is launched with the ./SaturneGUI command in the directory DATA. The
first step is then to load an existing parameter file (in order to modify it) or to open a new one. The

8Smooth and rough walls are considered to have the same nature

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 30/201

headings to be filled for a standard calculation are the following:

- Identity and paths: definition of the calculation directories (STUDY, CASE, DATA, SRC,
SCRIPTS, MESH).

- Calculation environment: definition of the mesh file(s), stand-alone execution of the Preprocessor
module (used by the Interface to get the groups of the boundary faces).

- Thermophysical models: physical model, ALE mobile mesh features, turbulence model, thermal
model, coupling with SYRTHES.

- Additional scalars: definition, initialisation of the scalars, and physical characteristics.

- Physical properties: reference pressure, fluid characteristics, gravity. It is also possible to write
user laws for the density, the viscosity, the specific heat and the thermal conductivity in the
interface through the use of a formulae interpreter.

- Volume conditions: initialisation of the variables, and definition of the zones where to apply head
losses or source terms.

- Boundary conditions: definition of the boundary conditions for each variable. The colors of the
boundary faces may be read directly from a “preprocessor.log*” files created by the Preprocessor
or a “listing” file from a previous Kernel run.

- Numerical parameters: number and type of time step, advanced parameters for the numerical
solution of the equations.

- Calculation control: parameters concerning the time averages, time step, location of the probes
where some variables will be monitored over time, definition of the frequency of the outputs in
the calculation listing and in the chronological records and of the EnSight outputs. The item
Profiles allows to save, with a given frequency, 1D profiles on an axis defined from two points
provided by the user.

- Calculation management: management of the calculation restarts, updating of the launch script
(temporary execution directory, parallel computing, user data or result files, ...) and interactive
launch of the calculation.

The Code_Saturne tutorial [14] offers a step-by-step guidance to the setting up of some simple calcula-
tions with the Code_Saturne Interface.

To launch Code_Saturne using an XML parameter file, the name of the file must be given using the
--param option of code_saturne run in the launch script (see §3.7). When the launch script is
edited from the Interface (Calculation management — Prepare batch analysis), this option is set
automatically.

3.9 User subroutines
3.9.1 Preliminary comments

The user can run the calculations with or without an interface, with or without the user subrou-
tines. Without interface, some user subroutines are needed (see §3.2.1). With interface, all the user
subroutines are optional.

The parameters can be read in the interface and then in the user subroutines. In the case that a
parameter is specified in the interface and in a user subroutine, it is the value in the user subroutine
that is taken into account. For this reason, all the examples of user subroutines are placed in the
EXAMPLES directory by the case setup code_saturne create (and available subroutines in the directory
REFERENCE).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 31/201

3.9.2 Example routines

Some user subroutines may be used for many different user definitions. As including enough examples
in those subroutines would make them very difficult to read, these routines provided as templates only,
with separate examples in a case’s EXAMPLES subdirectory of its SRC directory.

Example file names are defined by inserting the name of the matching example in the file name. For
example, a basic example for cs_user_boundary_conditions.f90 is provided in
cs_user_boundary_conditions-base.f90, while an example dedicated to atmospheric flows is pro-
vided in cs_user_boundary_conditions-atmospheric.f90.

The user is encouraged to check what examples are available, and to study those that are relevant to
a given setup.

Template user subroutines contain three sections the user may define, marked by the following strings:

e INSERT_VARIABLE DEFINITIONS_HERE
e INSERT ADDITIONAL_INITIALIZATION_CODE_HERE
e INSERT_MAIN_CODE_HERE
Comparing template and example files with a graphical file comparison tool should help the user

highlights the matching sections from the examples, so it is recommended as good practice for those
not already very familiar with those user subroutines.

3.9.3 Main variables

This section presents a non-exhaustive list of the main variables that may be encountered by the user.
Most of them should not be modified by the user. They are calculated automatically from the data.
However it may be useful to know what they represent. Developers can also refer to [11].

These variables are listed in the alphabetical index at the end of this document (see § 9).

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

3.9.3.1 Array sizes

ndim: Space dimension (ndim=3).

ncel: Number of real cells in the mesh.

ncelet: Number of cells in the mesh, including the ghost cells of the “halos” (see note 1).
nfac: Number of internal faces (see note 2).

nfabor: Number of boundary faces (see note 2).

Indfac: Size of the array nodfac of internal faces - nodes connectivity (see note 3).
1ndfbr: Size of the array nodfbr of boundary faces - nodes connectivity (see note 3).
nnod: Number of vertices in the mesh.

nfml: Number of referenced families of entities (boundary faces, elements, ...).

nprfml: Number of properties per referenced entity family.

nvar: Number of solved variables (must be lower than nvrmax).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 32/201
nscamx: Maximum number of scalars solutions of an advection equation, apart from the variables

of the turbulence model (k, €, R;;, w, ¢, f, a, 1), that is to say the temperature and
other scalars (passive or not, user-defined or not).

nscal: Effective number of scalars solutions of an advection equation, apart from the variables of
the turbulence model (k, €, R;;, w, ¢, f, «, 1), that is to say the temperature and other
scalars (passive or not, user-defined or not). These scalars can be divided into two distinct
groups: nscaus user-defined scalars and nscapp scalars related to a “specific physics”.
nscal=nscaus+nscapp, and nscal must be less than or equal to nscamx.

nscapp: Effective number of scalars related to a “specific physics”. These scalars are solutions of
an advection equation and distinct from the scalars of the turbulence model (k, €, R;;, w,
o, f, a, v4). They are automatically defined by the choice of the selected specific physics
model (gas combustion with Eddy Break-Up model, pulverised coal combustion, ...). For
example: mass fractions, enthalpy,

nscaus: Effective number of user-defined scalars. These scalars are solutions of an advection equa-
tion and distinct from the scalars of the turbulence model (k, €, R;;, w, ¢, f, o, v;) and
from the nscapp scalars related to the “specific physics”. For example: passive tracers,
temperature (when no specific physics model is selected),

nestmx: Maximum number of error estimators for Navier-Stokes.

NPromx : Maximum number of physical properties. These will be stored in the arrays propce.
nproce: Number of properties defined at the cells. These will be stored in the array propce.
nvisls: Number of scalars with variable diffusivity.

nushmx: Maximum number of user chronological files (in the case where ushist is used).

nclacp: Number of coal classes for the pulverised coal combustion module. It is the total number

of classes, i.e. the sum of the number of classes for every represented coal. nclacp must
be less than or equal to nclcpm.

nclcpm: Maximum number of coal classes for the pulverised coal combustion module.

NOTE 1: GHOST CELLS - “HALOS”

A cell (real cell) is an elementary mesh element of the spatial discretisation of the calculation domain.
The mesh is made of ncel cells.

When using periodicity and parallelism, extra “ghost” cells (called “halo” cells) are defined for tem-
porary storage of some information (on a given processor). The total number of real and ghost cells is
ncelet.

Indeed, when periodicity is enabled, the cells with periodic faces do not have any real neighbour-
ing cell across these particular faces. Their neighbouring cell is elsewhere in the calculation domain
(its position is determined by the periodicity). In order to temporarily store the information coming
from this “distant” neighbouring cell, a ghost cell (“halo”) is created.

The same kind of problem exists in the case of a calculation on parallel machines: due to the
decomposition of the calculation domain, some cells no longer have access to all their neighbouring
cells, some of them being treated by another processor. The creation of ghost cells allows to temporar-
ily store the information coming from real neighbouring cells treated by other processors.

The variables are generally arrays of size ncelet (number of real and fictitious cells). The calculations
(loops) are made on ncel cells (only the real cells, the fictitious cells are only used to store information).

NOTE 2: INTERNAL FACES
An internal face is an interface shared by two cells (real or ghost ones) of the mesh. A boundary face
is a face which has only one real neighbouring cell. In the case of periodic calculations, a periodic face

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 33/201

is an internal face. In the case of parallel running calculations, the faces situated at the boundary of
a partition may be internal faces or boundary faces (of the whole mesh);

NOTE 3: FACE-NODE CONNECTIVITY

The faces - nodes connectivity is stored by means of four integer arrays: ipnfac and nodfac for the
internal faces, ipnfbr and nodfbr for the boundary faces. nodfac (size 1ndfac) contains the list of
all the nodes of all the internal faces; first the nodes of the first face, then the nodes of the second
face, and so on. ipnfac (size: nfac+1) gives the position ipnfac(ifac) in nodfac of the first node
of each internal face ifac. Therefore, the reference numbers of all the nodes of the internal face ifac
are: nodfac(ipnfac(ifac)), nodfac(ipnfac(ifac)+1), ..., nodfac(ipnfac(ifac+1)-1). In order
for this last formula to be valid even for ifac=nfac, ipnfac is of size nfac+1 and ipnfac(nfac+1) is
equal to 1lndfac+1.

The composition of the arrays nodfbr and ipnfbr is similar.

NOTE 4: MODULES
The user must not modify the existing modules. This would require the recompilation of the
complete version, operation which is not allowed in standard use.

3.9.3.2 Geometric variables

The main geometric variables are available in most of the subroutines and directly accessible through
the following arrays, defined in the mesh module (i.e. use mesh).

cdgfac(ndim,nfac) [ral: Coordinates of the centres of the internal faces.

cdgfbo(ndim,nfabor) [ra]: Coordinates of the centres of the boundary face.

ifacel(2,nfac) [ia]: Index-numbers of the (only) two neighbouring cells for each internal face.
ifabor(nfabor) [ia]: Index-number of the (unique) neighbouring cell for each boundary face.

ipnfac(nfac+1) [ia]: Position of the first node of the each internal face in the array nodfac (see note
3 in paragraph 3.9.3.1).

ipnfbr(nfabor+1) [ia]: Position of the first node of the each boundary face in the array nodfbr (see
note 3 in paragraph 3.9.3.1).

nodfac(lndfac) [ia]: Index-numbers of the nodes of each internal face (see note 3 in paragraph
3.9.3.1).

nodfbr (1ndfbr) [ia]: Index-numbers of the nodes of each boundary face (see note 3 in paragraph
3.9.3.1).

surfac(ndim,nfac) [ra]: Surface vector of the internal faces. Its norm is the surface of the face and
it is oriented from ifacel(1,.) to ifacel(2,.).

surfbo(ndim,nfabor) [ral: Surface vector of the boundary faces. Its norm is the surface of the face
and it is oriented outwards.

volume (ncelet) [ral: Volume of each cell.
xyzcen(ndim,ncelet) [ra]: Coordinates of the cell centres.
xyznod(ndim,nnod) [ra]: Coordinates of the mesh vertices.

In addition, other geometric variables are useful for gradients reconstruction. The main variables of
this type are the following:

dijpf(ndim,nfac) [ral: For every internal face, the three components of the vector I'J’, where I’
and J’ are respectively the orthogonal projections of the neighbouring cell centres I and J on
a straight line orthogonal to the face and passing through its center.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 34/201

diipb(ndim,nfabor) [ra]: For every boundary face, the three components of the vector II'. T’ is the
orthogonal projection of I, center of the neighbouring cell, on the straight line perpendicular
to the face and passing through its center.

dist(nfac) [ra]: For every internal face, dot product of the vectors I.J and n. I and J are respectively
the centres of the first and the second neighbouring cell. The vector n is the unit vector
normal to the face and oriented from the first to the second cell.

distb(nfabor) [ral: For every boundary face, dot product between the vectors IF and n. I is the
center of the neighbouring cell. F is the face center. The vector n is the unit vector normal
to the face and oriented to the exterior of the domain.

dofij(ndim,nfac) [ra]: For every internal face, the three components of the vector OF. O is the
intersection point between the face and the straight line joining the centres of the two neigh-
bouring cells. F is the face center.

FJn

IJn

pond(nfac) [ra]: For every internal face, . Regarding the quality of mesh, its ideal value is 0.5.

surfan(nfac) [ra]: Norm of the surface vector of the internal faces.

surfbn(nfabor) [ral]: Norm of the surface vector of the boundary faces.

3.9.3.3 Physical variables

Almost all physical variables? can be accessed via the cs_field API and are available in all the
subroutines as fields (either through their name or their id). The previous system, which used multi-
dimensional arrays, has been progressively replaced by the cs_field API and this process is now still
on-going only for the properties defined at cell centers. These properties are therefore the last ones to
be additionally accessible through a deprecated multidimensional array:

propce(ncelet,nproce) [ra]: Properties defined at the cell centres. For instance: viscosity,

For a thorough description of the user management of all physical variables as well as the corresponding
syntaxes between the cs_field API (both in C and Fortran) and the previous system, please refer to
the dedicated doxygen documentation.

Note that local arrays of values of physical variables, retrieved via the cs_field API, follow a naming
convention, fully described at this page of the doxygen documentation. It is highly recommended to
follow this convention to ease the comprehension.

About the solved variables

The indexes allowing marking out the different solved variables (from 1 to nvar) are integers available
in a “module” called numvar.

For example, ipr refers to the variable “pressure”.

The list of integers referring to solved variables is given below. These variable index-numbers can
be used to retrieve the corresponding field indices (for instance, ivarfl(ipr) is the field index for
the pressure), but also for some arrays of variable associated options (for instance, blencv(ik) is the
percentage of second-order convective scheme for the turbulent energy when a corresponding turbulent
model is used).

e ipr: pressure 10,

e iu: velocity along the X axis.

e iv: velocity along the Y axis.

9except some of the properties defined at the cell centers

10ipr corresponds to a reduced pressure, from which the standard hydrostatic pressure has been deducted. The total
solved pressure is a field of type property.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 35/201

e iw: velocity along the 7 axis.

e ik: turbulent energy, in k — e, k — w modelling or v2f (¢p-model and BL-v2/k model) modelling.
e ir11: Reynolds stress R11, in R;; — € or SSG modelling.

e ir22: Reynolds stress R22, in R;; — € or SSG modelling.

e ir33: Reynolds stress R33, in R;; — € modelling.

e ir12: Reynolds stress R12, in R;; — € modelling.

e ir13: Reynolds stress R13, in R;; — € modelling.

e ir23: Reynolds stress R23, in R;; — € modelling.

e iep: turbulent dissipation in k — ¢, R;; — ¢ or v2f (¢-model and BL-v2/k model) modelling.
e iomg: Specific dissipation rate w, in k — w SST modelling.

e iphi: variable ¢ = v2/k in v2f (¢p-model and BL-v2/k model).

e ifb: variable f in v2f (p-model).

e ial: variable « in elliptic blending models (BL-v2/k and EBRSM).

e inusa: variable
tildenu; in Spalart-Allmaras model.

e isca(j): scalar j(1<j<nscal).

Concerning the solved scalar variables (apart from the variables pressure, k, €, R;j, w, ¢, f, @, 1), the
following is very important:

- The designation “scalar” refers to scalar variables which are solution of an advection equation,
apart from the variables of the turbulence model (k, €, R;;, w, ¢, f, a, v;): for instance the
temperature, scalars which may be passive or not, “user” or not. The mean value of the square
of the fluctuations of a “scalar” is a “scalar”, too. The scalars may be divided into two groups:
nscaus “user” scalars and nscapp “specific physics” scalars, with nscal=nscaus+nscapp. nscal
must be less than or equal to nscamx.

- The j*® user scalar is, in the whole list of the nscal scalars, the scalar number j. In the list of
the nvar solved variables, it corresponds to the variable number isca(j).

- The j** scalar related to a specific physics is, in the whole list of the nscal scalars, the scalar
number iscapp(j). In the list of the nvar solved variables, it corresponds to the variable number
isca(iscapp(3j)).

- Apart from specific physics, the temperature (or the enthalpy) is the scalar number iscalt in
the list of the nscal scalars. It corresponds to the variable number isca(iscalt). if there is no
thermal scalar, iscalt is equal to -1.

- A “user” scalar number j may represent the mean of the square of the fluctuations of a scalar k
(i.e. the average ¢'¢’ for a fluctuating scalar ¢). This can be made either via the interface or by
declaring that scalar using cs_parameters_add_variable_variance in cs_user_parameters.c
(if the scalar in question is not a “user” scalar, the selection is made automatically). For in-
stance, if j and k are “user” scalars, the variable ¢ corresponding to k is the variable number
isca(k)=isca(iscavr(j)).th

1Tt is really ¢’¢’, and not 4/’

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 36,/201

About the physical properties at the cell centers

In Code_Saturne, the physical properties!? are stored in the propce arrays. Some properties, like the
density, are only stored for cells and boundary faces. To avoid having different index numbers for a
physical property, depending on the array it is used in, the following structure is used in Code_Saturne:

- All the properties (used or not) have a unique and distinct index-number, given automatically
by the code and stored in an integer or an integer array (its size may be the maximum number
of scalars or the maximum number of variables).

- The indexes referring to the different properties stored in the propxx arrays are given respectively
by the following integer arrays:

ipproc(npromx) [ia]: Rank i in propce(.,i) of the properties defined at the cell centres.

For instance, the index number corresponding to the density is irom.
In the list of the properties defined at the cell center, the density is therefore the ipproc(irom)*®
property: its value at the center of the cell iel is given by propce(iel,ipproc(irom)).

The list of properties accessible in the propxx arrays is given below (this does not include the properties
linked to the specific physics modules):

irom [ia]: Property number corresponding to the density (i.e. p in kg.m=3).
Stored at the cells and the boundary faces.

iroma [ia]: Property number corresponding to the density (i.e. p in kg.m=3) at the previous time
step, in the case of a second-order extrapolation in time.
Stored at the cells and the boundary faces.

iviscl [ia]: Property number corresponding to the fluid molecular dynamic viscosity (i.e. p in
kg.m=1.s71).
Stored at the cells.

ivisla [ia]: Property number corresponding to the fluid molecular dynamic viscosity (i.e. p in
kg.m~1.s71) at the previous time step, in the case of a second-order extrapolation in time.
Stored at the cells.

ivisct [ia]: Property number corresponding to the fluid turbulent dynamic viscosity (i.e. p; in
kg.m~1.s71).
Stored at the cells.

ivista [ia]: Property number corresponding to the fluid turbulent dynamic viscosity (i.e. p; in
kg.m~1.s71) at the previous time step, in the case of a second-order extrapolation in time.
Stored at the cells.

icp [ia]: Property number corresponding to the specific heat, when it is variable (i.e. Cp in m2.s 2. K1),
See note below.
Stored at the cells.

icpa [ia]: Property number corresponding to the specific heat, when it is variable (i.e. Cp in
m?2.s72. K1), at the previous time step, in the case of a second-order extrapolation in time.
See note below.
Stored at the cells.

iestim(nestmx) [ia]: Property number for the nestmx error estimators for Navier-Stokes. The esti-
mators currently available are iestim(iespre),
iestim(iesder), iestim(iescor), iestim(iestot) stored at the cells.

ifluaa(nvarmx) [ia]: Property number corresponding to the mass flow associated with each variable
at the previous time step, in the case of a second-order extrapolation in time.
Stored at the internal faces and boundary faces.

120ther variables are stored in the arrays propce. They are not, strictly speaking, “physical properties” but it is
convenient to have them in the same array as the proper physical properties

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 37/201

ismago [i]: Property number corresponding to the variable C' of the dynamic model, i.e so that

e = pC’Z2 25;7S;; (with the notations of [3]). C corresponds to C? in the classical model
of Smagorinsky.
Stored at the cells.

icour [i]: CFL number in each cell at the present time step.
Stored at the cells.

ifour [i]: Fourier number in each cell at the present time step.
Stored at the cells.

iprtot [i|: Total pressure in each cell.
Stored at the cells.

ivisma(l or 3) [ia]: When the ALE method for deformable meshes is activated, ivisma corresponds
to the “mesh viscosity”, allowing to limit the deformation in certain areas. This mesh
viscosity can be isotropic or be taken as a diagonal tensor (depending on the value of the
parameter iortvm.
Stored at the cells.

NOTE: VARIABLE PHYSICAL PROPERTIES

Some physical properties such as specific heat or diffusivity are often constant (choice made by the
user). In that case, in order to limit the necessary memory, these properties are stored as a simple real
number rather than in a domain-sized array of reals.

e This is the case for the specific heat Cp.

- If C, is constant, it can be specified in the interface or by indicating icp=0 in
cs_user_parameters.f90, and the property will be stored in the real number cp0.

- If Cp is variable, it can be specified in the interface or by indicating icp=1 in
cs_user_parameters.f90. The code will then modify this value to make icp refer to the
effective property number corresponding to the specific heat, in a way which is transparent
for the user. For each cell iel, the value of (), is then given in usphyv and stored in the
array propce(iel,ipproc(icp)).

e This is the same for the diffusivity K of each scalar iscal.

- If k is constant, it can be specified in the interface or by calling field_set key_id(ivarfl(isca(iscal)),
kivisl, -1) in cs_user_parameters.f90, (in usipsu) and the property will be stored in
the real number vislsO(iscal).

- If k is variable, it can be specified in the interface or by calling field _set key_id(ivarfl(isca(iscal)),
kivisl, 0) in cs_user_parameters.f90, (in usipsu). The code will then modify this key
value to make it refer to the effective field id corresponding to the diffusivity of the scalar
iscal, in a way which is transparent for the user. For each cell iel, the value of k is then
given in usphyv and stored in the field whose id is given by calling field_set key_id(ivarfl(isca(iscal)),
kivisl, ...).

Two other variables, hbord and tbord, should be noted here, although they are relatively local (they
appear only in the treatment of the boundary conditions) and are used only by developers.

hbord(nfabor) [ra]: Array of the exchange coefficient for temperature (or enthalpy) at the boundary
faces. The table is allocated only if isvhb is set to 1 in the subroutine tridim (which is note
a user subroutine), which is done automatically, but only if the coupling with SYRTHES or
the 1D thermal wall module are activated..

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 38/201

tbord(nfabor) [ra]: Temperature (or enthalpy) at the boundary faces'®. The table is allocated only
if isvtb is set to 1 in the subroutine tridim (which is note a user subroutine), which is done
automatically but only if the coupling with SYRTHES or the 1D thermal wall module are
activated..

Tables hbord and tbord are of size nfabor, although they concern only the wall boundary faces.

3.9.3.4 Variables related to the numerical methods

The main numerical variables and “pointers” are displayed below.

BOUNDARY CONDITIONS

ifmfbr (nfabor) [ia]: Family number of the boundary faces. See note 1.
iprfml(nfml,nprfml) [ia]: Properties of the families of referenced entities. See note 1.

isympa(nfabor) [i|: Integer to mark out the “symmetry” (itypfb=isymet) boundary faces where
the mass flow has to be canceled when the ALE module is switched off (these faces are
impermeable). For instance, if the face ifac is symmetry face, isympa(ifac)=0, otherwise
isympa(ifac)=1.

itrifb(nfabor) [ia]: Indirection array allowing to sort the boundary faces according to their bound-
ary condition type itypfb.

itypfb(nfabor) [ia]: Boundary condition type at the boundary face ifac (see user subroutine
cs_user_boundary_conditions).

uetbor (nfabor) [ral: Friction velocity at the wall, in the case of a LES calculation with van Driest-
wall damping.

DISTANCE TO THE WALL

ifapat(ncelet) [ra]: Number of the wall face (type itypfb=iparoi or iparug) which is closest to
the center of a given volume when necessary (R;; — ¢ with wall echo, LES with van Driest-
wall damping, or k — w (SST) turbulence model) and when icdpar=2. The number of the
wall face which is the closest to the center of the cell iel is ifapat(iell). This calculation
method is not compatible with parallelism and periodicity.

dispar(ncelet) [ra]: Distance between the center of a given volume and the closest wall, when it
is necessary (R;; — ¢ with wall echo, LES with van Driest-wall damping, or &k — w (SST)
turbulence model) and when icdpar=1. The distance between the center of the cell iel and
the closest wall is dispar(iel).

yplpar [ra: Non-dimensional distance y* between a given volume and the closest wall, when it is
necessary (LES with van Driest-wall damping) and when icdpar=1. The dimensionless wall
distance y™ between the center of the cell iel and the closest wall is therefore yplpar (iell).

PRESSURE DROPS AND POROSITY

icepdc(ncepdc) [ia]: Number of the ncepdc cells in which a pressure drop is imposed. See iicepd
and the user subroutine cs_user_head_losses.f90.

131t is the physical temperature at the boundary faces, not the boundary condition for temperature. See [11] for more
details on boundary conditions

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 39/201

ckupdc(ncepdc,6) [ra]: Value of the coefficients of the pressure drop tensor of the ncepdc cells in
which a pressure drop is imposed. Note the 6 values are sorted as follows: (k11, k22, k33,
k12, k23, k33). See ickpdc and the user subroutine cs_user_head_losses.f90.

ncepdc [ia]: Number of cells in which a pressure drop is imposed. See the user subroutine cs_user_head losses.f90.

porosi(ncelet) [ral]: Value of the porosity.

MASS SOURCES

icetsm(ncetsm) [ia]: Number of the ncetsm cells in which a mass source term is imposed. See
iicesm and the user subroutine cs_user_mass_source_terms.

itypsm(ncetsm,nvar) [ia]: Type of mass source term for each variable (0 for an injection at ambient
value, 1 for an injection at imposed value). See the user subroutine cs_user mass_source_terms.

ncetsm [i]: Number of cells with mass sources. See the user subroutine cs_user mass_source_terms.

smacel (ncetsm,nvar) [ra]: Value of the mass source term for pressure. For the other variables,
eventual imposed injection value. See the user subroutine cs_user_mass_source_terms.

WALL 1D THERMAL MODULE

nfptid [i]: Number of boundary faces which are coupled with a wall 1D thermal module. See the
user subroutine usptid.

ifptid [ia]: Array allowing marking out the numbers of the nfptid boundary faces which are cou-
pled with a wall 1D thermal module. The numbers of these boundary faces are given by
ifpt1d(ii), with 1<ii<nfptid. See the user subroutine usptid.

npptid [ia]: Number of discretisation cells in the 1D wall for the nfptid boundary faces which are
coupled with a 1D wall thermal module. The number of cells for these boundary faces is
given by nppt1d(ii), with 1<ii<nfptid. See the user subroutine usptid.

epptid [ia]: Thickness of the 1D wall for the nfptid boundary faces which are coupled with a 1D
wall thermal module. The wall thickness for these boundary faces is therefore given by
eppt1d(ii), with 1<ii<nfptid. See the user subroutine usptid.

OTHERS

dt(ncelet) [ral: Value of the time step.
ifmcel(ncelet) [ia]: Family number of the elements. See note 1.

s2kw(ncelet) [ra]: Square of the norm of the deviatoric part of the deformation rate tensor (S* =
2S£S£). This array is defined only with the k¥ — w (SST) turbulence model.

divukw [ia]: Divergence of the velocity. More precisely it is the trace of the velocity gradient (and
not a finite volume divergence term). In the cell iel, div(u) is given by divukw(iell). This
array is defined only with the k — w SST turbulence model (because in this case it may be
calculated at the same time as S?)..

NOTE: BOUNDARY CONDITIONS

The gradient boundary conditions in Code_Saturne boil down to determine a value for the current
variable Y at the boundary faces f;, that is to say Y, , value expressed as a function of Y7/, value of Y’
in I’, projection of the center of the adjacent cell on the straight line perpendicular to the boundary
face and crossing its center:

be = A';]cb + ngY[/. (1)

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 40/201

For a face ifac, the pair of coefficients Aiﬁb, B?b is may be accessed using the field _get_coefa_s and
field_get_coefb_s functions, replacing s with v for a vector.

The flux boundary conditions in Code_Saturne boil down to determine the value of the diffusive flux
of the current variable Y at the boundary faces f,, that is to say Dy, (Ky,, Y), value expressed as
a function of Y., value of Y in I, projection of the center of the adjacent cell on the straight line
perpendicular to the boundary face and crossing its center:

Diy (Ky,, Y) = AL + B Yy, (2)

For a face ifac, the pair of coefficients A}Cb, BJJfb may be accessed using the field _get_coefaf_s and
field_get_coefbf_s functions, replacing s with v for a vector.

The divergence boundary conditions in Code_Saturne boil down to determine a value for the current
variable Y (mainly the Reynolds stress components, the divergence div (ﬁ) used in the calculation of
the momentum equation) at the boundary faces f;, that is to say Y7, , value expressed as a function of
Yy, value of Y in I, projection of the center of the adjacent cell on the straight line perpendicular to
the boundary face and crossing its center:

Yy, = A%, + B} Yr. (3)

For a face ifac, the pair of coefficients Ajlfh, B;‘fb may be accessed using the field _get_coefad_s and
field_get_coefbd._s functions, replacing s with v for a vector.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 41/201

3.9.3.5 User arrays

Modules containing user arrays accessible from all user subroutines may be defined in the user modules.f90
file. This file is compiled before any other Fortran user file, to ensure modules may be accessed in
other user subroutines using the use <module> construct. It may contain any routines or variables

the user needs, and contains no predefined routines or variables (i.e. the only specificity of this file is
that a file with this name is compiled before all others).

3.9.3.6 Parallelism and periodicity

Parallelism is based on domain partitioning: each processor is assigned a part of the domain, and data
for cells on parallel boundaries is duplicated on neighbouring processors in corresponding “ghost”, or
“halo” cells (both terms are used interchangeably). Values in these cells may be accessed just the same
as values in regular cells. Communication is only required when cell values are modified using values
from neighbouring cells, as the values in the “halo” can not be computed correctly (since the halo
does not have access to all its neighbours), so halo values must be updated by copying values from the
corresponding cells on the neighbouring processor.

Compared to other tools using a similar system, a specificity of Code_Saturne is the separation of the
halo in two parts: a standard part, containing cells shared through faces on parallel boundaries, and an
extended part, containing cells shared through vertices, which is used mainly for least squares gradient
reconstruction using an extended neighbourhood. Most updates need only to operate on the standard
halo, requiring less data communication than those on the extended halos.

Domain A ! E Domain B Domain A Domain B

Figure 4: Parallel domain partitioning: halos

Periodicity is handled using the same halo structures as parallelism, with an additional treatment for
vector and coordinate values: updating coordinates requires applying the periodic transformation to
the copied values, and in the case of rotation, updating vector and tensor values also requires applying
the rotation transformation. Ghost cells may be parallel, periodic, or both. The example of a pump
combining parallelism and periodicity is given in Figure 5. In this example, all periodic boundaries
match with boundaries on the same domain, so halos are either parallel or periodic.

Decomposmon
on 4 domains

Velocity field
on full domain

\ = /
Figure 5: Combined parallelism and periodicity

Activation

Parallelism is activated by means of the GUI or of the launch scripts in the standard cases:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 42/201

e On clusters with batch systems, the launching of a parallel run requires to complete the batch
cards located in the beginning of runcase or runcase_batch script, and set the number of
MPT processes, or the numbers of physical nodes and processors per node (ppn) wanted. This
can be done through the Graphical Interface or by editing the runcase or runcase_batch file
directly. The number of processors defined here will override the number defined through the
GUI in a non-batch environment (so that studies defined on one environment may be migrated
to larger compute resources easily), but it may be overridden by the define_case parameters
function from the cs_user_scripts.py file, or by setting the n_procs_weight, n_procs min, and
n_procs_max parameters for the different domains defined in runcase_coupling.

e On clusters with unsupported batch systems, runcase file may have to be modified manually.
Please do not hesitate to contact the Code_Saturne support (saturne-support@edf.fr) so that these
modifications can be added to the standard launch script to make it more general.

e A parallel calculation may be stopped in the same manner as a sequential one using the file
control_file (see paragraph 3.2.5).

e The standard elements of information displayed in the listing (marked out with ’v ’ for the
min/max values of the variables), >c ’ for the data concerning the convergence and ’a ’ for the
values before clipping) are global values for the whole domain and not related to each processor.

User subroutines

The user can check in a subroutine

- that the presence of periodicity is tested with the variable iperio (=1 if periodicity is activated);

- that the presence of rotation periodicities is tested with the variable iperot (number of rotation
periodicities);

- that running of a calculation in parallel is tested for with the variable irangp (irangp is worth
-1 in the case of a non-parallel calculation and p — 1 in the case of a parallel calculation, p being
the number of the current processor)

Attention must be paid to the coding of the user subroutines. If conventional subroutines like
cs_user_parameters.f90 or cs_user_boundary_conditions usually do not cause any problem, some
kind of developments are more complicated. The most usual cases are dealt with below.

Examples are given for the subroutine cs_user_extra_operations.

e Access to information related to neighbouring cells in parallel and periodic cases.
When periodicity or parallelism are brought into use, some cells of the mesh become physically
distant from their neighbours. Concerning parallelism, the calculation domain is split and dis-
tributed between the processors: a cell located at the “boundary” of a given processor may have
neighbours on different processors.

In the same way, in case of periodicity, the neighbouring cells of cells adjacent to a periodic face
are generally distant.

When data concerning neighbouring cells are required for the calculation, they must first be
searched on the other processors or on the other edge of periodic frontiers. In order to ease the
manipulation of these data, they are stored temporarily in virtual cells called “halo” cells, as can
be seen in Figure 4. It is in particular the case when the following operations are made on a
variable A:

- calculation of the gradient of A (use of the subroutine grdcel);

- calculation of an internal face value from the values of A in the neighbouring cells (use of
ifacel).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 43/201

The variable A must be exchanged before these operations can be made: to allow it, the subrou-
tine synsca may be called.

e Global operations in parallel mode.
In parallel mode, the user must pay attention when performing global operations. The following
list is not exhaustive:

- calculation of extreme values on the domain (for instance, minimum and maximum of some
calculation values);

- test of the existence of a certain value (for instance, do faces of a certain color exist?);

- verification of a condition on the domain (for instance, is a given flow value reached some-
where?);

- counting out of entities (for instance, how many cells have pressure drops?);

- global sum (for instance, calculation of a mass flow or the total mass of a pollutant).

The user may refer to the different examples present in the directory EXAMPLES in the
cs_user_extra_operations-parallel_operations.f90 file. Care should be taken with the fact
that the boundaries between subdomains consist of internal faces shared between two processors
(these are indeed internal faces, even if they are located at a “processor boundary”). They
should not be counted twice (once per processor) during global operations using internal faces
(for instance, counting the internal faces per processor and summing all the obtained numbers
drives into over-evaluating the number of internal faces of the initial mesh).

e Writing operations that should be made on one processor only in parallel mode.

In parallel mode, the user must pay attention during the writing of pieces of information. Writing
to the “listing” can be done simply by using the nfecra logical unit (each processor will write
to its own “listing” file): use write(nfecra,

If the user wants an operation to be done by only one processor (for example, open or write a file),
the associated instructions must be included inside a test on the value of irangp (generally it is
the processor 0 which realises these actions, and we want the subroutine to work in non-parallel
mode, too: if (irangp.le.0) then ...).

Some notes about periodicity

Note that periodic faces are not part of the domain boundary: periodicity is interpreted as a “geomet-
ric” condition rather than a classical boundary condition.

Some particular points should be reminded:
- Periodicity can also work when the periodic boundaries are meshed differently (periodicity of

non-conforming faces), except for the case of a 180 degree rotation periodicity with faces coupled
on the rotation axis.

- rotation periodicity is incompatible with

- semi-transparent radiation,
- reinforced velocity-pressure coupling (ipucou=1).
- although it has not been the case so far, potential problems might be met in the case of rotation

periodicity with the R;; —e (LRR) model. They would come from the way of taking into account
the orthotropic viscosity (however, this term usually has a low influence).

3.9.3.7 Geometry and particle arrays related to Lagrangian modelling

In this section is given a non-exhaustive list of the main variables which may be seen by the user
in the Lagrangian module. Most of them should not be modified by the user. They are calculated
automatically from the data. However it may be useful to know their meaning.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 44/201

These variables are listed in the alphabetical index in the end of this document.

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

SIZE OF THE LAGRANGIAN ARRAYS

1ndnod [i]: Size of the array icocel concerning the cells — faces connectivity (the faces — nodes
connectivity must be given to allow the construction of this connectivity. See note 3 of
section 3.9.3.1).

nbpmax [i]: Maximum number of particles simultaneously allowed in the calculation domain.

nvp [i]: Number of variables describing the particles for which a stochastic differential equation (SDE)
is solved.

nvls [i]: Number of variables describing the supplementary user particles for which a SDE is solved.
nvep [i|: Number of real state variables describing the particles.
nivep [i|: Number of integer state variables describing the particles.

ntersl [i|: Number of source terms representing the backward coupling of the dispersed phase on the
continuous phase.

nvlsta [i]: Number of volumetric statistical variables .

nvlsts [i]: Number of supplementary user volumetric statistical variables.

nusbor [i|: Number of supplementary user boundary statistical variables.

[i]
[i
nvisbr [i]: Number of boundary statistical variables.
[i
[il: Number of Gaussian random variables.

nvgaus

LAGRANGIAN ARRAYS

icocel(1ndnod) [ia]: Cells rightarrow internal/boundary faces connectivity. The numbers of the
boundary faces are marked out in icocel with a negative sign.

itycel(ncelet+1) [ia]: Array containing the position of the first face surrounding every cell in the
array icocel (see subroutine lagdeb for more details).

eptp(nvp,nbpmax) [ra]: Variables forming the state vector related to the particles: either at the
current stage if the Lagrangian scheme is a second-order, or at the current time step if the
scheme is a first-order. These variables are marked out by “pointers” whose value can vary
between 1 and nvp:

jmp: particle mass

jdp: particle diameter

jxp, jyp, jzp: particle coordinates

jup, jvp, jwp: particle velocity components

juf, jvf, jwf: locally undisturbed fluid flow velocity components
jtp, jtf: particle and locally undisturbed fluid flow temperature (°C)

jep: particle specific heat

N

jhp: coal particle temperature (°C)

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 45/201

— jmch: mass of reactive coal of the coal particle
— jmck: mass of coke of the coal particle

— jvls(ii): iith supplementary user variable

eptpa(nvp,nbpmax) [ral]: Variables forming the state vector related to the particles: either at the
previous stage if the Lagrangian scheme is a second-order, or at the previous time step if the
Lagrangian scheme is a first-order.

ipepa(nivep,nbpmax) [ia]: Integer variables related to the particles. They are marked out by the
following “pointers”:

— jisor: Number of the current cell containing the particle; this number is re-actualised during
the trajectography step

— jinch: Number of the coal particle

pepa(nvep,nbpmax) [ral: Real variables related to the particles. They are marked out by the following
“pointers”:

jrtsp: particle residence time
jrpoi: particle statistic weight
jrdck: coal particle shrinking core diameter

jrdOp: coal particle initial diameter

N

jrrop: coal particle initial density

indep(nbpmax) [ia]: Storage of the cell number of every particle at the beginning of a Lagrangian
iteration; this data is not modified during the iteration.

vitpar (nbpmax,3) [ra]: At the beginning of the trajectography, vitpar contains the particle velocity
vector components; the modifications of the particle velocity following every particle/bound-
ary interaction are saved in this array; after the trajectography and backward coupling steps,
eptp is updated with vitpar.

vitflu(nbpmax,3) [ra]: At the beginning of the trajectography, vitflu contains the locally undis-
turbed fluid flow velocity vector components; the modifications of the locally undisturbed
fluid flow velocity following every particle/boundary interaction are saved in this array; after
the trajectography and backward coupling steps, eptp is updated with vitflu.

gradpr (ncelet,3) [ra]: Pressure gradient of the continuous phase.

gradvf (ncelet,9) [ra]: Gradient of the continuous phase fluid velocity (useful if the complete model
is activated: see modcpl).

cpgdl (nbpmax) [ra]: First de-volatilisation term (light volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpgd2 (nbpmax) [ra]: Second devolatilisation term (heavy volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpght (nbpmax) [ra]: Heterogeneous combustion term of the coal particles (useful in the case of back-
ward coupling on the continuous phase).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 46/201

statis(ncelet,nvlsta) [ra]: Averages of the volumetric variables related to the dispersed phase

L el

They can be accessed by the following “pointers”:

ilvx,ilvy,ilvz: mean dispersed phase velocity

ilfv: dispersed phase volumetric concentration

ilpd: sum of the statistical weights

iltp: dispersed phase temperature (°C)

ildp: dispersed phase mean diameter

ilmp: dispersed phase mean mass

ilhp: temperature of the coal particle cloud (°C)

ilmch: mass of reactive coal of the coal particle cloud
ilmck: mass of coke of the coal particle cloud

ilmdk: shrinking core diameter of the coal particle cloud

ilvu(ii): iith supplementary user volumetric statistics

stativ(ncelet,nvlsta) [ra]: Variances of the volumetric variables related to the dispersed phase.

they can be accessed by using the same “pointers” as the ones used for the stativ array.

parbor (nfabor,nvisbr) [ra]: Boundary statistics related the dispersed phase; after every parti-

e

cle/boundary interaction it is possible to save some data and to calculate averages; the
boundary statistics are marked out by the following “pointers”:

inbr: number of particle/boundary interactions

iflm: particle mass flow at the boundary faces

iang: mean interaction angle with the boundary faces
ivit: mean interaction velocity with the boundary faces
ienc: mass of coal deposit at the walls

iusb(ii): iith supplementary user boundary statistics

tslagr(ncelet,ntersl) [ral: Source terms corresponding to the backward coupling of the dispersed

phase on the continuous phase. These source terms are marked out by the following “point-

”

ers’:

itsvx, itsvy, itsvz: explicit source terms for the continuous phase velocity

itsli: implicit source term for the continuous phase velocity and for the turbulent energy if the
k — e model is used

itske: explicit source term for the turbulent dissipation and the turbulent energy if the k — ¢
turbulence model is used for the continuous phase

itsrll, ... itsr33: source terms for the Reynolds stress and the turbulent dissipation if the
R;; — € turbulence model is used for the continuous phase

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 47/201

— itsmas: mass source term

— itste, itsti: explicit and implicit thermal source terms for the thermal scalar of the continuous
phase

— itsmvl(icha), itsmv2(icha): source terms respectively for the light and heavy volatile matters

— itsco: source term for the carbon released during heterogeneous combustion

croule(ncelet) [ral: Importance function for the technique of variance reduction (cloning/fusion of
particles).

vagaus (nbpmax,nvgaus) [ra]: Vectors of Gaussian random variables.

auxl (nbpmax,3) [ra]: Auxiliary work array.

3.9.3.8 Variables saved to allow calculation restarts

The directory checkpoint contains:

- main: main restart file,

- auxiliary: auxiliary restart file (see ileaux, iecaux),

- radiative_transfer: restart file for the radiation module,

- lagrangian: main restart file for the Lagrangian module,

- lagrangian stats: auxiliary restart file for the Lagrangian module (mainly for the statistics),
- 1dwall_module: restart file for the 1D wall thermal module,

- vortex: restart file for the vortex method (see ivrtex).

The main restart file contains the values in every cell of the mesh for pressure, velocity, turbulence
variables and all the scalars (user scalars et specific physics scalars. Its content is sufficient for a
calculation restart, but the complete continuity of the solution at restart is not ensured'.

The auxiliary restart file completes the main restart file to ensure solution continuity in the case of a
calculation restart. If the code cannot find one or several pieces of data required for the calculation
restart in the auxiliary restart file, default values are then used. This allows in particular to run
calculation restarts even if the number of faces has been modified (for instance in case of modification
of the mesh merging or of periodicity conditions!®). More precisely, the auxiliary restart file contains
the following data:

- type and value of the time step, turbulence model,
- density value at the cells and boundary faces, if it is variable,

- values at the cells of the other variable physical properties, when they are extrapolated in time
(molecular dynamic viscosity, turbulent or sub-grid scale viscosity, specific heat, scalar diffusiv-
ity). The specific heat is stored automatically for the Joule effect (in case the user should need it
at restart to calculate the temperature from the enthalpy before the new specific heat has been
estimated),

141n other words, a restart calculation of n time steps following a calculation of m time steps will not yield strictly the
same results as a direct calculation on m+n time steps, whereas it is the case when the auxiliary file is used
15 Imposing a periodicity changes boundary faces into internal faces

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 48/201

- time step value at the cells, if it is variable,

- mass flow value at the internal and boundary faces (at the last time step, and also at the previous
time step if required by the time scheme),

- boundary conditions,
- values at the cells of the source terms when they are extrapolated in time,
- number of time-averages, and values at the cells of the associated cumulated values,

- for each cell, distance to the wall when it is required (and index-number of the nearest boundary
face, depending on icdpar),

- values at the cells of the external forces in balance with a part of the pressure (hydrostatic, in
general),

- for the D3P gas combustion model: massic enthalpies and temperatures at entry, type of bound-
ary zones and entry indicators,

- for the EBU gas combustion model: temperature of the fresh gas, constant mixing rate (for the
models without mixing rate transport), types of boundary zones, entry indicators, temperatures
and mixing rates at entry,

- for the LWC gas combustion model: the boundaries of the probability density functions for
enthalpy and mixing rate, types of boundary zones, entry indicators, temperatures and mixing
rates at entry,

- for the pulverised coal combustion: coal density, types of boundary zones, variables ientat,
ientcp, inmoxy, timpat, x20 (in case of coupling with the Lagrangian module, iencp and x20
are not saved),

- for the pulverised fuel combustion: types of boundary zones, variables ientat, ientfl, inmoxy,
timpat, qimpat , qimpfl,

- for the electric module: the tuned potential difference dpot and, for the electric arcs module,
the tuning coefficient coejou (when the boundary conditions are tuned), the Joule source term
for the enthalpy (when the Joule effect is activated) and the Laplace forces (with the electric arc
module).

It should be noted that, if the auxiliary restart file is read, it is possible to run calculation restarts
with relaxation of the density'%(when it is variable), because this variable is stored in the restart file.
On the other hand, it is generally not possible to do the same with the other physical properties (they
are stored in the restart file only when they are extrapolated in time, or with the Joule effect for the
specific heat).

Apart from vortex which has a different structure and is always in text format, all the restart files
are binary files. Nonetheless, they may be dumped or compared using the cs_io_dump tool.

In the case of parallel calculations, it should be noted that all the processors will write their restart
data in the same files. Hence, for instance, there will always be one and only one main file, whatever
the number of processors used. The data in the file are written according to the initial full domain
ids for the cells, faces and nodes. This allows in particular to restart using p processors a calculation
begun with n processors, or to make the restart files independent of any mesh renumbering that may
be carried out in each domain.

WARNING: if the mesh is composed of several files, the order in which they appear in the launch script
or in the Graphical Interface must not be modified in case of a calculation restart'”.

16Such a relaxation only makes sense for a steady calculation
1"When uncertain, the user can check the saved copy of the launch script in the RESU directory, or the head of the
preprocessor*.log files, which repeat the command lines passed to the Preprocessor module

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 49/201

NOTE: when joining of faces or periodicity is used, two nodes closer than a certain (small) tolerance
will be merged. Hence, due to numerical round-up errors, two different machines may yield differ-
ent results. This might change the number of faces in the global domain'® and make restart files
incompatible. Should that problem arise when making a calculation restart on a different architec-
ture, the solution is to ignore the auziliary file and use only the main file, by setting ileauz = 0 in
cs_user_parameters. f90

3.9.4 Using selection criteria in user subroutines

In order to use selection criteria (cf. §3.10) in Fortran user subroutines, a collection of utility subrou-
tines is provided. The aim is to define a subset of the mesh, for example:

- boundary regions (cf. cs_user_boundary_conditions, usalcl, cs_user_radiative_transfer_bcs.f90,

uslag?2, ...),
- volume initialization (cf. cs_user_initialization, ...),
- head-loss region (cf. cs_user_head losses.f90),
- source terms region (cf. cs_user_source_terms),
- advanced post-processing (cf. cs_user_postprocess.c, cs_user_extra_operations,),
This section explains how to define surface or volume sections, in the form of lists 1stelt of nlelt
elements (internal faces, boundary faces or cells). For each type of element, the user calls the appro-

priate Fortran subroutine: getfbr for boundary faces, getfac for internal faces and getcel for cells.
All of these take the three following arguments:

- the character string which contains the selection criterion (see some examples below),
- the returned number of elements nlelt,

- the returned list of elements 1stelt.
Several examples of possible selections are given here:

- call getfbr(’Face_1, Face_2’, nlelt, lstelt) to select boundary faces in groups Face_1
or Face_2,

- call getfac(’4’, nlelt, lstelt) to select internal faces of color 4,

- call getfac(’not(4)’, nlelt, lstelt) to select internal faces which have a different color
than 4,

- call getfac(’4 to 8’, nlelt, lstelt) to internal faces with color between 4 and 8 internal
faces,

- call getcel(’1 or 27, nlelt, 1lstelt) to select cells with colors 1 or 2,

- call getfbr(’1 and y > 0’, nlelt, 1lstelt) to select boundary faces of color 1 which have
the coordinate Y > 0,

- call getfac(’normal[1l, 0, 0, 0.0001]’, nlelt, lstelt) to select internal faces which have
a normal direction to the vector (1,0,0),

- call getcel(’all[]’, nlelt, 1lstelt) to select all cells.

18The number of cells will not be modified, it is always the sum of the number of cells of the different meshes

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 50/201

The user may then use a loop on the selected elements.

For instance, in the subroutine cs_user_boundary_conditions used to impose boundary conditions,
let us consider the boundary faces of color number 2 and which have the coordinate X <= 0.01 (so
that call getfbr(’2 and x <= 0.01’, nlelt,lstelt)); we can do aloop (do ilelt = 1, nlelt)
and obtain ifac = lstelt(ilelt).

NOTE: LEGACY METHOD USING EXPLICIT FAMILIES AND PROPERTIES

The selection method for user subroutines by prior versions of Code_Saturne is still available, though
it may be removed in future versions. This method was better adapted to working with colors than
with groups, and is explained here:

From Code_Saturne’s point of view, all the references to mesh entities (boundary faces and volume
elements) correspond to a number (color number or negative of group number) associated with the
entity. An entity may have several references (for instance, one entity may have one color and belong
to several groups). In Code_Saturne, these references may be designated as “properties”.

The mesh entities are gathered in equivalence classes on the base of their properties. These equivalence
classes are called “families”. All the entities of one family have the same properties. In order to know
the properties (in particular the color) of an entity (a boundary face for example), the user must first
determine the family to which it belongs.

For instance, let’s consider a mesh whose boundary faces have all been given one color (for example
using SIMAIL). The family of the boundary face ifac is ifml=ifmfbr(ifac). The first (and only)
property of this family is the color icoul, obtained for the face ifac with icoul=iprfml(ifml,1).
In order to know the property number corresponding to a group, the utility function numgrp (nomgrp,
lngnom) (with a name nomgrp of the type character* and its length 1ngnom of the type integer)
can be used.

3.10 Face and cell mesh-defined properties and selection

The mesh entities may be referenced by the user during the mesh creation. These references may then
be used to mark out some mesh entities according to the need (specification of boundary conditions,
pressure drop zones, ...). The references are generally of one of the two following types:

e color. A color is an integer possibly associated with boundary faces and volume elements by
the mesh generator. Depending on the tool, this concept may have different names, which
Code_Saturne interprets as colors. Most tools allow only one color per face or element.

- I-deas uses a color number with a default of 7 (green) for elements, be they volume elements
or boundary “surface coating” elements. Color 11 (red) is used for for vertices, but vertex
properties are ignored by Code_Saturne.

- SIMAIL uses the equivalent notions of “reference” for element faces, and “subdomain”
for volume elements. By default, element faces are assigned no reference (0), and volume
elements domain 1.

- Gmsh uses “physical property” numbers.

- EnSight has no similar notion, but if several parts are present in an EnSight 6 file, or
several parts are present and vertex ids are given in an Ensight Gold file, the part number
is interpreted as a color number by the Preprocessor.

- The MED 2.3 model allowed integer “attributes”, though many tools working with this
format ignored those and only handle groups.

e groups. Named “groups” of mesh entities may also be used with many mesh generators or
formats. In some cases, a given cell or face may belong to multiple groups (as some tools allow
new groups to be defined by boolean operations on existing groups). In Code_Saturne, every
group is assigned a group number (base on alphabetical ordering of groups).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 51/201

- I-deas assigns a group number with each group, but by default, this number is just a
counter. Only the group name is considered by Code_Saturne (so that elements belonging to
two groups with identical names and different numbers are considered as belonging to the

same group).

- CGNS allows both for named boundary conditions and mesh sections. If present, boundary
condition names are interpreted as group names, and groups may also be defined based on
element section or zone names using additional Preprocessor options (-grp-cel or -grp-fac

followed by section or zone).

- Using the MED format, it is preferable to use “groups” than colors, as many tools ignore

the latter.

Selection criteria may be defined in a similar fashion whether using the GUI or in user subroutines.
Typically, a selection criteria is simply a string containing the required color numbers or group names,
possibly combined using boolean expressions. Simple geometric criteria are also possible.

A few examples are given below:

ENTRY
lor7
allfl]

3.1 >= z >= -2 or not (15 or entry)

range[04, 13, attribute]

sphere[0, O, O, 2] and (not no_groupl[])

Strings such as group names containing white-space or having names similar to reserved operators may
be protected using “escape characters”.!® More complex examples of strings with protected strings

are given here:

"First entry" or Wall\ or\ sym

entry or \plane or "noone’s output"

The following operators and syntaxes are allowed (fully capitalized versions of keywords are also al-
lowed, but mixed upper-case/lower-case versions are not):

escape characters
protect next character only:
protect string:

basic operators
priority:

not:

and:

or:

XOr:

general functions
select all:

entities having no group or color:
select a range of groups or colors:

\

’string’ "string"

allfl]

no_group []

range [first, last]

range [first, last, group]
range[first, last, attributel

For the range operator, first and last values are inclusive. For attribute (color) numbers, natural
integer value ordering is used, while for group names, alphabetical ordering is used. Note also that in
the bizarre (not recommended) case in which a mesh would contain for example both a color number

9Note that for defining a string in Fortran, double quotes are easier to use, as they do not conflict with Fortran’s
single quotes delimiting a string. In C, the converse is true. Also, in C, to define a string such as \plane, the string
\\plane must be used, as the first \ character is used by the compiler itself. Using the GUI, either notation is easy.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 52/201

15 and a group named “15”, using range[15, 15, group] or range[15, 15, attribute] could be
used to distinguish the two.

Geometric functions are also available. The coordinates considered are those of the cell or face centres.
Normals are of course usable only for face selections, not cell selections.

geometric functions

face normals: normallz, y, z, epsilon]
normal[z, y, z, epsilon = epsilon]

plane, ax + by + cz +d = 0 form: planela, b, ¢, d, epsilon]

planela, b, ¢, d, epsilon = epsilon]

planela, b, ¢, d, inside]

planela, b, ¢, d, outsidel

plane, normal + point in plane form: planeln,, ny, n., =, y, 2, epsilon]
planeln;, ny, n., =, y, 2, epsilon = epsilon]
planelng;, ny, n., =, y, 2, insidel
planelng;, ny, n., v, y, z, outside]

box, extents form: box [Tmins Ymins Zmins Tmazs Ymazs Zmazl
box, origin + axes form: box[xg, Yo, 20,
dey, dyy, dz1, dzo, dys, dzo, dxs, dys, dz3]
cylinder: cylinder[zg, yo, 20, 1, Y1, 21, radius]
sphere: spherelz., Y., 2., radius]
inequalities: > <, >=, <= associated with x, y, z or X, Y, Z keywords

and coordinate value;
Tmin <= X < Tmae type syntax is allowed.

In the current version of Code_Saturne, all selection criteria used are maintained in a list, so that
re-interpreting a criterion already encountered (such as at the previous time step) is avoided. Lists
of entities corresponding to a criteria containing no geometric functions are also saved in a compact
manner, so re-using a previously used selection should be very fast. For criteria containing geometric
functions, the full list of corresponding entities is not maintained, so each entity must be compared to
the criterion at each time step. Heavy use of many selection criteria containing geometric functions
may thus lead to reduced performance.

4 Importing and preprocessing meshes

Importing meshes is done by the Preprocessor module, while and preprocessing is done mainly by the
code Kernel (except for element orientation checking, which is done by the Preprocessor).

The Preprocessor module of Code_Saturne reads the mesh file(s) (under any supported format) and
translates the necessary information into a Kernel input file.

When multiple meshes are used, the Preprocessor is called once per mesh, and each resulting output
is added in a mesh_input directory (instead of a single mesh_input file).

The executable of the Preprocessor module is cs_preprocess, and is normally called through the
run script, so it is not in standard paths (it is at <prefix>/libexec/code_saturne/cs_preprocess).
Its most useful options and sub-options are described briefly here. To obtain a complete and up-
to-date list of options and environment variables, use the following command: cs_preprocess -h or
cs_preprocess ——help. Many options, such as this one, accept a short and a long version.

Nonetheless, it may be useful to call the Preprocessor manually in certain situations, especially for
frequent verification when building a mesh, so its use is described here. Verification may also be done
using the GUI or the mesh quality check mode of the general run script.

The Preprocessor is controlled using command-line arguments. A few environment variables allow
advanced users to modify some behaviours or to obtain a trace of memory management.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 53/201

4.1 Preprocessor options

Main choices are done using command-line options. For example:
cs_preprocess --num 2 fluid.med

means that we read the second mesh defined in the fluid.med file, while:
cs_preprocess --no-write --post-volume med fluid.msh

means that we read file f1luid.msh, and do not produce a mesh_input file, but do output a fluid.med
file (effectively converting a Gmsh file to a MED file).

4.1.1 Mesh selection

Any use of the preprocessor requires one mesh file (except for cs_preprocess and cs_preprocess -h
which respectively print the version number and list of options). This file is selected as the last
argument to cs_preprocess, and its format is usually automatically determined based on its extension
(c.f. 3.4.1 page 20) but a --format option allows forcing the format choice of the selected file.

For formats allowing multiple meshes in a single file, the ——num option followed by a strictly positive
integer allows selection of a specific mesh; by default, the first mesh is selected.

For meshes in CGNS format, we may in addition use the —-grp-cel or --grp-fac options, followed
by the section or zone keywords, to define additional groups of cell or faces based on the organization
of the mesh in sections or zones. The sub-options have no effect on meshes of other formats.

4.1.2 Post-processing output

By default, the Preprocessor does not generate any post-processor output. By adding --post-volume
[format], with the optional format argument being one of ensight, med, or cgns to the command-line
arguments, the output of the volume mesh to the default or indicated format is provoked.

In case of errors, output of error visualization output is always produced, and by adding --post-error
[format], the format of that output may be selected (from one of ensight, med, or cgns, assuming
MED and CGNS are available),

4.1.3 Element orientation correction

Correction of element orientation is possible and can be activated using the --reorient option.

Note that we cannot guarantee correction (or even detection) of a bad orientation in all cases. Not all
local numbering possibilities of elements are tested, as we focus on “usual” numbering permutations.
Moreover, the algorithms used may produce false positives or fail to find a correct renumbering in the
case of highly non convex elements. In this case, nothing may be done short of modifying the mesh,
as without a convexity hypothesis, it is not always possible to choose between two possible definitions
starting from a point set.

With a post-processing option such as -—post-error or, ——post-volume, visualizable meshes of cor-
rected elements as well as remaining badly oriented elements are generated.

4.2 Environment variables

Setting a few environment variables specific to the Preprocessor allows modifying its default be-
haviour. In general, if a given behaviour is modifiable through an environment variable rather than
by a command-line option, it has little interest for a non-developer, or its modification is potentially
hazardous. The environment variables used by the Preprocessor are described here:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 54/201

CS_RENUMBER
Deactivating renumbering is possible by setting CS_RENUMBER=o0ff.

CS_PREPROCESS_MEM_LOG

Allows defining a file name in which memory allocation, reallocation, and freeing is logged.

CS_PREPROCESS_MIN_EDGE_LEN

Under the indicated length (10! by default), an edge is considered to be degenerate and its vertices
will be merged after the transformation to descending connectivity. Degenerate edges and faces will
thus be removed. Hence, the post-processed element does not change, but the Kernel may handle a
prism where the preprocessor input contained a hexahedron with two identical vertex couples (and
thus a face of zero surface). If the Preprocessor does not print any information relative to this type of
correction, it means that it has not been necessary. To completely deactivate this automatic correction,
a negative value may be assigned to this environment variable.

CS_PREPROCESS_IGNORE_IDEAS_CO00_SYS

If this variable is defined and is a strictly positive integer, coordinate systems in I-deas universal format
files will be ignored. The behaviour of the Preprocessor will thus be the same as that of versions 1.0
and 1.1. Note that in any case, non Cartesian coordinate systems are not handled yet.

4.2.1 System environment variables

Some system environment variables may also modify the behaviour of the Preprocessor. For example,
if the Preprocessor was compiled with MED support on an architecture allowing shared (dynamic)
libraries, the LD_PRELOAD environment variable may be used to define a “prioritary” path to load MED
or HDF'5 libraries, thus allowing the user to experiment with other versions of these libraries without
recompiling the Preprocessor. To determine which shared libraries are used by an executable file, use
the following command: 1dd {executable path}.

4.3 Optional functionality

Some functions of the Preprocessor are based on external libraries, which may not always be available.
It is thus possible to configure and compile the Preprocessor so as not to use these libraries. When
running the Preprocessor, the supported options are printed. The following optional libraries may be
used:

e CGNS library. In its absence, CGNS format support is deactivated.
e MED-file library. In its absence, MED format is simply deactivated.

e 1ibCCMIO library. In its absence, CCM format is simply deactivated.

e Read compressed files using Zlib. With this option, it is possible to directly read mesh files
compressed with a gzip type algorithm and bearing a .gz extension. This is limited to formats
not already based on an external library (i.e. it is not usable with CGNS, MED, or CCM files),
and has memory and CPU time overhead, but may be practical. Without this library, files must
be uncompressed before use.

4.4 General remarks

Note that the Preprocessor is in general capable of reading all “classical” element types present in
mesh files (triangles, quadrangles, tetrahedra, pyramids, prisms, and hexahedra). Quadratic or cubic

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 55/201

elements are converted upon reading into their linear counterparts. Vertices referenced by no element
(isolated vertices or centres of higher-degree elements) are discarded. Meshes are read in the order
defined by the user and are appended, vertex and element indices being incremented appropriately. 2°

At this stage, volume elements are sorted by type, and the fluid domain post-processing output is
generated if required.

In general, groups assigned to vertices are ignored. selections are thus based on faces or cells. with
tools such as SIMAIL, faces of volume elements may be referenced directly, while with I-deas or
SALOME, a layer of surface elements bearing the required colors and groups must be added. Internally,
the Preprocessor always considers that a layer of surface elements is added (i.e. when reading a
SIMAIL mesh, additional faces are generated to bear cell face colors. When building the faces —
cells connectivity, all faces with the same topology are merged: the initial presence of two layers of
identical surface elements belonging to different groups would thus lead to a calculation mesh with
faces belonging to two groups).

4.5 Files passed to the Kernel

Data passed to the Kernel by the Preprocessor is transmitted using a binary file, using “big endian”
data representation, named mesh_input (or contained in a directory of that name).

When using the Preprocessor for mesh verification, data for the Kernel is not always needed. In this
case, the -—no-write option may avoid creating a Preprocessor output file.

4.6 Mesh preprocessing
4.6.1 Joining of non-conforming meshes

Conforming joining of possibly non-conforming meshes may be done by the solver, and defined either
using the Graphical User Interface (GUI) or the cs_user_join user function. In the GUI, the user must
add entries in the “Face joining” section of the “Meshes” tab in the item “Calculation environment
— Meshes selection”. The user may specify faces to be joined, and can also modify basic joining
parameters, see Figure6. For a simple mesh, it is rarely useful to specify strict face selection criteria, as
joining is sufficiently automated to detect which faces may actually be joined. For a more complex mesh,
or a mesh with thin walls which we want to avoid transforming into interior faces, it is recommended
to filter boundary faces that may be joined by using face selection criteria. This has the additional
advantage of reducing the number of faces to test for in the intersection/overlap search, and thus
reduced to the time required by the joining algorithm.

One may also modify tolerance criteria using 2 options:

fraction r assigns value r (where 0 < r < 0.49) to the maximum intersection distance
multiplier (0.1 by default). The maximum intersection distance for a given
vertex is based on the length of the shortest incident edge, multiplied by r.
The maximum intersection at a given point along an edge is interpolated from
that at its vertices, as shown on the left of Figure 7;

plane c assigns the maximum angle between normals for two faces to be considered
coplanar (25° by default); this parameter is used in the second stage of the
algorithm, to reconstruct conforming faces, as shown on the right of figure 7.

In practice, we are sometimes led to increase the maximum intersection distance multiplier to 0.2 or
even 0.3 when joining curved surfaces, so that all intersection are detected. As this influences merging
of vertices and thus simplification of reconstructed faces, but also deformation of “lateral” faces, it
is recommended only to modify it if necessary. As for the plane parameter, its use has only been
necessary on a few meshes up to now, and always in the sense of reducing the tolerance so that face
reconstruction does not try to generate faces from initial faces on different surfaces.

20possible entity labels are not maintained, as they would probably not be unique when appending multiple meshes.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 56,/201

3]
Meshes | Periodic Boundaries
|| Identity and paths

< B8 Calculation environment Mesh import

| @ Import meshes () Use existing mesh input
|4 Mesh quality criteria

b Thermophysical models Local mesh directory (opticnal)
P EJ Physical properties S
'3 “olume conditions /MESH] |’a. % .
b £ Boundary conditions = =
I Numerical parameters List of meshes
b Calculation control
b EJ Calculation management File name Format Reorient Path

sn _total.des Simail/NOPO O

outlet.des Simail/NOPO O

Lt/ =

Face joining (optional)
Fraction Plane Verbosity Visualization Selection criteria
01 25 1 2 4orlg

L+ =]
Subdivide warped faces

Max warp angle 0.01

[J Mesh smoothing

Figure 6: Conformal or non-conformal joining

4.6.2 Periodicity

Handling of periodicity is based on an extension of conforming joining, as shown on Figure 8. It is thus
not necessary for the periodic faces to be conforming (though it usually leads to better mesh quality).
All options relative to conforming joining of non-conforming faces also apply to periodicity. Note also
that once pre-processed, 2 periodic faces have the same orientation (possibly adjusted by periodicity
of rotation).

This operation can also be performed by the solver and specified either using the GUI or the
cs_user_periodicity function.

As with joining, it is recommended to filter boundary faces to process using a selection criterion. As
many periodicities may be built as desired, as long as boundary faces are present. Once a periodicity
is handled, faces having periodic matches do not appear as boundary faces, but as interior faces, and
are thus not available anymore for other periodicities.

4.6.3 Parameters for conforming or non-conforming mesh joinings

The setting of these parameters is done in the user subroutine cs_user_join (called once). The user
can specify the parameters used for the joining of different meshes. Below is given the list of the
standard parameters which can me modified:

- fract: the initial tolerance radius associated to each vertex is equal to the length of the shortest
incident edge, multiplied by this fraction,

- plane: when subdividing faces, 2 faces are considered coplanar and may be joined if the angle

Code_Saturne

EDF R&D

Code_Saturne version 4.0.5 practical user’s

guide

documentation
Page 57/201

Figure 7: Maximum intersection tolerance and faces normal angle

stage 1

stage 2

stage 3

duplicated and
7 translated faces |

selected faces

. N
N

4 N
\

__relation (origin)

periodic step

joined faces

~

N
~ . _duplicated and
non—joined faces
faces subdivided
based on their relation - - -
with joined faces
- =

joined faces -

relation (origin)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
relation (periodicity)

Figure 8: Matching of periodic faces

reconstructed face

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 58/201

between their unit normals (in degrees) does not exceed this parameter,

- iwarnj: the associated verbosity level (debug level if over 3).

In the call of the function cs_join_add, a selection criteria for mesh faces to be joined is specified.

The call to the function ’cs_join_set_advanced_param’ allows defining parameters not available through
the GUI.

The list of advanced modifiable parameters is given below:

- mtf: a merge tolerance factor, used to locally modify the tolerance associated to each vertex
before the merge step. Depending on its value, four scenarios are possible:
— if mtf = 0, no vertex merge

— if mtf < 1, the vertex merge is more strict. It may increase the number of tolerance
reduction and therefore define smaller subset of vertices to merge together but it can drive
to loose intersections.

— if mtf =1, no change occurs
— if mtf > 1, the vertex merge is less strict. The subset of vertices able to merge is greater.

- pmf: a pre-merge factor. This parameter is used to define a limit under which two vertices are
merged before the merge step,

- tcm: a tolerance computation mode. If its value is:
— 1 (default), the tolerance is the minimal edge length related to a vertex, multiplied by a
fraction.

— 2, the tolerance is computed like for 1 with, in addition, the multiplication by a coefficient
equal to the maximum between sin(el) and sin(e2); where el and e2 are two edges sharing
the same vertex V for which we want to compute the tolerance.

— 11, it is the same as 1 but taking into account only the selected faces.

— 12, it is the same as 2 but taking into account only the selected faces.
- icm: the intersection computation mode. If its value is:

— 1 (default), the original algorithm is used. Care should be taken to clip the intersection on
an extremity.

— 2, a new intersection algorithm is used. Caution should be used to avoid clipping the
intersection on an extremity.

- maxbrk: defines the maximum number of equivalence breaks which is enabled during the merge
step,

- maxsf: defines the maximum number of sub-faces used when splitting a selected face

The following are advanced parameters used in the search algorithm for face intersections between
selected faces (octree structure). They are useful in case of memory limitation:

- tml: the tree maximum level is the deepest level reachable during the tree building,

- tmb: the tree maximum boxes is the maximum number of bounding boxes (BB) which can be
linked to a leaf of the tree (not necessary true for the deepest level),

- tmr: the tree maximum ratio. The building of the tree structure stops when the number of
bounding boxes is superior to the product of tmr with the number of faces to locate. This is an
efficient parameter to reduce memory consumption.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 59/201

4.6.4 Parameters for periodicity

Periodicities can be set directly in the Graphical User Interface (GUI) or using the user function
cs_user_periodicity (called once during the calculation initialisation). In both cases, the user can
choose between 3 types of periodicities: translation, rotation, or mixed (see Figure9). Then specific
parameters must be set.

B & T
Meshes | Periodic Boundaries

|4 Identity and paths
Periodicity

= Calculation erwironment
L| Fraction Plane Verbosity Visualization Selection criteria
| 4 Mesh quality criteria

p Thermophysical models

P Physical properties

P 7 volume conditions

P [Particles and droplets tracking

b Boundary conditions

4 Numerical parameters

b [calculation control

p Calculation management

[+][-]

Type of definition for the selected periodicity

| composite periodicity (defined by matrix) 2

Transformation matrix (homogeneous coordinates)

my,; [1 l My [0 l My [0 l My, [0 l
My [0 l My [1 l May [0 l Myy [0 l
mas [0 | mas [0 | mas 2 | ma. [0 |

Figure 9: Periodicity

As periodicity is an extension of mesh joining, all parameters (whether basic or advanced) available for
mesh joining are also applicable for periodicity, in addition to the parameters defining the periodicity
transformation.

4.6.5 Modification of the mesh geometry

Functions called only once during the calculation initialisation.

The user function cs_user mesh_input allows a detailed selection of imported meshes read, reading
files multiple times, applying geometric transformations, and renaming groups.

The user function cs_user_mesh modify may be used for advanced modification of the main cs_mesh_t

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 60/201
structure.

WARNING: Caution must be exercised when wusing this function along with periodicity. Indeed, the
periodicity parameters are not updated accordingly, meaning that the periodicity may not be valid after
mesh vertex coordinates have changed. It is particularly true when one rescales the mesh. Rescaling
should thus be done in a separate run, before defining periodicity.

The user function cs_user _mesh _thinwall allows insertion of thin walls in the calculation mesh. Cur-
rently, this function simply transforms the selected internal faces into boundary faces, on which bound-
ary conditions can (and must) be applied.

Faces on each side of a thin wall will share the same vertices, so post-processing of the main volume
mesh may not show the inserted walls, though they will appear in the main boundary output mesh.

4.7 Mesh smoothing utilities

Function called once only during the calculation initialisation.

The smoothing utilities may be useful when the calculation mesh has local defects. The principle of
smoothers is to mitigate the local defects by averaging the mesh quality. This procedure can help for
calculation robustness or/and results quality.

The user function cs_user_mesh_smoothe allows to use different smoothing functions detailed below.

WARNING 1: Caution must be exercised when using this function along with periodicity. Indeed,
the periodicity parameters are not currently updated accordingly, meaning that the periodicity may be
unadapted after one changes the mesh vertex coordinates. It is particularly true when one rescales the
mesh. Rescaling should thus be done in a separate run, before defining periodicity.

WARNING 2: Caution must be exercised when using smoothing utilities because the geometry may be
modified. In order to preserve geometry, the function cs_mesh_smoother_fix by _feature allows to fix
by a feature angle criterion the mobility of boundary vertices.

4.7.1 Fix by feature

The vertex normals are defined by the average of the normals of the faces sharing the vertex. The
feature angle between a vertex and one of its adjacent faces is defined by the angle between the vertex
normal and the face normal.

This function sets a vertex if one of its feature angles is less than cos(f) where 0 is the maximum
feature angle (in degrees) defined by the user. In fact, if § = 0° all boundary vertices will be fixed,
and if # = 90° all boundary vertices will be free.

Fixing all boundary vertices ensures the geometry is preserved, but reduces the smoothing algorithm’s
effectiveness.

4.7.2 Warped faces smoother

The function cs_mesh_smoother_unwarp allows reducing face warping in the calculation mesh.

Be aware that, in some cases, this algorithm may degrade other mesh quality criteria.

5 Partitioning for parallel runs

Graph partitioning (using one of the optional METIS or SCOTCH libraries) is done by the Kernel.
Unless explicitly deactivated, this stage produces one or several “cell — domain” distribution files,
named domain number_p for a partitioning on p sub-domains, which may be read when starting a
subsequent computation so as to avoid re-running that stage. These files are placed in a directory

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 61/201

named partition_output.

The Kernel redistributes data read in mesh_input based on the associated (re-read or computed) par-
titioning, so there is no need to run any prior script when running on a different number of processors,
although a previous partitioning may optionally be re-used.

Without a graph-based partitioning library, or based on the user’s choice, the Kernel will use a built-in
partitioning using a space-filling curve (Z or Hilbert curve) technique. This usually leads to partition-
ings of lower quality than with graph partitioning, but parallel performance remains reasonable.

Partitioning options may be defined using the GUI or by calling the appropriate functions in the
cs_user_partition_options user function.

5.1 Partitioning stages

Partitioning is always done just after reading the mesh, unless a partitioning input file is available, in
which case the partitioning replaces this stage.

When a mesh modification implying a change of cell connectivity graph is expected, the mesh may be
repartitioned after the pre-processing stage, prior to calculation. By default, re-partitioning is only
done if the partitioning algorithm chosen for that stage is expected to produce different results due
to the connectivity change. This is the case for graph-based algorithms such as those of METIS or
ScoTCH, when mesh joining is defined, or additional periodic matching is defined (and the algorithm
is not configured to ignore periodicity information).

There are thus two possible partitioning stages:

e CS_PARTITION_FOR_PREPROCESS, which is optional, and occurs just after reading the mesh.

e CS_PARTITION_MAIN, which occurs just after reading the mesh if it is the only stage, or after mesh
preprocessing (and before computation), if the partitioning for preprocessing stage is activated.

The number of partitioning stages is determined automatically based on information provided through
cs_partition_set_preprocess_hints(), but repartitioning may also be forced or inhibited using the
cs_partition_set_preprocess() user function.

5.2 Partitioner choice

If the Kernel has been configured with both PT-ScoTcH or SCOTCH and PARMETIS or METIS libraries,
PT-ScorcH will be used by default?!, but the user may force the selection of another partitioning type
using either the GUI or user routines.

In addition to graph-based partitionings, a space-filling curve based algorithm is available, using either
a Morton (Z) or Peano-Hilbert curve, in the computation domain’s bounding box or bounding curve.

When partitioning for preprocessing, a space-filling curve is used, unless forced by calling
cs_partition_set_algorithm() with the appropriate algorithm choice for the
CS_PARTITION_FOR_PREPROCESS stage.

5.3 Effect of periodicity

By default, face periodicity relations are taken into account when building the “cell — cell” connectivity
graph used for partitioning. This allows better partitioning optimization, but increases the probability
of having groups of cells at opposite sides of the domain in a same sub-domain. This is not an issue for
standard calculations, but may degrade performance of search algorithms based on bounding boxes.
It is thus possible to ignore periodicity when partitioning a mesh.

21Though PARMETIS will be chosen before serial SCOTCH in a parallel run

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 62/201

Also, partitioning using a space-filling curve ignores periodicity.

Note that nothing guarantees that a graph partitioner will not place disjoint cells in the same sub-
domain independently of this option, but this behaviour is rare.

6 Basic modelling setup

6.1 Initialisation of the main parameters

This operation is done in the Graphical User Interface (GUI) or by using the user subroutines in
cs_user_parameters.f90. In the GUI, the initialisation is performed by filling the parameters dis-
played in FigurelO to 27. If the option 'Mobile mesh’ is activated in Figure 11, please see Section 8.11.4
for more details. The headings filled for the initialisation of the main parameters are the followings:

- Thermophysical model options: Steady or unsteady algorithm, specific physics, ALE mobile
mesh, turbulence model, thermal model and species transport (definition of the scalars and
their variances), see Figure 10 to Figure 14. If a thermal scalar, temperature or enthalpy, is
selected, two other headings on conjugate heat transfer and radiative transfers can be filled in
(see Figure 13).

- Physical properties: reference pressure, velocity and length, fluid properties (density, viscosity,
thermal conductivity, specific heat and scalar diffusivity), gravity, see Figure 15 to Figure 17. If
non-constant values are used for the fluid properties, and if the GUI is not used, the
cs_user_physical _properties file must be used, see § 6.5.1.

- Volume conditions: definition of volume regions (for initialisation, head losses and source terms,
see § 6.6 and § 6.7), initialisation of the variables (including scalars), Coriolis source term, see
Figure 18 and Figure 19.

- Boundary conditions: definition and parametrisation of boundary conditions for all variables
(including scalars). If the GUI is not used, the cs_user_boundary_conditions file must be used,
see § 6.4.

- Numerical parameters: number and type of time steps, and advanced parameters for the numer-
ical solution of the equations, see Figure 20 to Figure 22.

- Calculation control: parameters related to the time averages, the locations of the probes where
some variables will be monitored over time (if the GUT is not used, this information is specified in
8 6.3), the definition of the frequency of the outputs in the calculation listing, the post-processing
output writer frequency and format options, and the post-processing output meshes and variables
selection, see Figure 23, Figure 24, Figure 25, and Figure 26. The item “Profiles” allows to save,
with a frequency defined by the user, 1D profiles on a parametric curve define by its equation,
see Figure27.

With the GUI, the subroutine cs_user_parameters.f90 is only used to modify high-level parameters
which can not be managed by the interface. Without the GUI, this subroutine is compulsory and
some of the headings must be completed (see §3.2.1). cs_user_parameters.f90 is used to indicate the
value of different calculation basic parameters: constant and uniform physical values, parameters of
numerical schemes, input-output management...

It is called only during the calculation initialisation.

For more details about the different parameters, please refer to the key word list (§9).

cs_user_parameters.f90 is in fact constituted of 4 separate subroutines: usipph, usppmo, usipsu
and usipes. Each one controls various specific parameters. The keywords which are not featured
in the supplied example can be provided by the user in SRC/REFERENCE/base; in this case, under-
standing of the comments is required to add the keywords in the appropriate subroutine, it will

EDF R&D

Code_Saturne version 4.0.5 practical user’s

guide

Code_Saturne
documentation
Page 63/201

B ®

|4 Identity and paths
I £ calculation environment
= [Thermophysical models

B calculation features

|4 Deformable mesh
|4 Turbulence models
|4 Thermal model
|4 Radiative transfers
|4 conjugate heat transfer
L,!, Species transport
|4 Turbomachinery
[Physical properties
[volume conditions
[Boundary conditions
[Numerical parameters
[calculation contral
[calculation management

Steady/Unsteady flow algorithm

[unsteady flow

Eulerian-Lagrangian multi-phase treatment

[off =
Atmospheric flows

[off =
Gas combustion

[off s

Pulverized fuel combustion

[off 3
Electrical models
[off 2
Compressible model
[off el
Darcy madel
[off =

|| 1dentity and paths (]

b [calculation environment
= [Thermophysical models
| | calculation features

E Deformable mesh

|4 Turbulence medels

|4 Thermal model

|| species transport
e — >)
x
|| 1dentity and paths (4]

P £ calculation environment

v 5 Thermophysical models
L’] Calculation features
|| peformable mesh

B Turbulence models
|4 Thermal model
| | Species transport

Figure 10: Calculation features options

[J Mobile mesh (ALE method)

Figure 11: Mobile mesh option

Turbulence model

k-epsilon Linear Production

£33

Advanced options

Figure 12: Turbulence model selection

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 64/201

[E3]
- Thermal scalar
|| Identity and paths
|Temperature (Celsius) o

I Caleulation environment

~ Thermophysical models
|| Caleulation features
|_| Deformable mesh
|| Turbulence models

|4 Radiative transfers
| 4 Conjugate heat transfer
|| Species transport

— ~
[I B
Figure 13: Thermal scalar selection
£3]
Species transport
|_s Identity and paths
p Calculation environment Name Turbulent flux model
=[5 Thermophysical models temperature SGDH
Calculation features
Deformable mesh scalarl SGDH

Turbulence models
Thermal model
Radiative transfers
Conjugate heat transfer

Turbomachinery

ysical properties — ———
ume conditions | = || = |
Boundary conditions -
Numerical parameters
Ca
C

g D ()) [T () (109 [T [

! Variance of Species
lculation control

alculation management Variance Species_Name

VY VYV VYV
oooeem

variancel scalarl

+
a

Figure 14: Definition of the transported species/scalars

ensure that the value has been well defined. The modifiable parameters in each of the subroutines of
cs_user_parameters.f90 are:

e usipph: iturb, itherm and icavit (don’t modify these parameters anywhere else)

e usppmo: activation of specific physical models.

e usipsu: physical parameters of the calculation (thermal scalar, physical properties, ...), numerical
parameters (time steps, number of iterations, ...), definition of the time averages.

EDF R&D

Code_Saturne version 4.0.5 practical user’s

guide

Code_Saturne
documentation
Page 65/201

P £ calculation environment
P £ Thermophysical models
~ B9 Physical properties

| Fluid properties

| Gravity

Volume conditions
Boundary conditions
Numerical parameters

4=

> 8

g=|

b F calculation control
P

|| Identity and paths ke

Reference pressure

Reference velocity

Reference length

Reference value for total pressure |101325.0 Pa
Reference value for velocity mis

Reference length | Automatic c]

|'m

(used for initialization of turbulence)

I

[calculation management
@m P

Figure 15: Setting of the reference values for pressure, velocity and length

& ®

|4 Identity and paths
b [calculation environment
b £ Thermophysical models
Physical properties
|| Reference values
|| Gravity
b [volume conditions
b £ Boundary conditions
p Mumerical parameters
b £ calculation control
b [calculation management

Density
2
Reference value p |1.17862
Viscosity
E3
Reference value u |1.83e-05
Specific heat
(]

Reference value Cp

Thermal conductivity

1017.24

kgim?

Pas

JikgrE

| 1dentity and paths
P E3 calculation environment
b 3 Thermophysical models
~ Physical properties
|| Reference values
| Fluid properties

(B
Reference value 2 Wim/K
Diffusion coefficient of species
(2]
Figure 16: Fluid properties
Gravity
Ox [0‘0 l m/s?
9y [0‘0 l mjs?
9: [0‘0 l m/s?

Figure 17: Setting of the gravity

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 66,/201
@ =

Initialization
| Identity and paths
3 Calculation environment
b [Thermophysical models

volume zone | all_cells ¢ |

I [Physical properties by | & ‘
< [volume conditions p—
|4 Volume regions definition Thermal | @ ‘
= |
|4 Coriolis Source Terms Turbulence | Initialization by reference value(s) & \ %

I £ Boundary conditions p—
b D Numerical parameters Species \scalarl o | @ ‘
P [calculation control —
b [calculation management

Figure 18: Initialisation of variables

®
— Coriolis source terms
|4 Identity and paths
P Calculation environment Rotating vector Oy st
[» Thermophysical models
p Physical properties Rotating vector C), S
< B9 volume conditions
|4 Volume regions definition Rotating vector (2, 51
|| Initialization

"B I~
(<] 1 [

Figure 19: Setting of the Coriolis source term

[E5]
Global parameters
" dentity and paths Gradient calculation method:
P Caleulation environment
P EJ Thermophysical models |\terative handling of non-orthogonalities = |
I [Physical properties
b 3 volume conditions Pseudo-coupled velocity-pressure solver
b [Boundary conditions
- =y ical t Handling of transposed gradient and divergence
u=mer|ca persmeters - source terms in momentum equation
=
|_| Equation parameters Extrapolation of pressure gradient
|| Time step on domain boundary |Wl

b 3 calculation control
b [calculation management

Relaxation of pressure increase

Improved pressure interpolation in stratified flow O

Welocity-Pressure algorithm | SIMPLEC &

Figure 20: Global resolution parameters

e usipes: post-processing output parameters (periodicity, variable names, probe positions, ...)

For more details on the different parameters, see the list of keywords (§ 9). The names of the keywords
can also be seen in the help sections of the interface.

e When using the interface, only the additional parameters (which can not be defined in the interface)
should appear in cs_user_parameters.f90. The user needs then only to activate examples which are
useful for his case (replacing if (.false.) with if (.true.), or removing such tests).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 67/201
@ ®

Solver | Scheme | Clipping

|_4 Identity and paths
P [Calculation environment

- - Solver Maximum Solver Time Step
4 Thermophysical models Laze Choice lteration Number Precision Factor
irysieslipoperries Pressure Multigrid 10000 le-08
P [volume conditions
b B3 Boundary conditions Velocityx Automatic 10000 le-08
~ Numerical parameters Welocity Automatic 10000 le-08
(WiGlcballpaEnetens : Velocityz Automatic 10000 le-08
= 1 TurbEner Automatic 10000 le-0B8
|| Time step
[Calculation control Dissip Automatic 10000 le-08
b [caleulation management TempC Automatic 10000 1e-08 1
scalarl Automatic 10000 le-0B8 1
variancel Automatic 10000 le-08 1

Figure 21: Numerical parameters for the main variables resolution

[E3]
|4 Identity and paths) _

|4 Calculation environment Time step option | Constant ¢
I Thermophysical models
[Physical properties Reference time step 0.05 s
I Volume conditions
b Boundary conditions Number of iterations (restart included)
e Numerical parameters

|| clobal parameters

| i Equation parameters Option zero time step O

- |
> £ calculation control
b Calculation management
I

Figure 22: Time step settings

6.2 Selection of mesh inputs: cs user mesh input

Subroutine called only during the calculation initialisation.

This C function may be used to select which mesh input files are read, and apply optional coordinate
transformations or group renumberings to them. By default, the input read is a file or directory named
mesh_input, but if this function is used, any file can be selected, and the same file can be read multiple
times (applying a different coordinate transformation each time). All inputs read through this function
are automatically concatenated, and may be later joined using the mesh joining options.

Geometric transformations are defined using a homogeneous coordinates transformation matrix. Such
a matrix has 3 lines and 4 columns, with the first 3 columns describing a rotation/scaling factor,
and the last column describing a translation. A 4th line is implicit, containing zeroes off-diagonal,
and 1 on the diagonal. The advantages of this representation is that any rotation/translation/scaling
combination may be expressed by matrix multiplication, while simple rotations or translations may
still be defined easily.

6.3 Non-default variables initialisation

The non-default variables initialisation is performed in the subroutine cs_user_initialization (called
only during the calculation initialisation).

At the calculation beginning, the variables are initialised automatically by the code. Velocities and
scalars are set to 0 (or scamax or scamin if 0 is outside the acceptable scalar variation range), and the
turbulent variables are estimated from uref and almax.

EDF R&D

Code_Saturne version 4.0.5 practical user’s

guide

Code_Saturne

documentation
Page 68/201

@ =

| 4 Identity and paths
P 7 calculation environment
P £ Thermophysical models
b £ Physical properties
b £ volume conditions
P £ Boundary conditions
P EJ Numerical parameters
< B9 calculation control
|| output control
|} volume solution control
|| surface solution control
E] Profiles
b [calculation management

Time averages
Number Average name Start Time start Variables
1 Timefveragel 1 -1 <\elocity[2]=>
Add l [Delete l

Label of time average Timefveragel
Starting type iteration o3
Start iteration number
for time average calculation
If restart, number in preceding calculation |aL|t-'-mat\c - |
of the time average to use to initialize _ - ¥/
the current selected time average, :]

CourantMb Velocity[2]

FourierNb

Pressure

scalarl n

Tempk

total_pressure

\elocity[0]

Velocity[1]

\elocity[2]

e — >

Figure 23: Management of time averaged variables

|4 Identity and paths
I £ Calculation environment
P [Thermophysical models
b £ Physical properties
I £ volume conditions
b £ Boundary conditions
b D Numerical parameters
= [B5 Calculation control

|:| Time averages

B output control

|4 Volume solution control
| & surface solution control
| Profiles

I £ calculation management

Output Control | writer | Mesh

[Menitoring Points

Log frequency

[Output listing at each time step

a— B

Figure 24: Parameters of chronological logging options

For k (of variable index ik) in the k — ¢, R;; — ¢, v2f or k — w models:

and in R;; —e:

k:

1.5(0.02 ure:f)2

2
RZ’]‘ - §k5”

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide

Page 69/201

|4 Identity and paths
b [calculation environment
b [Thermophysical models
P [Physical properties
P EJ volume conditions
b [Boundary conditions
b Ej Mumerical parameters
< B9 Calculation control
D Time averages
|4 Volume solution contral
|4 Surface selution control
|4 Profiles
b [calculation management

| 1dentity and paths
b [calculation environment
P £ Thermophysical models
b £ Physical properties
P EJ volume conditions
b [Boundary conditions
P £ Numerical parameters
= B9 calculation control

E/ Time averages

B output control

| | volume solution control
|4 surface selution control
|4 Profiles

b [calculation management

Qutput Control | Writer ‘ Mesh I Menitering Points

Name [:]

results

Format Directory

EnSight postprocessing

Frequency

[+](=]

[Nu periodic output o]

Time-dependency

Options

format

Output at end of calculation

polygons | display <
polyhedra | display <

Figure 25: Management of postprocessing writers

Qutput Control { Writer | Mesh | Monitering Points

Name Id Type

Fluid demain | -

Boundary -2 boundaryfaces all[]

Selection Criteria

Variables

Associated Writers

Writer

results

E3(E

Figure 26: Management of postprocessing meshes

For ¢ (of variable index iep) in the k — ¢, R;; — ¢ or v2f models:

€ = k1‘5 CH
almax

For w (of variable index iomg) in the k — w model:

For ¢ and f (of variable indices iphi and ifb) in the v2f models:

6
([
O wlo

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 70/201
@=

Definition of 1D profiles

| 4 Identity and paths
b EJ calculation environment
b £ Thermophysical models profilel Velocity[2]
b £ Physical properties
b £ volume conditions
I £ Boundary conditions
I E3 Numerical parameters
< [calculation control
|| Time averages
|| Output control
|| Volume solution control

| | Surface solution control
B Profiles fdd

b £ calculation management

Filename Variables

Filename [prcﬁlel l Format [.csv Cl
Title [pruﬁle l
Output B [-
frequency [at the end of the calculation e l \ 1 \
Line Definition -

CourantMb welocity[2)

FourierNb

Pressure

scalarl

Tempk

total_pressure

Velocity[0]

velocity[1]

Mathematicallexpressionlediton

User expression = Predefined symbols | Examples |

#example: @ line segment

#(s5, the parameter 1s elways between 0 and 1)
x = 2% + 3.2;

y = 2:

2z = -0.5%s+5;

a)

Figure 27: Management of 1D profiles of the solution

For a (of variable index ial) in the EBRSM and BL-v2/k models:
a=1

For 7y in the Spalart-Allmaras model:
- 3
7, = 0.02 é(uref)(almax)

The subroutine cs_user_initialization allows if necessary to initialise certain variables to values
closer to their estimated final values, in order to obtain a faster convergence.

This subroutine allows also the user to make a non-standard initialisation of physical parameters
(density, viscosity, ...), to impose a local value of the time step, or to modify some parameters (time
step, variable specific heat, ...) in the case of a calculation restart.

NOTE: VALUE OF THE TIME STEP

- For calculations with constant and uniform time step (idtvar=0), the value of the time step is
dtref, given in the parametric file of the interface or in cs_user_parameters.f90.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 71/201

- For calculations with a non-constant time step (idtvar=1 or 2), which is not a calculation restart,
the value of dtref given in the parametric file of the interface or in cs_user_parameters.f90 is
used to initialise the time step.

- For calculations with a non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was different (for instance, restart using a variable time step of a calculation
run using a constant time step), the value of dtref, given in the parametric file of the interface
or in cs_user_parameters.f90, is used to initialise the time step.

- For calculations with non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was the same (for instance, restart with idtvar=1 of a calculation run
with idtvar=1), the time step is read from the restart file and the value of dtref given in the
parametric file of the interface, or in cs_user_parameters.f90, is not used.

It follows, that for a calculation with a non-constant time step (idtvar=1 or 2) which is a restart of a
calculation in which idtvar had the same value, dtref does not allow to modify the time step. The
user subroutine cs_user_initialization allows modifying the array dt which contains the value of
the time step read from the restart file (array whose size is ncelet, defined at the cell centres whatever
the chosen time step type is).

6.4 Manage boundary conditions

The boundary conditions can be specified in the Graphical User Interface (GUI) under the heading
“Boundary conditions” or in the user subroutine cs_user_boundary_conditions called every time
step. With the GUI, each region and the type of boundary condition associated to it are defined in
Figure 28. Then, the parameters of the boundary condition are specified in Figure 29. The colors of
the boundary faces may be read directly from a “listing” file created by the Preprocessor. This file
can be generated directly by the interface under the heading “Definition of boundary regions — Add
from Preprocessor listing — import groups and references from Preprocessor listing”, see Figure 28.

®
Definition of boundary regions
|4 Identity and paths
Caleulation environment
[Thermophysical models inlet 1 Inlet 1
Physical properties outlet 2 Outlet 34
Wolume conditions
Boundary conditions

Label | Zone| Nature selection criteria

qv~v~v~

symmetry | 3 Symmetry 8 or 9 or 28 or 29 or 38 or 39
wall 2 4 wall 20r3

T

=

|| Boundary conditions wall 3 5 wall 40r7or2lor22or23
P [Numerical parameters wall4 & wall 6 and Yol
P 3 calculation control

b [calculation management wall5 |7 |wal 6 and v<=1

a

| add || Delete |
Add from Preprocessor listing

Import groups and references from Preprocessorlisting {5

Figure 28: Definition of the boundary conditions

cs_user_boundary_conditions is the second compulsory subroutine for every calculation launched
without interface (except in the case of specific physics where the corresponding boundary condition
user subroutine must be used).

When using the interface, only complex boundary conditions (input profiles, conditions varying in
time, ...) need to be defined with cs_user_boundary_conditions. In the case of a calculation launched
without the interface, all the boundary conditions must appear in cs_user_boundary_conditions.

cs_user_boundary_conditions is essentially constituted of loops on boundary face subsets. Several
sequences of call getfbr (’criterion’, nlelt, lstelt) (cf. §3.9.4) allow selecting the boundary
faces with respect to their group(s), their color(s) or geometric criteria. If needed, geometric and

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

.
guide Page 72/201
5] Boundary conditions [~]
|4 1dentity and paths Label Zone Nature Selection criteria m
b [Calculation environment
B £ Thermophysical models outlet 2 outlet 34
P [Physical properties wall 2 4 wall 20r3
b [volume conditions wall 3 s wall 4or7 or2l or 22 or 23
< B Boundary conditions wall 4 6 wall 6 and Y=1
[Definition of boundary regions wall_5 7 wall 6 and Y<=1
B wall & 8 wall 310r33
b £ Numerical parameters wall 1) wall 24 and 0.1<=X and X>0.5
b [Calculation control
P [Ccalculation management
Velocity
[norm ¢] Lo | mis
Direction | specified coordinates
x v z
Turbulence
| calculation by hydraulic diameter ¢ |
s ey @
Thermal
Type |Prescribed value Sl
TempC| &
(ereclo) Value a0
Species
Type |Prescribed value s)|
|scalarl & |
st e

Figure 29: Parameters of the boundary conditions

physical variables are also available to the user. These allow him to select the boundary faces using
other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical and
computer documentation [11] of the subroutine condli (for wall conditions, see clptur) (to access
this document on a workstation, use code_saturne info --guide theory).

From the user point of view, the boundary conditions are fully defined by three arrays2?: itypfb(nfabor),
icodcl(nfabor,nvar) and rcodcl(nfabor,nvar,3).
- itypfb(ifac) defines the type of the face ifac (input, wall, ...).

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar on the face
ifac (Dirichlet, flux ...).

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet condition, of the flux ...).

In the case of standard boundary conditions (see §6.4.1), it is sufficient to complete itypfb(ifac)

and parts of the array rcodcl; the array icodcl and most of rcodcl are filled automatically. For
non-standard boundary conditions (see §6.4.2), the arrays icodcl and rcodcl must be fully completed.

6.4.1 Coding of standard boundary conditions

The standard keywords used by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib,
ifrent, ifresf, i_convective_inlet and iindef.

o If itypfb=ientre: inlet face.

22FExcept with Lagrangian boundary condition

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 73/201

— Zero-flux condition for pressure and Dirichlet condition for all other variables. The value
of the Dirichlet condition must be given in rcodcl(ifac,ivar,1) for every value of ivar,
except for ivar=ipr. The other values of rcodcl and icodcl are filled automatically.

o If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

— the eventual sliding wall velocity of the face is found in rcodcl(ifac,ivar,1) (ivar being
iu, iv or iw). The initial values of rcodcl(ifac,ivar,1) are zero for the three velocity
components (and therefore are to be specified only if the velocity is not equal to zero).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code only uses the projection of this velocity on the face. As a consequence, if the velocity
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

— For scalars, two kinds of boundary conditions can be defined:

~~ Imposed value at the wall. The user must write
icodcl(ifac,ivar)=>5
rcodcl(ifac,ivar,1)=imposed value

~~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=imposed flux value (depending on the variable, the user
may refer to the case icodc1=3 of § 6.4.2 for the flux definition).

~> If the user does not fill these arrays, the default condition is zero flux.
o If itypfb=iparug: rough solid wall face, impermeable and with friction.

— the eventual moving velocity of the wall tangent to the face is given by rcodcl (ifac,ivar,1)

(ivar being iu, iv or iw). The initial value of rcodcl(ifac,ivar,1) is zero for the three
velocity components (and therefore must be specified only in the case of the existence of a
slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

— The dynamic roughness must be specified in rcodcl(ifac,iu,3). The values of rcodcl (ifac,iv,3)

stores the thermal and scalar roughness. The values of rcodcl(ifac,iw,3) is not used.
— For scalars, two kinds of boundary conditions can be defined:
~> Imposed value at the wall. The user must write
icodcl(ifac,ivar)=6
rcodcl(ifac,ivar,1)=imposed value

~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)= imposed flux value (definition of the flux condition ac-
cording to the variable, the user can refer to the case icodc1=3 of the paragraph 6.4.2).
~~ If the user does not complete these arrays, the default condition is zero flux.

o If itypfb=isymet: symmetry face (or wall without friction).
— Nothing to be writen in icodcl and rcodcl.
o If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)
— The pressure is always treated with a Dirichlet condition, calculated with the constraint
o (0P
on \ Ot
calibration is always done on a single face, even if there are several outlets.

> = 0. The pressure is set to Py at the first isolib face met. The pressure

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 74/201

— If the mass flow is coming in, the velocity is set to zero and a Dirichlet condition for the
scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value has
been specified).

— If the mass flow is going out, zero-flux condition are set for the velocity, the scalars and the
turbulent quantities.

— Nothing is written in icodcl or rcodcl for the pressure or the velocity. An optional Dirichlet
condition can be specified for the scalars and turbulent quantities.

If itypfb=ifrent: free outlet, free inlet (based on Bernoulli relationship) face.

If itypfb=ifresf: free-surface boundary condition.

— if outlet, the equivalent to standard outlet. In case of ingoing flux, the Benoulli relationship
which links pressure and velocity is used (see the thory guide for more information). An
additional head loss modelling what is going on outward of the domain can be added by the
user.

If itypfb=i_convective_inlet: inlet with zero diffusive flux for all transported variables (species
and velocity). This allows to exactly impose the ingoing flux.

If itypfb=iindef: undefined type face (non-standard case).

— Coding is done in a non-standard way by filling both arrays rcodcl and icodcl (see § 6.4.2).

NOTES
e Whatever is the value of the indicator itypfb(ifac), if the array icodcl(ifac,ivar) is modified by
the user (i.e. filled with a non-zero value), the code will not use the default conditions for the variable
ivar at the face ifac. It will take into account only the values of icodcl and rcodcl provided by the
user (these arrays must then be fully completed, like in the non-standard case).
For instance, for a normal symmetry face where scalar 1 is associated with a Dirichlet condition equal
to 23.8 (with an infinite exchange coefficient):

itypfb(ifac)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8
(rcodcl(ifac,isca(1),2)=rinfin is the default value, therefore it is not necessary to specify a value)
The boundary conditions for the other variables are automatically defined.

e The user can define new types of boundary faces. He only must choose a value N and to fully specify
the boundary conditions (see §6.4.2). He must specify itypfb(ifac)=N where N range is 1 to ntypmx
(maximum number of boundary face types), and of course different from the values ientre, iparoi,
iparug, isymet, isolib and iindef (the values of these variables are given in the paramx module).
This allows to easily isolate some boundary faces, in order for instance to calculate balances.

6.4.2 Coding of non-standard boundary conditions

Ifa face does not correspond to a standard type, the user must completely fill the arrays itypfb,
icodcl and rcodcl. itypfb(ifac) is then equal to iindef or another value defined by the user (see
note at the end of § 6.4.1). The arrays icodcl and rcodcl must be filled as follows:

e If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

— rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates an
ideal transfer between the outside and the fluid (default case).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 75/201

— rcodcl(ifac,ivar,3) is not used.

— rcodcl(ifac,ivar,1) has the units of the variable ivar, i.e.:

$

m/s for the velocity

m?/s? for the Reynolds stress
m? /s for the dissipation

Pa for the pressure

°C for the temperature

J.kg~! for the enthalpy

°C? for temperature fluctuations

88 d g

~+ J2.kg—?2 for enthalpy fluctuations

— rcodcl(ifac,ivar,2) has the following units (defined in such way that when multiplying
the exchange coefficient by the variable, the given flux has the same units as the flux defined
below when icodcl=3):

~s kg.m™2.s71 for the velocity

~s kg.m™2.s71 for the Reynolds stress
~ s.m~! for the pressure

~ Wom~2.°C7! for the temperature
~s kg.m™2.s71 for the enthalpy

e If icodcl(ifac,ivar)=2: radiative outlet at the face ifac for the variable ivar. It reads

% +C (g—y = 0, where C' is a to be defined celerity of radiation.
n

— rcodcl(ifac,ivar,3) is not used.

— rcodcl(ifac,ivar,1) is the flux value of ivar at the cell center I’, projection of the center
of the adjacent cell on the straight line perpendicular to the boundary face and crossing its
center, at the previous time step. It corresponds to:

— rcodcl(ifac,ivar,2) is CFL number based on the parameter C, the distance to the bound-

Cdt
ary I' F and the time step: CFL = T

e If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

— rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:

~ —(Ar + CP%)ZT - for a temperature (in W/m?)

—(g—T + %)yh -n for an enthalpy (in W/m?).
P

H
(a2t
O+ 2
units of).

V- n in the case of another scalar ¢ (in kg.m=2.s71.[¢], where [¢] are the

~» —At VP -n for the pressure (in kg.m=2.s71).
~ —(p+ p)VU; - n for a velocity component (in kg.m~t.s72).
~ —uVR;; - n for a R;j tensor component (in W/m?).

e If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for velocity components (U - n = 0) and the R;; tensor
components (for other variables, a zero-flux condition type is usually used).

e If icodcl(ifac,ivar)=>5: friction condition, for wall faces with friction. This condition can not
be applied to the pressure.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 76,/201
~ For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-

culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and
rcodcl(ifac,iw,1)).

WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

For other scalars, the condition icodcl=5 is similar to icodcl=1, but with a wall exchange
coefficient calculated from a theoretical law. Therefore, the values of
rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) must be specified: see [11].

e If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be used with the pressure.

laard

For the velocity and (if necessary) the turbulent variables, the values at the wall are cal-
culated from theoretical profiles. In the case of a sliding wall, the three components of the
sliding velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and
rcodcl(ifac,iw,1)).

WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

The dynamic roughness height is given by rcodcl(ifac,iu,3) only.

For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

e If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition is only applicable
to velocity components.
If the mass flow at the face is negative, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is positive, the velocity at the face is set to zero (but not the mass
flow).

rcodcl is not used.

o If icodcl(ifac,ivar)=14: generalized symmetry boundary condition for vectors (Marangoni
effect for the velocity for instance). This condition is only applicable to vectors and set a Dirich-
let boundary condition on the normal component and a Neumann condition on the tangential
components.

If the three components are ivarl, ivar2, ivar3, the required values are:

5
R
R
5
5

—

rcodcl(ifac,ivaril,1): Dirichlet value in the z direction.
rcodcl(ifac,ivar2,1): Dirichlet value in the y direction.
rcodcl (ifac,ivar3,1): Dirichlet value in the z direction.
rcodcl(ifac,ivarl,3): flux value for the x direction.
rcodcl(ifac,ivar2,3): flux value for the y direction.

rcodcl(ifac,ivar3,3): flux value for the z direction.

Therefore, the code automatically computes the boundary condition to impose to the normal
and to the tangential components.

NOTE

e A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 77/201

outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodc1=3) for the other variables.

6.4.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:

e On each face, the boundary conditions of the three velocity components must belong to the same
type. The same is true for the components of the R;; tensor.

e If the boundary conditions for the velocity belong to the “sliding” type (icodcl=4), the conditions
for R;; must belong to the “symmetry” type (icodcl=4), and vice versa.

e If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
boundary conditions for the turbulent variables must belong to the “friction” type, too.

e If the boundary condition of a scalar belongs to the “friction” type, the boundary condition of the
velocity must belong to the “friction” type, too.

In case of mistakes, if the post-processing output is activated (which is the default setting), a special
error output, similar to the mesh format, is produced in order to help correcting boundary condition
definitions.

6.4.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. To ease this
kind of search, an array made of sorted faces is automatically filled (and updated at each time step):
itrifb(nfabor).
ifac=itrifb(i) is the number of the i'" face of type 1.
ifac=itrifb(i+n) is the number of the i*" face of type 2, if there are n faces of type 1.

. ete.

Two auxiliary arrays of size ntypmx are also defined.
idebty(ityp) is the index corresponding to the first face of type ityp in the array itrifb.
ifinty(ityp) is the index corresponding to the last face of type ityp in the array itrifb.

Therefore, a value ifacO found between idebty(ityp) and ifinty(ityp) is associated to each face
ifac of type ityp=itypfb(ifac), so that ifac=itrifb(ifac0).

If there is no face of type ityp, the code set
ifinty(ityp)=idebty(ityp)-1,

which enables to bypass, for all the missing ityp, the loops such as
do ii=idebty(ityp),ifinty(ityp).

The values of all these indicators are displayed at the beginning of the code execution listing.

6.4.5 Boundary conditions with LES
6.4.5.1 Vortex method

The subroutine usvort allows generating the unsteady inlet boundary conditions for the LES by the
vortex method. The method is based on the generation of vortices in the 2D inlet plane with help
from the pre-defined functions. The fluctuation normal to the inlet plane is generated by a Langevin
equation. It is in the subroutine usvort where the parameters of this method are given.

Subroutine called at each time step

To allow the application of the vortex method, an indicator must be informed of the method in the
user subroutine cs_user _parameters.f90 (ivrtex=1)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 78/201

The subroutine usvort contains 3 separate parts:

- The 1st part defines the number of inlets concerned with the vortex method (nnentt) and the
number of vortex for each inlet (nvort), where ient represents the number of inlets.

- The 2nd part (iappel=1) defines the boundary faces at which the vortex method is applicable.
The irepvo array is informed by ient which defines the number of inlets concerned with the
vortex (essentially, the vortex method can be applied with many independent inlets).

- The 3rd section defines the main parameters of the method at each inlet. With the complexity
of any given geometry, 4 cases are distinguished (the first 3 use the data file ficvor and in the
final case only 1 initial velocity and energy are imposed.):

* icas=1, For the outlet of a rectangular pipe; 1 boundary condition is defined for each side

of the rectangle taking into account their interaction with the vortex.

* icas=2, For the outlet of a circular pipe; the entry face is considered as a wall (as far as

interaction with the vortex is concerned)

* icas=3, For inlets of any geometry; no boundary conditions are defined at the inlet face

(i.e no specific treatment on the interaction between the vortex and the boundary)

* icas=4, similar to icas=3 except the data file is not used (ficvor); the outflow parameters

are estimated by the code from the global data (initial velocity, level of turbulence and
dissipation), information which is supplied by the user.

When the geometry allows, cases 1 and 2 are used. Case 4 is only used if it is not possible to use
the other three.

In the first 3 cases, the 2 base vectors in the plane of each inlet must be defined (vectors dirl
and dir2). The 3rd vector is automatically calculated by the code, defined as a product of dirl
and dir2. dirl and dir2 must be chosen imperatively to give (cen, dirl, dir2) an orthogonal
reference of the inlet plane and so dir3 is oriented in the entry domain. If icas=2, the cen
position must be the center of gravity of the rectangle or disc.

The reference points (cen, dirl, dir2, dir3) define the values of the variable in the ficvor file.
In the case where icas=4, the vectors dirl and dir2 are generated by the code.

If icas=1, the boundary conditions at the rectangle’s edges must be defined. They are defined
in the array iclvor. iclvor(ii,ient) represents the standard boundary conditions at the edge
IT (1<II<4) of the inlet ient. The code for the boundary conditions is as follows:

* iclvor=1 for a wall

* iclvor=2 for symmetry

* iclvor=3 for periodicity of translation (the face corresponding to periodicity will automat-

ically be taken as 3)

The 4 edges are numbered relative to the directions dirl and dir2 as shown in Figure 30:

If icas=1, the user must define 11x and 11y which give the lengths of the rectangular pipe in
the directions dirl and dir2.

If icas=2, 11d represents the diameter of the circular pipe. If icas=4, udebit, kdebit and
edebit are defined for each inlet, these give respectively, initial speed, turbulent energy level and
the dissipation level. These can be used to obtain their magnitude using the correlations in the
user routine cs_user_boundary_conditions for fully developed flow in a pipe.

The independent parameters are defined as follows:

* itmpl represents the indicator of the advancement in time of the vortex. If itmpli=I1, the

vortex will be regenerated after a fixed time of tmplim second (defined as itmpli=1). If
itmpli=2, following the data indicated in ficvor file, the vortex will have a variable life

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 79/201
LLZ

Figure 30: Numbering of the edges of a rectangular inlet(icas=1) treated by the vortex method

3

k2
span equal to 5C’H—U , where C, = 0.09 and k, € and U represent respectively, turbulent
€

energy, turbulent dissipation and the convective velocity in the direction normal to the inlet
plane.

xsgmvo represents the support functions used in the vortex method. These are represen-
tative of the eddy sizes entered in the vortex method. isgmvo is used to define their size:
if isgmvo=1, xsgmvo will be constant across the inlet face and is defined in usvort, if
isgmvo=2, xsgmvo will be variable and equal to the mixing length of the standard k — ¢

14
model (C’H% —2), if isgmvo=3, xsgmvo will be equal to the maximum of L; et Lx where L,
€

3

oU oU k.1 1
and L are the S oy Taylor and Kolmogrov coefficients (L1 = (5ug)§, Ly = 200(%)1).
Yy oy

idepvo gives the vortex displacement method in the 2D inlet plane (the vortex method is a
Lagrangian method in which the eddy centres are replaced by a set velocity). If idepvo=1,
the velocity displacement referred to by ud which is the vortex following a random sampling
(a sample number r, is taken for each vortex, at each time step and for each direction and
the center of the vortex is replaced by the 2 principal directions, rudAt where At is the
time step of the calculation). If idepvo=2, the vortex will be convected by itself (with the
speed given by the time step before the vortex method)

A data file, ficvor, must be defined in the cases of icas=1,2,3, for each inlet. The data file must
ou
ay
the integer ndat. x and y are the co-ordinates in the inlet plane defined by the vectors dirl and
dir2. U, k and ¢ are respectively, the average speed normal to the inlet, the turbulent energy

contain the following data in order (z, y, U, , k, €). The number of lines of the file is given by

and the turbulent dissipation. — is the derivative in the direction normal to the inlet boundary

0
in the cases, icas=1, icas=2. yVVhere icas=3 and icas=4 this variable is not applied (it is
given the value 0) so the Langevin equations, used to generate fluctuations normal to the inlet
plane, is de-activated (the fluctuations normal to the inlet is 0 on both these cases). Note that
the application of many different test of the Langevin equation doesn’t have a notable influence
on the results and that, by contrast it simply increases the computing time per iteration and
so it decreases the random sampling which slows down the pressure solver. The interpolation
used in the vortex method is defined by the function phidat. An example is given at the end
of the subroutine usvort where the user can define the interpolation required. In the phidat
function, xx and yy are the co-ordinates by which the value of phidat is calculated. xdat and
ydat are the co-ordinates in the ficvor file. vardat is the value of the phidat function with
the co-ordinates xdat and ydat (given in the ficvor file). Note that using an indicator iii

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 80/201

v/SEM

3.500e+00
1.750e+00
0.000e+00

-1.750e+00
-3.500¢+00

Figure 31: Illustration of the principle of the Synthetic Eddy Method, with S the inlet boundary, B
the virtual box and U, the advection velocity of the eddies

accelerates the calculations (the user need not modify or delete). The user must also define the
parameter isuivo which indicates if the vortex was started at 0 or if the file must be re-read
(ficmvo).

WARNING

e Be sure that the ficvor file and the interpolation in the user function phidat are compatible
(in particular that all the entry region is covered by ficvor)

o If the user wants to use a 1D profile in the dir2 direction, set x =0 in the ficvor file and define
the interpolation in phidat.

6.4.5.2 Synthetic Eddy Method

The user file cs_user_les_inflow.f90 allows to generate the unsteady boundary conditions for the
LES by the Synthetic Eddy Method. The basic principle of this method is illustrated in figure 31:
the turbulent fluctuations at the inlet are generated by a set of synthetic eddies advected across the
inlet boundaries. The eddies evolve in a virtual “box” surrounding the inlet boudaries and each of
them contributes to the normalized velocity fluctuations, depending on its relative position with the
inlet faces and on a form function characterizing the shape of the eddies. By this way, the Synthetic
Eddy Method provides a coherent flow with a target mean velocity and target Reynolds stresses at
LES inlet.

WARNING: As for laminar or RANS inlets, the type of boundary for LES inlets is ientre. It has
to be specified in the GUI or in the cs_user_boundary_conditions surboutine. On the contrary, if
Dirichlet values are given for these faces in the GUI or in the cs_user_boundary_conditions subroutine
(rcodcl(ifac,ivar,1) array), they are erased by those provided by the Synthetic Eddy Method.

In the current version of Code_Saturne, the Synthetic Eddy Method is not available through the GUI
but only through the cs_user_les_inflow.f90 user file. The user file contains 3 subroutines:

e cs_user_les_inflow_init (mandatory): global definition of synthetic turbulence inlets

e cs_user_les_inflow_define (mandatory): specific definition of each synthetic turbulence inlet

e cs_user_les_inflow_advanced (not mandatory): advanced definition of each synthetic turbu-
lence inlet

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 81/201

cs_user_les_inflow_init: this subroutine defines some global parameters shared by all LES inlets.
These parameters are:

e nent: number of LES inlet boundaries

e isuisy: in case of a restart calculation, it indicates if the synthetic turbulence is re-initialize (0)
or read from the previous calculation (1). In that case, the checkpoint folder must contain the
les_inflow restart file. This file is generated during a computation with synthetic turbulence,
at the same physical times as the main and auxiliary restart files.

cs_user_les_inflow_define: this subroutine defines the specific parameters of each LES inlet. These
parameters are:

e typent: type of LES inflow method. The Synthetic Eddy Method corresponds to typent=3. For
the sake of comparision, other methods can be selected through this user file (see remark 2).

e nelent: number of synthetic eddies in the “box”. This parameter might be adjusted, depending
on the case (in particular the size of the inlet plane and the level of turbulence). As a general rule,
the greater is the better since an insufficient number can lead to an intermittent signal while some
numerical tests have shown that this parameter does not have a great influence beyond a threshold
value. Given the inlet of size h? of a shear flow at a given Reynolds number Re = u,h/v, an
appropriate number of eddies can be evaluated by (Re/50)? (Re and 50 approximates respectively
the size, in wall unit, of the largest and the smallest synthetic eddy. Note the latter can depend
on the grid size, see remark 1).

e iverbo: level of verbosity in the listing. iverbo=1 provides mainly informations about the size
of the eddies and the size of the “box” surrounding the inlet boundary.

e nfbent and 1fbent: number and list of boundary faces composing the LES inlet boundary.

e vitent: reference mean velocity at inlet. This parameter imposes the target mean veloc-
ity at inlet. A finer (non homogeneous) definition of the mean velocity can be done in the
cs_user_les_inflow_advanced subroutine (see below).

e enrent: reference turbulence kinetic energy k at inlet. This parameter imposes the target
Reynolds stresses R;; at inlet, computed by R;; = %kéij (isotropy). A finer (non isotropic and/or
non homogeneous) definition of the Reynolds stresses can be done in the cs_user_les_inflow_advanced
subroutine (see below).

e dspent: reference dissipation rate € at inlet. This parameter is used to compute the size of the
synthetic eddies (see remark 1). A finer (non homogeneous) definition of the dissipation rate can
be done in the cs_user_les_inflow_advanced subroutine (see below).

cs_user_les_inflow_ advanced: this optional subroutine enables to give an accurate (non homoge-
neous) specification of inflow statistics: mean velocity (uvwent array), Reynolds stresses (rijent
array) and dissipation rate (epsent array). In that case, this accurate specification replaces the one
given in cs_user_les_inflow_define subroutine (vitent, enrent and dspent variables).

REMARK 1: The specification of the dissipation rate € at inlet is used to compute the size o; of the
synthetic eddies in the i cartesian direction. One has:

3p \3/2
UizmaX{C(QRZ),A}, C =0.5.

A is a reference size of the grid, in order to assume that all synthetic eddies are discretized. In the
implementation of Code_Saturne, it is computed at each inlet boundary face F as:

A =2 max {|x:/ —xﬂ}
i<3,Vey

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 82/201

with V the subset of the vertices of the boundary face F' and C the cell adjacent to F'.

REMARK 2: For the sake of comparison, others LES inflow methods are available through the
cs_user_les_inflow.f90 user file, in addition to the Synthetic Eddy Method:

e The Batten method corresponds to typent=2 in cs_user_les_inflow_define subroutine. With
this method, the inflow velocity signal is the superposition of several Fourier modes. The number
of modes is indicated through the nelent keyword. As for Synthetic Eddy Method, the mean
velocity, the turbulent kinetic energy and the dissipation rate have to be specified at inlet: either
giving their reference values (vitent, enrent and dspent) in the cs_user_les_inflow define
subroutine, either providing an accurate local description in the cs_user_les_inflow_advanced
subroutine.

e typent=1: turbulent fluctuations are given by a Gaussian noise. The mean velocity and Reynolds
stresses have to be specified (in cs_user_les_inflow_define or in cs_user_les_inflow_advanced).
The other parameters of the user subroutines are useless. The turbulent fluctuations provided
by this method are much less realistic than those provided by the Synthetic Eddy Method or
the Batten method. Especially for low Reynolds number flows, this could lead to the rapid
dissipation of this fluctuations and the laminarization of the flow.

e typent=0: No fluctuation. This method does not require any parameter. It should be reserved
to regions where the flow is laminar.

6.5 Manage the variable physical properties
6.5.1 Basic variable physical properties

When the fluid properties are not constant, the user is offered the choice to define the variation laws in
the Graphical User Interface (GUI) or in the subroutine cs_user_physical _properties which is called
at each time step. In the GUI, in the item “Fluid properties” under the heading “Physical properties”,
the variation laws are defined for the fluid density, viscosity, specific heat, thermal conductivity and
scalar diffusivity through the use of a formula editor, see Figure 32 and Figure 33.

If necessary, all the variation laws related to the fluid physical properties are written in the subroutine
cs_user_physical_properties.

The validity of the variation laws must be checked, particularly when non-linear laws are defined (for
instance, a third-degree polynomial law may produce negative density values).

WARNING

o If the user wishes to impose a variable density or variable viscosity in usphyv, it must be flagged
either in the interface or in cs_user_parameters.f90(irovar=1, ivivar=1).

e In order to impose a physical property (p, u, A, C,)?*, a reference value should be provided in

the interface or in cs_user_parameters.f90 (in particular for p, the pressure will be function of
p0gz)

e By default, the C), coefficient and the diffusivity for the scalars iscal (A7 for the temperature)
are considered as constant in time and uniform in space, with the values cp0 and vislsO(iscal)
specified in the interface or in cs_user_parameters.f90.

To assign a variable value to Cp, the user must specify it in the interface (with a user law)
or assign the value 1 to icp in cs_user_parameters.f90, and fill for each cell iel the array
propce(iel,ipccp) in cs_user_physical_properties. NB: completing the array

propce(iel,ipccp) while icp=0 induces array overwriting problems and produces wrong results.

23Except for some specific physics

EDF R&D Code_Saturne version 4.0.5 practical user’s

guide

Code_Saturne

documentation
Page 83/201

[E3]
Density
|4 ldentity and paths
P Calculation environment
b [Thermophysical models
~ B9 Physical properties
=
|| Reference values
|| Gravity
b 3 volume conditions
b £ Boundary conditions
P Mumerical parameters
P
b

constant | ¢ |
Reference value .
Viscosity

1.83e-05 Pas

\ constant | < |

Reference value

FJ calculation contral

Calculation management Specific heat

constant | £ |

Thermal conductivity

|c0nstant < |

Reference value 4 [0.02495 Wim/K

Diffusion coefficient of species

Name |scalarl ¢

1.17862 kg/m?

P
[
Reference value Cp |leg/K

\ constant & |

reference |1.83e-05 mi/s

Figure 32: Physical properties - Fluid properties

User expression | Predefined symbols | Examples

Denszity of air
density = 1.293* 273.15 / temperatute ;

density for mixtures of gases

1 —> ma fraction of component
n

LE]
Y2 —> mass fraction of component

[

rhol = 1.25051;

rho2 = 1.783Z;

A = Yl / rhol + (Y2 /rhol ;
density = 1.0 / 4;

Figure 33: Definition of a user law for the density

e In the same way, to have variable diffusivities for the scalars iscal, the user must specify it in
the interface (with a user law) or calling field set key_id(ivarfl(isca(iscal)), kivisl,
0) in cs_user_parameters.f90 (in usipsu), and complete for each cell iel the values array
of the field id ifcvsl returned by calling field get key_id(ivarfl(isca(iscal)), kivisl,

ifcvsl) in cs_user_physical properties.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 84/201

Note: The scalar diffusivity id must not be defined for user scalars representing the average
of the square of the fluctuations of another scalar, because the diffusivity of a user scalar jj
representing the average of the square of the fluctuations of a user scalar kk comes directly from
the diffusivity of this last scalar. In particular, the diffusivity of the scalar jj is variable if the
diffusivity of kk is variable.

6.5.2 Modification of the turbulent viscosity

The subroutine usvist is used to modify the calculation of the turbulent viscosity, i.e. p; in kg.m=!.s71
(this piece of information, at the mesh cell centres, is conveyed by the variable propce(iel,ipcvst),
with ipcvst = ipproc(ivisct)). The subroutine is called at the beginning of every time step, after
the calculation of the physical parameters of the flow and of the “conventional” value of u; correspond-
ing to the chosen turbulence model (indicator iturb).

WARNING: The calculation of the turbulent viscosity being a particularly sensible stage, a wrong use
of usvist may seriously distort the results.

6.5.3 Modification of the variable C' of the dynamic LES model

Subroutine called every time step in the case of LES with the dynamic model.

The subroutine ussmag is used to modify the calculation of the variable C' of the LES sub-grid scale
dynamic model.

It worth to recalling that the LES approach introduces the notion of filtering between large eddies and
small motions. The solved variables are said to be filtered in an “implicit” way. Sub-grid scale models
(“dynamic” models) introduce in addition an explicit filtering.

The notations used for the definition of the variable C' used in the dynamic models of Code_Saturne
are specified below. These notations are the ones assumed in the document [3], to which the user may
refer to for more details.

The value of a filtered by the explicit filter (of width i) is called @ and the value of « filtered by the
implicit filter (of width A) is called @. We define:

R
Sij = %(gxﬁ + 5z2) ISIl = 4/25;54;

ay =24 |[S|[Sy; By = —2B7)IS]/S; @)
Lij = wu; —uy My = o5y — Bij

In the framework of LES, the total viscosity (molecular + sub-grid) in kg.m=t.s71

Code_Saturne:

may be written in

Htotal = [+ Hsub-grid if Hsub-grid > 0
= pu otherwise (5)
. 72 <
with psub-gria = pCA™[[S]]

§ is the width of the implicit filter, defined at the cell £; by
A = XLESFL % (ALES x |Q;|)BLES

In the case of the Smagorinsky model (iturb=40), C is a constant which is worth C2. C? is the
so-called Smagorinsky constant and is stored in the variable csmago.

In the case of the dynamic model (iturb=41), C' is variable in time and in space. It is determined by
Mi;Lij

C=—.
My M

In practice, in order to increase the stability, the code does not use the value of C' obtained in each
cell, but an average with the values obtained in the neighbouring cells (this average uses the extended

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 85/201

neighbourhood and corresponds to the explicit filter). By default, the value calculated by the code is
o - M;;Lij
M My

The subroutine ussmag allows to modify this value. It is for example possible to calculate the local
average after having calculated the ratio

M, Lij
o = [MiLij]
|:Mklel

WARNING: The subroutine ussmag can be activated only when the dynamic model is used.

6.6 User source terms

Assume, for example, that the user source terms modify the equation of a variable ¢ in the following
way:

¢

ot

The example is valid for a velocity component, for a turbulent variable (k, ¢, R;;, w, ¢ or ?) and for
a scalar (or for the average of the square of the fluctuations of a scalar), because the syntax of all the
subroutines ustsnv, cs_user_turbulence_source_terms and ustssc in the cs_user_source_terms
file is similar.

+...:...+Simpl><<,0+sempl

In the finite volume formulation, the solved system is then modified as follows:

i$Y; n . .

(IOAt - QiSimpl,i) (@5— o)) b=t QS i™ + QSeap
K3

The user needs therefore to provide the following values:

crvimp; = Q;Simpl,i

crvexp, = ;Sexpi i

Q.
In practice, it is essential for the term ([Zt L QiSimpl,i> to be positive. To ensure this property, the
i

equation really taken into account by the code is the following:

i$2 . 1

<pit,l — Mln(QiSZ'mplyi; 0)) ((pz(-n+) — gogn)) +...=...4+ QiSimplyigOZ(n) + QiSexpl,i
3

To make the “implicitation” effective, the source term decomposition between the implicit and explicit

parts will be done by the user who must ensure that crvimp, = Q;S;mp1; is always negative (otherwise

the solved equation remains right, but there will not be “implicitation”).

WARNING: When the second-order in time is used along with the extrapolation of the source terms**,

it is no longer possible to test the sign of Simpi,i, because of coherence reasons (for more details, the
user may refer to the theoretical and computer documentation [11] of the subroutine preduv). The
user must therefore make sure it is always positive (or take the risk to affect the calculation stability).

PARTICULAR CASE OF A LINEARISED SOURCE TERM

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Consider an equation of the type:

dp
PE = F(¢)

24indicator isno2t for the velocity, isto2t for the turbulence and isso2t for the scalars

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 86,/201

To make it implicit using the following method:

Piki [m+1))\ _ (n) n+1))\)
At (%‘ 2) = O |F(yp;)‘*‘(%‘ 2)dw(%)
dF' (n) (n+1) (n)y _ AF () (n)
Y o Pl (Q; | F(o™)y — 22 (
d(p(tpl)X+ (ei ") d(p(%) X @
The user must therefore specify:
crvim Q dF((n))
vi =), —)
P; dg 2
crvexp, = {); F(%('))—d*(%(‘)) X‘Pz(')
'

FExample:

0
If the equation is pa—f = —K¢?, the user must set:

crvimp, = —2KQian(-n)

crvexp, = KQ;[p!™]?

6.6.1 In Navier-Stokes

The source term in Navier-Stokes can be filled in thanks to the GUI or the cs_user_source_terms user
file. Without the GUI, the subroutine ustsnv is used to add user source terms to the Navier-Stokes
equations (at each time step).

ustsnv is called only once per time step; for each cell iel, the vector crvexp(.,iel) (explicit part)
and the matrix crvimp(.,.,iel) (implicit part) must be filled in for the whole velocity vector.

6.6.2 For Lt and:«¢

Subroutine called every time step, for the k — e and the v2f models.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the turbulent dissipation €. This subroutine is
called every time step (the treatment of the two variables k and ¢ is made simultaneously). The user is
expected to provide the arrays crkimp and crkexp for k, and creimp and creexp for €. These arrays
are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine ustsnv. The
way of making implicit the resulting source terms is the same as the one presented in ustsnv. For ¢
and f in the v2f model, see cs_user_turbulence_source_terms, §6.6.4.

6.6.3 For R;; and ¢

Subroutine called every time step, for the R;; — e models.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the Reynolds stress variables R;; and to the turbulent dissipation ¢. This subroutine is
called 7 times every time step (once for each Reynolds stress component and once for the dissipation).
The user must provide the arrays crvimp and crvexp for the field variable of index f_id (referring
successively to ir1l, ir22, ir33, ir12, ir13, ir23 and iep). These arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. The method for impliciting
the resulting source terms is the same as that presented in ustsnv.

6.6.4 Forpand f

Subroutine called every time step, for the v2f models.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 87/201

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the variables ¢ and f of the v2f p-model. This subroutine is called twice every time
step (once for ¢ and once for f). The user is expected to provide the arrays crvimp and crvexp
for ivar referring successively to iphi and ifb. Concerning ¢, these arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsnv. Concerning f, the equation
is slightly different:

L2div(N(f)) = f+ .-+ Simpt X f + Seapi

In the finite volume formulation, the solved system is written as:

_ 1 —(n —(n
/ Z(f)(nﬂ)ds =72 (szf) +...+ QiSimpl,ifE = + Qisezpl,i)
a0, L;

K2

The user must then specify:
crvimp, = ;Simpl,i
crvexp, = 2 Sexpi i

The way of making implicit the resulting source terms is the same as the one presented in ustsnv.

6.6.5 For kandw

Subroutine called every time step, for the k — w SST model.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent kinetics energy k and to the specific dissipation rate w. This subroutine
is called every time step (the treatment of the two variables k and w is made simultaneously). The
user is expected to provide the arrays crkimp and crkexp for the variable k, and the arrays crwimp
and crwexp for the variable w. These arrays are similar to the arrays crvimp and crvexp given for
the velocity in the user subroutine ustsnv. The way of making implicit the resulting source terms is
the same as the one presented in ustsnv.

6.6.6 For 7,

Subroutine called every time step, or the Spalart-Allmaras model.

The subroutine cs_user_turbulence_source_terms is used to add source terms to the transport equa-
tions related to the turbulent viscosity vy for the Spalart-Allmaras model. This subroutine is called
every time step. The user is expected to provide the arrays crkimp and crkexp for the variable 7.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsnv. The way of making implicit the resulting source terms is the same as the one presented in
ustsnv.

6.6.7 For user scalars

Subroutine called every time step.

The source terms in the transport equations related to the user scalars (passive or not, average of the
square of the fluctuations of a scalar, ...) can be filled in thanks to the GUI or the cs_user_source_terms
user file. Without the GUI, the subroutine ustssc is used to add source terms to the transport equa-
tions related to the user scalars. In the same way as ustsnv, this subroutine is called every time step,
once for each user scalar. The user must provide the arrays crvimp and crvexp related to each scalar.
cvimp and crvexp must be set to 0 for the scalars on which it is not wished for the user source term
to be applied (the arrays are initially set to 0 at each inlet in the subroutine).

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 88/201

6.7 Pressure drops (head losses) and porosity
6.7.1 Head losses

Pressure drops can be defined in the Graphical User Interface (GUI) or in the subroutine cs_user_head_losses.f90
(called three times every time step). In the GUI, under the heading “Volume conditions”, the item

“Volume regions definition” allows to define areas where pressure drops occur, see an example in fig

34. The item “Head losses” allows to specify the head loss coefficients, see Figure 35. The tensor
representing the pressure drops is supposed to be symmetric and positive.

5]
Definition of volume regions
|4 Identity and paths
b £ calculation environment
I £ Thermophysical models all_cells |1 Initialization | all[]
B [Physical properties |
+ [volume conditions
=
|| Initialization
|| Head losses
|| Coriolis Source Terms
b [Boundary conditions
P £ Mumerical parameters
b [calculation contral Add Delete
b 7 calculation management

Label Zone Nature Selection criteria

Add from Preprocessor listing

Import groups and references from Preprocessor listing '_'D

Figure 34: Creation of head losses region

3]
Select volume zone for head losses
|4 Identity and paths
I [calculation environment
I £ Thermophysical models
I» £ Physical properties
= [volume conditions
|| Wolume regions definition
|_| Initialization Tensor coefficients

Label Zone Selection criteria

E Coriolis Source Terms Head losses coefficients: K= 0.5 ay|U|

P £ Boundary conditions e [20000.0 | on [20000.0 | oz [20000.0
> [Numerical parameters
3
[

3 calculation contraol

[J] Reference frame transformation matrix
[calculation management

Figure 35: Head losses coefficients

If necessary, the pressure drops are written in the subroutine cs_user_head_losses.f90.

e During the first call, all the cells are checked to know the number of cells in which a pressure
drop is present. This number is called ncepdp in cs_user_head losses.f90 (and corresponds
to ncepdc). It is used to lay out the arrays related to the pressure drops. If there is no pressure
drop, ncepdp must be equal to zero (it is the default value, and the rest of the subroutine is then
useless).

e During the second call, all the cells are checked again to complete the array icepdp whose size
is ncepdp. icepdc(ielpdc) is the number of the ielpdcth cell containing pressure drops.

e During the third call, all the cells containing pressure drops are checked in order to complete the
array containing the components of the tensor of pressure drops ckupdc (ncepdp,6). This array

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 89/201

is so that the equation related to the velocity may be written:

0
Pyl = v = pEpac - u
The tensor components are given in the following order (in the general reference frame): ki1,
k22, k33, k12, k23, k13 with k12, k23 and k13 being zero if the tensor is diagonal.

The three calls are made at every time step, so that variable pressure drop zones or values may be
treated.

6.7.2 Porosity

The management of the porosity is not yet available in the GUIL. To define the porosity, the user must
fill in the subroutine usporo and set the keyword iporos to 1 in the cs_user_parameters file. This
subroutine is called every time step.

When using the subroutine usporo, the user is expected to fill in the array porosi for each cell in
order to give the porosity.

6.8 Management of the mass sources

The subroutine cs_user_mass_source_terms is used to add a density source term in some cells of the
domain (called at each time step). The mass conservation equation is then modified as follows:
Ip

e + div(pu) =T

I is the mass source term expressed in kg.m™3.s71.

The presence of a mass source term modifies the evolution equation of the other variables, too. Let
¢ be any solved variable apart from the pressure (velocity component, turbulent energy, dissipation,
scalar, ...). Its evolution equation becomes:

9¢
— 4+ ...=... 4+ (p; —
P o (pi —)
@; is the value of ¢ associated with the mass entering or leaving the domain. After discretisation, the
equation may be written:

(p("-*-l) — (p(n)

= 4T(p— MY
P A7 + +T(pi — ")

For each variable ¢, there are two possibilities:

e We can consider that the mass is added (or removed) with the ambient value of . In this case
©; = ¢+ and the equation of ¢ is not modified.

e Or we can consider that the mass is added with an imposed value ; (this solution is physically
correct only when the mass is effectively added, I" > 0).

This subroutine is called three times every time step.

e During the first call, all the cells are checked to know the number of cells containing a mass
source term. This number is called ncesmp in cs_user_ mass_source_terms (and corresponds to
ncetsm). It is used to lay out the arrays related to the mass sources. If there is no mass source,
ncesmp must be equal to zero (it is the default value, and the rest of the subroutine is then
useless).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 90/201

e During the second call, all the cells are checked again to complete the array icetsm whose

th

dimension is ncesmp. icetsm(ieltsm) is the number of the ieltsm™ cell containing a mass

source.

e During the third call, all the cells containing mass sources are checked in order to complete the
arrays itypsm(ncesmp,nvar) and smacel (ncesmp,nvar):

th cell

- itypsm(ieltsm,ivar) is the flow type associated with the variable ivar in the ielstm
containing a mass source.
itypsm=0: ¢; = "1 condition
itypsm=1: imposed ¢, condition
itypsm is not used for ivar=ipr
- smacel(ieltsm,ipr) is the value of the mass source term I, in kg.m3.s71.
- smacel (ieltsm,ivar), for ivar different from ipr, is the value of ; for the variable ivar in

the ielstm™ cell containing a mass source.

NOTES

o If itypsm(ieltsm,ivar)=0, smacel(ieltsm,ivar) is not used.

e If '=smacel(ieltsm,ipr) <0, mass is removed from the system, and Code_Saturne considers
automatically a ¢; = (1) condition, whatever the values given to itypsm(ieltsm,ivar) and
smacel (ieltsm,ivar) (the extraction of a variable is done at ambient value).

The three calls are made every time step, so that variable mass source zones or values may be treated.

For the variance, do not take into account the scalar ¢; in the environment where ¢ # ¢; generates a
variance source.

6.9 User law editor of the GUI

A formula interpreter is embedded in Code_Saturne, which can be used through the GUI. In order to
call the formula editor of the GUI, click on the button:

The formula editor is a window with three tabs:

e User expression

This tab is the formula editor. At the opening of the window only the required symbols are dis-
played. The syntax colorization shows to the user symbols which are required symbols, functions,
or user variables. Each expression must be closed by a semicolon (“;”). The required symbols
must be present in the final user law. A syntax checker is used when the user clicks on the OK
button.

e Predefined symbols
There are three types of symbols

Useful functions:

cos: cosine
sin: sine

tan: tangent

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 91/201

User expression | Predefined symbols | Examples

Density of air
density = 1.293% 273.15 / temperature ;

density for mixtures of gases

¥1 —> mass fraction of componer

[

¥2 —» mass fraction of componen
= 1.25051;

rho2 = 1.783Z;

A= Y1 / rhol) + Y2 /thol) ;

density = 1.0 / A

Figure 36: Example of the user law editor

exp: exponential

sqrt: square root

log: Napierian logarithm

acos: arc cosine

asin: arc sine

atan(x): arc tangent (arc tangent of x in radians; the return value is in the range [-pi/2, pi/2])
atan2(y,x): arc tangent (arc tangent of y/x in radians; the return value is in the range [-pi, pi])
cosh: hyperbolic cosine

sinh: hyperbolic sine

tanh: hyperbolic tangent

abs: absolute value

mod: modulo

int: floor

min: minimum

max: maximum

interpld: 1D linear interpolation

Useful constants:
pi = 3.14159265358979323846
e = 2.718281828459045235

Operators and statements:
+ - * / A
! < > <= >= == = && |

while if else print

e Examples

This tab displays examples of formula, which could be copy and paste.

EDF R&D Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 92/201

External data

Through the predefined function interpid it is possible to use external data inside a user law. This
function allows to make linear interpolation from a data file (.dat or .csv) by selecting two columns
in this file for the abscissa and ordinate of a function. In a “.dat” data file, tabular values are stored
in plain-text form and are separated by a blank. In a comma-separated values (“.csv”) file, values are

“won

separated by a comma “,”. For both formats, lines beginning with “#” are considered as comments.

To use this function:
interpld(file.csv, i, j, x)

with:

e file.csv, the name of the file
e i, the column number for the abscissa
e j, the column number for the ordinate

e x, the number for which the linear interpolation is looked

The function return a linear interpolation for the x value if it is in the range of the abscissa definition,

or a linear extrapolation if it is out of this range.

NB: the abscissa value must be in the growing order.

7 Results analysis

7.1 Definition of post-processing and mesh zones

The functions defined in cs_user_postprocess.c, namely cs_user_postprocess_writers,
cs_user_postprocess_meshes, and cs_user_postprocess_activate allow for the definition of post-
processing output formats and frequency, and for the definition of surface or volume sections, in the
form of lists of nlfac internal faces (1stfac) and nlfab boundary faces (1stfab), or of nlcel cells
(1stcel), in order to generate chronological outputs in EnSight, MED or CGNS format.

One or several writers can be associated with each post-processing mesh, or “part” created. The

arguments of the function cs_post_define writer are as follows:

e writer_id: id of the associated writer.

negative ids are reserved (-1 for the main output), but the matching writer’s options may be

redefined by calls to this function.

e case_name: basic name of the associated case.

WARNING: depending on the chosen format, this name may be shortened (maximum number
of characters: 32 for MED, 19 for EnSight) or modified automatically (white-spaces or forbidden

characters will be replaced by ’_%)
e dir name: name of the output directory
e fmt_name: choice of the output format:

— EnSight Gold (EnSight also accepted)

— MED

— CGNS

— CCM (only for the full volume and boundary meshes)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 93/201

The options are not case-sensitive, so EnSight or CGNS are also valid.

e fmt_opts: character string containing a list of options related to the format, separated by com-
mas; for the EnSight Gold format, these options are:
— binary for a binary format version (for EnSight, default)
big-endian to force outputs to be in big-endian mode (for EnSight).
text for a text format version (for EnSight).
adf for ADF file type (for CGNS).
hdf5 for HDF5 file type (for CGNS, normally the default if HDF5 support is available).

discard_polygons to prevent from exporting faces with more than four edges (which may not
be recognized by some post-processing tools); such faces will therefore not appear in the
post-processing mesh.

L

— discard_polyhedra to prevent from exporting elements which are neither tetrahedra, prisms,
pyramids nor hexahedra (which may not be recognized by some post-processing tools); such
elements will therefore not appear in the post-processing mesh.

— divide_polygons to divide faces with more than four edges into triangles, so that any post-
processing tool can recognize them

— divide_polyhedra to divide elements which are neither tetrahedra, prisms, pyramids nor hex-
ahedra into simpler elements (tetrahedra and pyramids), so that any post-processing tool
can recognize them

— split_tensor to export the components of a tensor variable as a series of independent variables
(a variable is recognised as a tensor if its dimension is 6 or 9); not implemented yet.

e time_dep: indicates if the post-processing (i.e. visualization) meshes (or “parts”) are:

— FVM_WRITER FIXED MESH fixed (usual case)
— FVM_WRITER_TRANSIENT COORDS deformable (the vertex positions may vary over time)

— FVM_WRITER_TRANSIENT_CONNECT modifiable (the lists of cells or faces defining these meshes
can be changed over time).

e output_at_end: force output at calculation end if not 0

e frequency.n: default output frequency in time steps associated with this writer, or < 0 (the
output may be forced or prevented at any time step using the function
cs,user,postprocess,activate)

e frequency_t: default output frequency in seconds associated with this writer, or < 0 (has priority
over frequency_n, and the output may be forced or prevented at any time step using the function
cs_user_postprocess_act ivate)

In order to allow the user to add an output format to the main output format, or to add a mesh to the
default output, the lists of standard and user meshes and writers are not separated. Negative numbers
are reserved for the non-user items. For instance, the mesh numbers -1 and -2 correspond respectively
to the global mesh and to boundary faces, generated by default, and the writer -1 corresponds to the
default post-processing writer.

The user chooses the numbers corresponding to the post-processing meshes and writers he wants to
create. These numbers must be positive integers. It is possible to associate a user mesh with the
standard post-processing case (-1), or to ask for outputs regarding the boundary faces (-2) associated
with a user writer.

For safety, the output frequency and the possibility to modify the post-processing meshes are associated
with the writers rather than with the meshes. This logic avoids unwanted generation of inconsistent
post-processing outputs. For instance, EnSight would not be able to read a case in which one field is

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 94/201

output to a given part every 10 time steps, while another field is output to the same part every 200
time steps.

The possibility to modify a mesh over time is limited by the most restrictive writer which is as-
sociated with. For instance, if writer 1 allows the modification of the mesh topology (argument
time dep = FVM_WRITER_TRANSIENT CONNECT in the call to cs_post_define writer) and writer 2 al-
lows no modification (time_dep = FVM_WRITER FIXED MESH), a user post-processing mesh associated
with writers 1 and 2 will not be modifiable, but a mesh associated with writer 1 only will be mod-
ifiable. The modification can be done by using the advanced cs_post_define_volume_mesh_by_func()
or cs_post_define_surface_mesh_by_func(), associated with a user-defined selection function based on
time-varying criteria (such as field values being above a given threshold). If the time_dep argument is
set to true, the mesh will be redefined using the selection function at each output time step for every
modifiable mesh.

It is possible to output variables which are normally automatically output on the main volume or
boundary meshes to a user mesh which is a subset of one of these by setting the auto_variables
argument of one of the cs_post_define_... mesh to true.

It is also possible to define an alias of a post-processing mesh. An alias shares all the attributes of its
parent mesh (without duplication), except its number. This may be used to output different variables
on a same mesh with 2 different writers: the choice of output variables is based on the mesh, so if P, is
associated with writer W, all that is needed is to define an alias P, to P, and associate it with writer
W, to allow a different output variable selection with each writer. An alias may be created using the
pstalm subroutine.

Modification of a post-processing mesh or its alias over time is always limited by the most restrictive
"writer” to which its meshes have been associated (parts of the structures being shared in memory).
It is possible to define as many aliases as are required for a true mesh, but an alias cannot be defined
for another alias.

It is not possible to mix cells and faces in the same mesh (most of the post-processing tools being
perturbed by such a case)?®.

For a better understanding, the user may refer to the examples given in cs_user_postprocess_meshes.
We can note that the white-spaces in the beginning or in the end of the character strings given as
arguments of the functions called are suppressed automatically.

The additional variables to post-process on the defined meshes will be specified in the subroutine
usvpst in the cs_user_postprocess_var.f90 file.

WARNING In the parallel case, some meshes may not contain any local elements on a given processor.
This is not a problem at all, as long as the mesh is defined for all processors (empty or not). It would
in fact not be a good idea at all to define a post-processing mesh only if it contains local elements,
global operations on that mesh would become impossible, leading to probable deadlocks or crashes.

7.1.1 Management of the post-processing intermediate outputs

By default, a post-processing frequency is defined for each writer, as defined using the GUI or through
the cs_user_postprocess_writers function of the cs_user_postprocess.c file. For each writer, the
user may define if an output is automatically generated at the end of the calculation, even if the last
time step is not a multiple of the required time step number of physical time.

For finer control, the cs_user_postprocess_activate function of the cs_user_postprocess.c file
may be used to specify when post-processing outputs will be generated.

For example, a user who wants to generate post-processing outputs (also called “chronological out-
puts”) at the time step number 36 and around the physical time ¢=12 seconds may use the following

25 Actually, faces adjacent to selected cells and belonging to face or cell groups may be selected when the add_groups
of cs_post_define_... mesh is set to true, so as to maintain group information, but those faces will only be written for
formats supporting this (such as MED), and will only bear groups, not variable fields

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 95/201

test:

if (nt.max_abs == 36) { /* If the current time step is the 36" */,
int writer_id = 0; /* all writers. */
cs_post_activate writer (writer_id, false); /* activate writers. */

} /* End of the test on the physical time. */

7.2 Definition of the variables to post-process

For the mesh parts defined using the GUI or in cs_user_postprocess.c, the usvpst subroutine of
cs_user_postprocess_var.f90 file may be used to specify the variables to post-process (called for

each “part”, at every active time step of an associated “writer”, see cs_user_postprocess.c.
b b

The output of a given variable is generated by means of a call to the subroutine post_write_var,

whose arguments are:

e nummai: current “part” number (input argument in usvpst).

e namevr: name to give to the variable.

e idimt: dimension of the variable (3 for a vector, 1 for a scalar).
e ientla: indicates if the stored arrays are “interlaced” or not:

— 0: not interlaced, in the form {1, T2, ..., T, Y1, Y2, -, Yn, 215 225 - Zn }

— 1: interlaced, in the form {x1, y1, 21, %2, Y2, 22, s Try Yny Zn }
(case of the geometric parameters, like xyzcen, surfbo, ...).

For a scalar variable, this argument does not matter.

e ivarpr: indicates if the variable is defined on the “parent” mesh or locally:

— 0: variable generated by the user in the given work arrays tracel, trafac, and trafbr
(whose size is respectively the number of cells, internal faces and boundary faces of the
“part”, x3). The arrays lstcel, lstfac, and lstfbr can be used to get the numbers
corresponding to the cells, internal faces and boundary faces associated with the “part” and

to generate the appropriate post-processing variable.

— 1: variable already defined in the main mesh (“parent” mesh of the “parts”), for example
the solved variables. Instructions in the report which list 1stcel, 1stfac, and 1stfbrwill
be treated directly by the subroutine, thereby avoiding unused copies and simplifying the

code

e ntcabs: absolute current time step number. If a negative value is given (usually -1), the variable
will be regarded as time-independent (and we will have to make sure this call is only made once).

e ttcabs: current physical time value. It is not taken into account if ntcabs < 0.
e tracel: array containing the values of the variable at the cells.
e trafac: equivalent of tracel for the internal faces.

e trafbr: equivalent of tracel for the boundary faces.

The user may refer to the example, which presents the different ways of generating an output of a

variable.

Note: To generate outputs of different variables on the same mesh with different frequencies, it is
recommended to create an alias of this mesh and to associate it with a different “writer” using the GUI

or in cs_user_postprocess.c.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 96,/201

7.3 Modification of the variables at the end of a time step

The subroutine cs_user_extra operations is called at the end of every time step. It is used to print
of modify any variable at the end of every time step.

Several examples are given in the directory EXAMPLES:

- Calculation of a thermal balance at the boundaries and in the domain (including the mass source
terms)

- Modification of the temperature in a given area starting from a given time
- Extraction of a 1D profile (which is also possible with the GUI, see Figure 27)
- Printing of a moment

- Usage of utility subroutines in the case of a parallel calculation (calculation of a sum on the
processors, of a maximumn, ...)

WARNING: As all the variables (solved variables, physical properties, geometric parameters) can be
modified in this subroutine, a wrong use may distort totally the calculation.

The thermal balance example is particularly interesting.

- It can be easily adapted to another scalar (only three simple modifications to do, as indicated in
the subroutine).

- It shows how to make a sum on all the sub-domains in the framework of a parallel calculation
(see the calls to the subroutines par*).

- It shows the precautions to take before doing some operations in the framework of periodic or
parallel calculations (in particular when we want to calculate the gradient of a variable or to
have access to values at the neighbouring cells of a face).

- Finally it must not be forgotten that the resolution with temperature (and not enthalpy) as a
solved variable is questionable when the specific heat is not constant.

7.4 Non-standard management of the chronological record files

Both the interface and the subroutine cs_user_parameters.f£90 allow autonomous management of the
“automatic” chronological record files: position of the probes, printing frequency and related variables.
The results are written in a different file for each variable. These files are written in text (readable
by amgrace or gnuplot) or CSV format and contain the profiles corresponding to every probe. This
type of output format may not be well adapted if, for instance, the number of probes is too high.
The subroutine ushist, called at each time step, allows then to personalise the output format of the
chronological record files. The example in the directory works as follows:

- Positioning of the probes (only at the first passage): the index ii varies between 1 and the
number of probes. The coordinates xx, yy and zz of each probe are given. The subroutine
findpt gives then the number icapt(ii) of the cell center which is the closest to the defined
probe.

- Opening of the output files (only at the first pass): in the example, the program opens a different
file for all the nvar variables. ficush(j) contains the name of the T file and impush(j) its
unit number (impush is initialised by default so that the user has at his disposal specific unit

numbers and does not run the risk to overwrite an already open file).

EDF R&D

Code_Saturne version 4.0.5 practical user’s

guide

Code_Saturne
documentation
Page 97/201

- Writing to the files: in the version given as example, the program writes the time step number,
the physical time step (based on the standard time step in the case of a variable time step) and

the value of the selected variable at the different probes.

- Closing of the files (only at the last time step).

WARNING: The use of ushist neither erases nor replaces the parameters given in the interface or in
cs_user_parameters.f90. Therefore, in the case of the use of ushist, and to avoid the creation of
useless files, the user should set ncapt=0 in the interface or in cs_user_parameters.f90 to deactivate

the automatic production of chronological records.
In addition, ushist generates supplementary result files.

8 Advanced modelling setup

8.1 Use of a specific physics

Specific physics such as dispersed phase, atmospheric flows, gas combustion, pulverised fuel combustion,
electrical model and compressible model can be added by the user from the interface, or by using the
subroutine usppmo of the cs_user_parameters file (called only during the calculation initialisation).
With the interface, when a specific physics is activated in Figure 37, additional items or headings may

appear (see for instance Sections 8.6.4 and 8.2.0.1).

|4 Identity and paths
B [calculation environment
~ Thermophysical models
L
|4 Deformable mesh
|4 Turbulence models
|4 Thermal model
| 4 Radiative transfers
| 4 Conjugate heat transfer
|4 Species transport
| Turbamachinery
[J Physical properties
[volume conditions
[J Boundary conditions
[Numerical parameters
[calculation control
&

4
4
4
4
4
P Calculation management

When the interface is not used, usppmo is one of the three subroutines which must be obligatory

Steady/Unsteady flow algorithm

| unsteady flow

Eulerian-Lagrangian multi-phase treatment

|off s |
Atmospheric flows

|0ff < |
Gas combustion

| off |

Pulverized fuel combustion

[off o]
Electrical models
[off ¢
Compressible model
|off s |
Darcy model
[off ¢

Figure 37: Specific physics models selection

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 98/201

completed by the user in order to use a specific physics module (only heavy fuel combustion is not
available with the GUI). At the moment, Code_Saturne allows to use two “pulverised coal” modules
(with Lagrangian coupling or not) and one “pulverised heavy fuel” module, two “gas combustion”
modules, two “electrical” modules, a “compressible” module and an “atmospheric” module. To activate
one of these modules, the user must complete one (and only one) of the indicators ippmod(i... ..)
in the subroutine usppmo. By default, all the indicators ippmod(i.....) are initialised at -1, which
means that no specific physics is activated.

e Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod (icod3p)

— ippmod(icod3p) = 0 adiabatic conditions
— ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)

— ippmod(icod3p) =-1 module not activated
e Eddy Break Up pre-mixed flame: indicator ippmod (icoebu)

— ippmod(icoebu) = 0 adiabatic conditions at constant richness
— ippmod(icoebu) = 1 permeatic conditions at constant richness
— ippmod(icoebu) = 2 adiabatic conditions at variable richness

— ippmod(icoebu) = 3 permeatic conditions at variable richness

— ippmod(icoebu) =-1 module not activated
e Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

— ippmod(icolwc)=0 two peak model with adiabiatic conditions.
ippmod (icolwc)=1 two peak model with permeatic conditions.
ippmod (icolwc)=2 three peak model with adiabiatic conditions.
ippmod (icolwc)=3 three peak model with permeatic conditions.

ippmod (icolwc)=4 four peak model with adiabiatic conditions.

Ll Ll

ippmod (icolwc)=>5 four peak model with permeatic conditions.
— ippmod (icolwc)=-1 module not activated.
e Multi-coals and multi-classes pulverised coal combustion: indicator ippmod(iccoal) The number

of different coals must be less than or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be less than or equal to ncpcmx = 10.

— ippmod(iccoal) = 0 imbalance between the temperature of the continuous and the solid
phases
— ippmod(iccoal) = 1 otherwise

— ippmod(iccoal) =-1 module not activated
e Multi-classes pulverised heavy fuel combustion: indicator ippmod (icfuel)

— ippmod(icfuel) = 0 module activated
— ippmod(icfuel) =-1 module not activated
e Lagrangian modelling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod (icpl3c) The number of different coals must be less than or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be less than or equal to
ncpemx = 10.
— ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of Hs

— ippmod(icpl3c) =-1 module not activated

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 99/201

e Electric arcs module (Joule effect and Laplace forces): indicator ippmod (ielarc)
— ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)
— ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

— ippmod(ielarc) =-1 module not activated
e Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

— ippmod(ieljou) = 1 use of a real potential

— ippmod(ieljou) = 2 use of a complex potential

— ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.
4)

ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

— ippmod(ieljou) =-1 module not activated
e Compressible module: indicator ippmod (icompf)

— ippmod (icompf) = 0 module activated

— ippmod(icompf) =-1 module not activated
e Atmospheric flow module: indicator ippmod(iatmos)

— ippmod(iatmos) =-1 module not activated
— ippmod(iatmos) = 0 standard modelling

— ippmod(iatmos) = 1 dry atmosphere
4)

ippmod(iatmos) = 2 humid atmosphere

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modelling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default
value being 1). For more details, the user may refer to the following note (thermochemical files).

NOTE: THE THERMO-CHEMICAL FILES

The user must not forget to place in the directory DATA the thermochemical file dp _FCP.xml, dp_C3P,
dp-C3PSJ or dp-ELE (depending on the specific physics module he activated) Some example files are
placed in the directory DATA/REFERENCE at the creation of the study case. Their content is described
below.

e Example of file for the gas combustion:

— if the enthalpy-temperature conversion data base JANAF is used: dp_C3P (see array 1).

— if the user provides his own enthalpy-temperature tabulation (there must be three chemical
species and only one reaction): dp_-C3PSJ (see array 2). This file replaces dp_C3P.

e Example of file for the pulverised coal combustion: dp_-FCP.xml (see the example in the directory
DATA/REFERENCE, this file can be filled in thanks to the GUI).

o Example of file for the heavy fuel combustion: DP_FUE_new (see the example in DATA/REFERENCE).

e Example of file for the electric arcs: dp_ELE (see array 3).

EDF R&D

Code_Saturne version 4.0.5 practical user’s

Code_Saturne
documentation

guide Page 100/201
Lines| Examples of values Variables Observations
1 5 ngaze Number of current species
2 10 npo Number of points for the
enthalpy-temperature table
3 300. tmin Lower temperature limit
for the table
4 3000. tmax Upper temperature limi t
for the tabulation
5 Empty line
6 |CH4 02 CO2 H20 N2 nomcoe(ngaze) List of the current species
7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species
8 4 nato Number of elemental species
9 01210100 wmolat(nato), Molar mass of the elemental
10 00140020 species (first column)
11 01602210 atgaze(ngaze,nato) Composition of the current species
12 .01400002 as a function of the elemental species
(ngaze following columns)
13 3 ngazg Number of global species
Here, ngazg = 3 (Fuel, Oxidiser and Products)
14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) function of the current species of line 6
16 0. 0. 1. 2. 7.52 In the order: Fuel (line 15),
Oxidiser (line 16) and Product (line 17)
17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1
in this version)
18 igfuel(nrgaz), Numbers of the global species concerned by
12-1-9.5210.52 igoxy(nrgaz), the stoichiometric ratio
(first 2 integers)
stoeg(ngazg,nrgaz) Stoichiometry in global species reaction.
Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for
the products (here “Products”)

Table 1: Example of file for the gas combustion when JANAF is used: dp_C3P

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 101/201
Lines Examples of values Variables Observations
1 6 npo Number of tabulation points
2 50. -0.32E4-07 -0.22E4-06 -0.13E4-08
3 |250. -0.68E+06 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E407 0.14E+06 -0.13E408 | ehgazg(1l,npo),| mass enthalpies of fuel, oxidiser
5 650. 0.50E+07 0.33E+06 -0.12E+08 | ehgazg(2,npo), | and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 | ehgazg(3,npo) from line 2 to line npo+1
7 |1050. 0.11E+08 0.76E+06 -0.11E+08
8 .00219 .1387 .159 wmolg(1), Molar masses of fuel,
wmolg(2), oxidiser
wmolg(3) and products
9 11111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)
10 0.4 0.5 0.87 ckabsg(1), |Absorption coeflicients of the fuel,
ckabsg(2), oxidiser
ckabsg(3) and products
11 1. 2. xco2, xh20 Molar coefficients of C'O2
and H2O in the products
(using Modak radiation)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature

table (there must be three species and only one reaction): dp_C3PSJ (this file replaces dp_C3P)

Lines

Examples of values

Variables

Observations

1

Free format ASCII file ...

Free comment

Comment lines ...

Free comment

ST

Free comment

Argon propoerties ...

Free comment

.

Free comment

No of NGAZG and No ...

Free comment

NGAZG NPO ...

Free comment

0| | | O x| W N

1238 ngazg

npo

Number of given temperature points for
the tabulated physical properties
(npo < npot set in ppthch)
So there will be ngazg blocks of npo lines each

Number of species

Free comment

14

ixkabe

Radiation options for xkabe

15

Free comment

16

Propreties ...

Free comment

17

T H ..

Free comment

18

Temperature Enthalpy ...

Free comment

19

Free comment

20

K J/kg ...

Free comment

21

| Fe | [F | F 3 F| 23

Free comment

22

300. 14000. ...
h
roel
cpel
sigel
visel

xlabel
xkabel

In line tabulation of the physical properties
as a function of the temperature in Kelvin
for each of the ngazg species

Specific heat in J/(kg K)
Electric conductivity in Ohm/m
Dynamic viscosity in kg/(m s)
Thermal conductivity in W/(m K)
Absorption coefficient (radiation)

Enthalpy in J/kg
Density in kg/m3

Table 3: Example of file for the electric arcs module: dp_ELE

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 102/201

8.2 Pulverised coal and gas combustion module (needs update)
8.2.0.1 Initialisation of the variables

For coal combustion, it is possible to initialise the specific variables in the Graphical User Interface
(GUI) or in the subroutine cs_user_initialization. In the GUI, when a coal combustion physics
is selected in the item “Calculation features” under the heading “Thermophysical models”, an addi-
tional item appears: “Pulverized coal combustion”. In this item the user can define coal types, their
composition, the oxidant and reactions parameters, see Figure 38 to Figure 42.

@& —

Fuel | Oxidant B

|4 Identity and paths

P [calculation environment Fuel combustion
< [B3 Thermophysical models
|| Calculation features Name Type
|| Deformable mesh SclidFuel 2 coal Add

|| Turbulence models SolidFuel 1 coal

|_| Thermal model Delete
=

| 4 Radiative transfers

|_s Conjugate heat transfer
| = Species transport

Size distribution | Solid fuel | Devolatilisation | Char combustion = NOx formation

Classes

| Turbomachinery Diameter type |user define 3
P £ Physical properties
P [volume conditions class number Initial diameter (m)
P £ Boundary conditions Class 1 0,000122
P [Numerical parameters Class 2 0,000122

P £ calculation control
P [calculation management

Add

Delete

a m B [~]

Figure 38: Thermophysical models - Pulverized coal combustion, coal classes

If the user deals with gas combustion or if he (or she) does not want to use the GUI for coal combustion,
the subroutine cs_user_initialization must be used (only during the calculation initialisation).
In this section, “specific physics” will refer to gas combustion or to pulverised coal combustion.

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

It should be recalled again that the user can access the array of values of the variables as described
in the the doxygen documentation dedicated to the fields management. In the following description,
only variables indices ivar are given, but field indices can be retrieved easily by using ivarfl(ivar).

WARNING: in the case of a specific physics modelling, all the variables will be initialised here, even
the potential user scalars: cs_user_initialization is no longer used.

e in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate isca(ifm) in variable richness, the fresh gas mass fraction

EDF R&D

Code_Saturne

version 4.0.5 practical user’s

guide

Code_Saturne
documentation
Page 103/201

B®

[Identity and paths
b E calculation environment
+ [£3 Thermophysical models
|| calculation features
|| Deformable mesh
|4 Turbulence models
| Thermal model
B
| | Radiative transfers
| conjugate heat transfer
| Species transport
| Turbomachinery
Physical properties
Volume conditions
Boundary conditions

Size distribution | Solid fuel | Devolatilisation | Char combustion | NOx formation

Elementary analysis (refers to dry coal)
Mass content of C |70.9
Mass content of H
Mass content of 0 |10.8

Mass content of N

=
E I S

Mass content of §

Immediate analysis

velete

Heating model [LHV ¢[00]

=
&

B

Numerical parameters
Calculation control
Calculation management

=

Volatile matter

> By
>y
by
> By
[g=]
Py

Ed

Ash content

Moisture

o
»

solid fuel physical properties

Ashes physical properties

Enthalpy

Coke Elementary analysis (refers to dry)

=

Mass content of C |100.0
Mass content of H
Mass content of O

Mass content of N

® & R R R

Mass content of S

Figure 39: Pulverized coal combustion, coke

isca(iygfm) and the mixture enthalpy isca(iscalt) in permeatic conditions

e in the case of the rapid complete chemistry diffusion flame module, the user can initialise in every
cell iel: the mixing rate isca(ifm), its variance isca(ifp2m) and the mixture mass enthalpy
isca(iscalt) in permeatic conditions

e in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

— the transport variables related to the solid phase

isca(ixch(icla)) the reactive coal mass fraction related to the class icla (icla from
1 to nclacp which is the total number of classes, i.e. for all the coal type)

isca(ixck(icla)) the coke mass fraction related to the class icla

isca(inp(icla)) the number of particles related to class icla per kg of air-coal mix-
ture
isca(ih2(icla)) the mass enthalpy related to the class icla in permeatic conditions

— isca(iscalt) the mixture enthalpy

— the transport variables related to the gas phase

isca(ifim(icha)) the mean value of the tracer 1 representing the light volatile matters
released by the coal icha

isca(if2m(icha)) the mean value of the tracer 2 representing the heavy volatile mat-
ters released by the coal icha

isca(if3m) the mean value of the tracer 3 representing the carbon released as CO
during coke burnout

isca(if4p2m) the variance associated with the tracer 4 representing the air (the mean
value of this tracer is not transported, it can be deduced directly from the three others)

Code_Saturne
3 3 ’ documentation
EDF R&D Code_Saturne version 4.0.5 practical user’s
guide Page 104/201
® [veere | B
| Identity and paths Size distribution | Solid fuel | Devolatilisation | Char combustion = NOx formation
b E calculation environment
+ [£3 Thermophysical models Elementary analysis (refers to dry coal)
[} caleulation features Mass content of ¢ "
|} Deformable mesh
[Turbulence models Mass content of H % L
|4 Thermal model
B Mass content of O %
| | Radiative transfers
|] Conjugate heat transfer essleagtenteil e
Ll Species transport Mass content of § %
72 Turbomachinery
b E Physical properties . .
D [Ui et immediate analysis
b £ Boundary conditions Heating model [LHV ¢[00 kg [drybasis ¢
b EJ Numerical parameters
b £ Caleulation control Volatile matter %
3 Caleulati t
[calculation managemen s commer 0 w
solid fuel physical properties
Ashes physical properties

Coke Elementary analysis (refers to dry)

Mass content of C |100.0
Mass content of H
Mass content of O

Mass content of N

® & R R R

Mass content of S

Figure 40: Pulverized coal combustion, coal composition

isca(ifp3m) the variance associated with the tracer 3

8.2.1 Boundary conditions

In this section, “specific physics” refers to gas combustion or to pulverised coal combustion.

For coal combustion, it is possible to manage the boundary conditions in the Graphical User Interface
(GUT). When the coal combustion physics is selected in the heading “Thermophysical models”, specific
boundary conditions are activated for inlets, see Figure 43. The user fills for each type of coal previously
defined (see § 8.2.0.1) the initial temperature and initial composition of the inlet flow, as well as the
mass flow rate.

For gas combustion or if the GUI is not used for coal combustion, the use of cs_user_boundary_conditions
(called at every time step) is as mandatory as cs_user_parameters.f90 and usppmo to run a calcu-
lation involving specific physics. The way of using them is the same as using in the framework of
standard calculations, that is, run several loops on the boundary faces lists (cf. §3.9.4) marked out by
their colors, groups, or geometrical criterion, where the type of face, the type of boundary condition
for each variable and eventually the value of each variable are defined.

WARNING: In the case of a specific physics modelling, all the boundary conditions for every variable
must be defined here, even for the eventual user scalars: cs_user_boundary_conditions is not used
at all.

In the case of a specific physics modelling, a zone number izone 26 (for instance the color icoul) is

26jizone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at

2000 in pppvar;not to be modified

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 105/201
® —
Fuel | oxidant M
| Identity and paths
P caleulation environment Fielambustion
~ B9 Thermophysical models
|| calculation features Name Type
|| Deformable mesh SolidFuel 2 coal ‘ Add ‘

|4 Turbulence models

|_4 Thermal model | Delete |

= fChar combustion |
|| Radiative transfers Size distribution = Solid fuel | Devolatilisation | Char combustion | Nox formation

|_| Conjugate heat transfer R
|4 species transport
|4 Turbomachinery Pre-exponential constant kgim?/sfatm
B . Physical properties
b Ej Volume conditions Activation energy
P £ Boundary conditions
P . Numerical parameters
I £ calculation control
P £ calculation management

kcalfmol

Reaction order |o:s 2]

€02 Kinetics
€02 Kinetics
Pre-exponential constant kg/m?fs/atm*

actvation snergy kealmol

Reaction order |05 |

[] H20 Kineties

Figure 41: Pulverized coal combustion, reaction parameters

associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to cs_user_boundary_conditions, the main change from the user point of view
concerns the faces whose boundary conditions belong to the type itypfb=ientre:

o for the EBU pre-mixed flame module:

— the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas
indicator ientgf (izone)=1)

— for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,

- the user gives to the indicator iqimp(izone) the value 1,

- the mass flow value is set in qimp(izone) (positive value, in kgs—1)

- finally he imposes the velocity vector direction by giving the components of a di-
rection vector in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw)

WARNING:

- the variable qimp (izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axi-symmetric calculations, the inlet
surface of the mesh must be broken up)

- the variable qimp (izone) deals with the inflow across the area izoz and only across
this zone; it is recommended to pay attention to the boundary conditions.

- the velocity direction vector is neither necessarily normed, nor necessarily incoming.

- to impose a velocity, the user must give to the indicator iqimp (izone) the value 0 and
set the three velocity components (in m.sil) in rcodcl(ifac,iu), rcodcl(ifac,iv)
and rcodcl(ifac,iw)

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 106/201

4)

Fuel | Oxidant
|4 Identity and paths

b FJ calculation environment
~ B Thermophysical models
|| calculation features Oxidants caracterization
|| Deformable mesh
| Turbulence models
| Thermal model
1]
|| Radiative transfers
|J Conjugate heat transfer

[molar $

Oxidant

e 02 N2 Hz20 co2

| Species transport
| Turbomachinery

b EJ Physical properties

P £ volume conditions

b £ Boundary conditions

b EJ Numerical parameters

P E calculation control

b £ calculation management

Figure 42: Pulverized coal combustion, oxydant

finally he specifies for each gas inlet type the mixing rate fment (izone) and the temperature
tkent (izone) in Kelvin

e for the “3 points” diffusion flame module:

%

4)

%

the user can choose between the “oxidiser inlet” type marked out by ientox(izone)=1 and
the “fuel inlet” type marked out by ientfu(izone)=1

concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

finally, the user sets the temperatures tinoxy for each oxidiser inlet and tinfue, for each
fuel inlet

Note: In the standard version, only the cases with only one oxidising inlet type and one fuel
inlet type can be treated. In particular, there must be only one input temperature for the
ozidiser (tinozy) and one input temperature for the fuel (tinfuel).

e for the pulverised coal module:

%

the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat (izone)=1

in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat (izone),
its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and

rcodcl(ifac,iw) and if

incoming air temperature timpat (izone) in Kelvin. If the velocity is imposed, he must set
rcodcl(ifac,iu),

rcodcl(ifac,iv) and rcodcl(ifac,iw).

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 107/201

2] ==
Boundary conditions
|4 Identity and paths

P [calculation environment

P [Thermophysical models cold_inlet 1 inlet alll]
P [Physical properties
P [velume conditions

< [Boundary conditions
|_| Definition of boundary regi...

Label Zone Mature Selection criteria

wall 3 wall all[]
outlet 5 outlet all[]

=}
4 D Mumerical parameters

I [calculation control

P [calculation management

Flows and temperatures

oxydant and coal &

Mass flow rate and temperature for oxydant

norm o] 1.0 m/s y
Oxydant number |1 "\ Temperature |1273.15 K

Direction

normal to the inlet &

Mass flow rate and temperature of coals

Coal number Flow (kg/s) Temp(e;jature
Coal 1 1 127315
Coal 2 1 127315

Ratio of mass distribution for each class of coal
Coall Coal 2
Class 1

Class 2 | 70

[

Figure 43: Boundary conditions for the combustion of coal

— if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)
the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

8.2.2 Initialisation of the options of the variables

In the case of coal combustion, time averages, chronological records and listings follow-ups can be set
in the Graphical User Interface (GUI) or in the subroutines cs_user_combustion. In the GUI, under
the heading “Calculation control”, additional variables appear in the list in the items “Time averages”
and “Profiles”, as well as in the item Volume solution control”, see Figure 44 and Figure 45.

In this section, “specific physics” refers to gas combustion or pulverised coal combustion.

For gas combustion or if the GUI is not used for coal combustion, the 3 subroutines cs_user_combustion
can be used to complete cs_user_parameters.f90 for the considered specific physics. These subrou-
tines are called at the calculation start. They allow to:

e activate, for the variables which are specific to the activated specific physics module, chronolog-
ical records at the probes defined in cs_user_parameters.f90 (indicators ihisvr (ipp)).
Concerning the main variables (velocity, pressure, etc ...) the user must still complete cs_user_parameters.f90
if he wants to get chronological records, printings in the listing or chronological outputs. The
variables which can be activated by the user for each specific physics are listed below. The solved

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 108/201

@ ®

Time averages

|4 Identity and paths
b [caleulation environment
b [Thermophysical models TimeAverage2 - <rho_p_02* _p_02>
b [Physical properties
b . volume conditions
b [Boundary conditions
b £ Numerical parameters
Calculation control
|| output control
|| Volume solution control

[0} surface solution control
 Profies
P [calculation management
Label of time average TimeAverage2

Starting type iteration o3

Start iteration number
for time average calculation 10000

If restart, number in preceding calculation ‘ -
of the time average to use to initialize
the current selected time average. ‘7|

Number | Average name Start Time start Variables

ym_chxlm L rho_p_02
ym_chx2m t_p 02
ym_co

==
3‘3
3's
=
@

<[]

a B

Figure 44: Calculation control - Time averages

®
Solution control
|3 E ?ajzsllt;’tir:wdaﬁ\itlr;nmant Qutput label Internal name ntin Lost; Probes =
4 Thermophysical models listing e
b [Physical properties _m_transfer_vl_p_uz m_transfer_vl_p_02 1234
P £ volume conditions m_transfer vl_p_03 m_transfer vl_p_03 1234
> [Boundary conditions 7m_transfer_v1_p_04 m_transfer_vl_p_04 1234
i Ezrjlzlenp:;i:;tem :m_transfer_v2_p_ul m_transfer_v2_p_01 1234
[} Time averages | m_transfer vz p 02 m_transfer v2_p 02 1234
|_| Output control m_transfer_v2_p_03 m_transfer_v2_p_03 1234
| m_transfer v2_p_04 m_transfer_v2_p_04 1234
|| surface solution control -
7] Profiles | rho_gas rho_gas 1234
P £ calculation management rho_p_01 rho_p_01 1234
-rhu_p_UZ tho_p_02 1234
| rho_p_03 rho_p_03 1234
7rhu_p_[]4 tho_p_04 1234
-t_gas t_gas 1234
|tpo1 t_p_0L 1234
7t_p_02 t_p_02 1234
-t_p_DS t_p_03 1234
| t.p 04 t_p_04 1234
7x_cartmne ®_carbone 1234 L
-x_hydmgen ®_hydrogen 1234
-xioxygen X_oxygen 1234
7)<_p_Dl ¥_p_01 1234
-x_p_DZ ¥_p_02 1234
-xip703 X_p_03 1234
7x_p_04 ¥ p_04 1234 [
| wm ¥m 1234
-ymichxlm ym_chxlm 1234
7vm chx2m ym chx2m 1234 [~
[B

Figure 45: Calculation control - Volume solution control

variables (of variable indices ivar) and the properties of indices iprop (defined at the cell iel
by propce(iel,ipproc(iprop))) are listed below:

— EBU pre-mixed flame modelling:

- Solved variables

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 109/201
ivar = isca(iygfm) fresh gas mass fraction
ivar = isca(ifm) mixing rate

ivar = isca(ihm) enthalpy, if transported
- Properties propce(iel,ipproc(iprop))

iprop = itemp temperature

iprop = iym(1) fuel mass fraction

iprop = iym(2) oxidiser mass fraction

iprop = iym(3) product mass fraction

iprop = ickabs absorption coefficient, when the radiation modelling is activated

iprop = it3m and it4m “T” and “T"*” terms, when the radiation modelling is acti-
vated

— rapid complete chemistry diffusion flame modelling:

everything is identical to the “EBU” case, except the fresh gas mass fraction which is

replaced by the variance of the mixing rate ivar=isca(ifp2m)
— pulverised coal modelling with 3 combustibles:
variables shared by the two phases:
- Solved variables
ivar = isca(ihm): gas-coal mixture enthalpy
ivar = isca(immel): molar mass of the gas mixture
variables specific to the dispersed phase:
- Solved variables

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(inp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in

permeatic conditions
- Properties propce(iel,ipproc(iprop))

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla
iprop = igmdvl(icla): mass transfer caused by the release of light volatiles from

the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles

from the class icla

iprop = igmhet(icla): coke disappearance rate during the coke burnout of the

class icla

iprop = ix2(icla): solid mass fraction of the class icla

variables specific to the continuous phase:

- Solved variables

ivar = isca(ifim(icha)): mean value of the tracer 1 representing the light

volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy

volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released

as CO during coke burnout

ivar = isca(ifdpm): variance of the tracer 4 representing the air

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
cuide Page 110/201
ivar = isca(if3p2m): variance of the tracer 3
- Properties propce(iel,ipproc(iprop))

iprop = itempl: temperature of the gas mixture

iprop = iym1(1): mass fraction of CHx1,, (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of C'Hxs,, (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iym1(4): mass fraction of Oy in the gas mixture

iprop = iym1(5): mass fraction of CO; in the gas mixture

iprop = iym1(6): mass fraction of HyO in the gas mixture

iprop = iym1(7): mass fraction of Ns in the gas mixture

e set the relaxation coefficient of the density srrom, with
p" ! = srrom * p" + (1 — srrom)p™ !
(the default value is srrom = 0.8. At the beginning of a calculation, a sub-relaxation of 0.95 may
reduce the numerical “shocks”).

e set the dynamic viscosity dift10. By default dift10= 4.25 kgm~1s~! (the dynamic diffusivity
being the ratio between the thermal conductivity A and the mixture specific heat C}, in the
equation of enthalpy).

e set the value of the constant cebu of the Eddy Break Up model (only in cs_user_combustion.
By default cebu=2.5)

8.3 Heavy fuel oil combustion module
8.3.1 Initialisation of transported variables
To initialise or modify (in case of a continuation) values of transported variables and of the time step,

the standard subroutine cs_user_initialization is used.

Physical properties are stored in propce (cell center). For instance, propce(iel, ipproc(irom)) is
rom(iel), the mean density (in kg.m=3).
Physical properties (rom, viscl, cp, ...) are computed in ppphyv and are not to be modified here.

The cs_user_initialization-fuel.f90 example illustrates how the user may initialise quantities
related to gaseous species and droplets compositions in addition to the chosen turbulent model.

8.3.2 Boundary conditions

Boundary conditions are defined as usual on a per-face basis in cs_user_boundary_conditions. They
may be assigned in two ways:

. for “standard” boundary conditions (inlet, free outlet, wall, symmetry): a code is defined in the
array itypfb (of dimensions equal to the number of boundary faces). This code will then be
used by a non-user subroutine to assign the conditions.

. for “non-standard” conditions: see details given in cs_user_boundary_conditions-fuel.f90
example.

8.4 Radiative thermal transfers in semi-transparent gray media
8.4.1 |Initialisation of the radiation main parameters

The main radiation parameters can be initialise in the Graphical User Interface (GUI) or in the user
subroutine cs_user_radiative_transfer _param. In the GUI, under the heading “Thermophysical

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 111/201

models”, when one of the two thermal radiative transfers models is selected, see Figure 46, additional
items appear. The user is asked to choose the number of directions for angular discretisation, to define
the absorption coefficient and select if the radiative calculation are restarted or not, see Figure 47 and
Figure 49. When “Advanced options” is selected for both models Figure 48 or Figure 50 appear, the
user must fill the resolution frequency and verbosity levels. In addition, the activation of the radiative
transfer leads to the creation of an item “Surface solution control” under the heading “Calculation
control”, see Figure 51, where radiative transfer variables can be selected to appear in the output
listing.

Thermal radiative transfers

[£3]
|4 Identity and paths E —
P 7 calculation environment |No radiative transfers X

- Thermophysical models
Calculation features
Deformable mesh
Turbulence models
Thermal model

T

Conjugate heat transfer
Species transport

Turbomachinery
b B Dhucical nranartioe lz]
] I [>]

Sl
1=
=]
=
Sl
1=
I

Figure 46: Radiative transfers models

®
Thermal radiative transfers
|4 Identity and paths

b [calculation environment Discrete ordinates method e

- Thermophysical models
| Calculation features
|| Defermable mesh
|| Turbulence models | 32 directions (T2) 2
|_| Thermal model ——————

Directions for angular discretisation (quadrature)

U Absorption coefficient
|| Conjugate heat transfer

|_| Species transport ‘ussr subroutine (usray3) S
|| Turbomachinery
P £ Physical properties 0.0 m Y
b £ volume conditions
l; Boundary conditions Restart of radiative calculation O on @ off
3
4

Numerical parameters
[calculation control Advanced options ‘&({|
Calculation management T

Figure 47: Radiative transfers - parameters of the DO method

If the GUI is not used, cs_user_radiative_transfer_param is one of the two subroutine which must
be completed by the user for all calculations including radiative thermal transfers. It is called only
during the calculation initialisation. It is composed of three headings. The first one is dedicated to
the activation of the radiation module, only in the case of classic physics.

WARNING: when a calculation is ran using a specific physics module, this first heading must not be

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 112/201

I

lteration resolution frequency

Radiative source term calculus |2 N
Verbosity level for wall temperature [1] & |
Verbosity level for brigthness resolution [0 2|

..gnnulerH ok ‘

Figure 48: Radiative transfers - advanced parameters of the DO method

i3]
Thermal radiative transfers

|_4 Identity and paths
3 Calculation environment
- Thermophysical models
|| caleulation features Absorption coefficient
|| Deformable mesh
|_| Turbulence models
|| Thermal model

|P-1 Model 2

‘ user subroutine (usray3) 3

0.0 m*

=
|| Conjugate heat transfer
|_| Species transport Restart of radiative calculation © on @ off
|| Turbomachinery Y
] Physical properties @(‘
7 volume conditions T
] Boundary conditions
[Numerical parameters

Advanced optiens

Calculation control
Calculation management

cvvewvw
coeeee

Figure 49: Radiative transfers - parameters of the P-1 model

completed. The radiation module is then activated or not, according to the parameter file related to the
considered specific physics.

In the second heading the basic parameters of the radiation module are indicated.
Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary

faces.

For more details about the different parameters, the user may refer to the keyword list (§ 9).

8.4.2 Radiative transfers boundary conditions

These informations can be filled by the user through the Graphical User Interface (GUI) or by using the
subroutine cs_user_radiative_transfer_bcs.f90 (called every time step). If the interface is used,
when one of the “Radiative transfers” options is selected in Figure 46, it activates specific boundary
conditions each time a “Wall” is defined, see Figure 52. The user can then choose between 3 cases.
The parameters the user must specify are displayed for one of them in Figure 53.

When the GUI is not used, cs_user_radiative_transfer_bcs.f90 is the second subroutine necessary
for every calculation which includes radiative thermal transfers. It is used to give all the necessary

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 113/201

I

lteration resolution frequency

Radiative source term calculus [2¢]
Verbosity level for wall temperature (12]

..ﬁnnulerH ok ‘

Figure 50: Radiative transfers - advanced parameters of the P-1 model

®
Solution control
. identity and paths
b £ Calculation environment Output label Internal name
b B3 Thermophysical models
b EJ Physical properties Efforts effort
55 Volume condtions Efforts, normal effort_normal

Post-
processing

Soundary condions Effots, tangential _ effort tangential
Numerical parameters
cal ntrol Nz plus

[ofe]

3
b
3

o

B ges Dimensionless Ther... boundary_layer_nuss.
) output control Boundary temperature boundary_temperature.
L) volume solution control Thermal fluc thermal flux
B

) Profiles Tplus tplus
b B3 Calculation management Coeff_ech_convectif coeff_ech_conv
Emissity emissity
Flux_convectif fux_convectif
Flux incident flu Incident
Flux net fu net
Thermal_conductivty _ thermal conductivty
Thickness thickness
Wal temperature walltemp

HEEEEEEEEEEEEEEE

Figure 51: Calculation control - Radiative transfers post-processing output

parameters concerning, in the one case, the wall temperature calculation, and in the other, the coupling
between the thermal scalar (temperature or enthalpy), and the radiation module at the calculation
domain boundaries. It must be noted that the boundary conditions concerning the thermal scalar
which may have been defined in the subroutine cs_user_boundary_conditions will be modified by the
radiation module according to the data given in cs_user_radiative_transfer_bcs.f90 (cf. §3.9.4).
A zone number must be given to each boundary face ?"and, specifically for the walls, a boundary
condition type and an initialisation temperature (in Kelvin). The initialisation temperature is only
used to make the solving implicit at the first time step. The zone number allows assigning an arbitrary
integer to a set of boundary faces having the same radiation boundary condition type. This gathering
is used by the calculation, and in the listing to print some physical values (mean temperature, net
radiative flux ...). An independent graphic output in EnSight format is associated with each zone and
allows the display on the boundary faces of the variables selected in the third heading of the subroutine
cs_user_radiative_transfer_param.

A boundary condition type stored in the array ISOTHP is associated with each boundary face. There
are five different types:

e itpimp: wall face with imposed temperature,

e ipgrno: for a grey or black wall face, calculation of the temperature by means of a flux balance,

e iprefl: for a reflecting wall face, calculation of the temperature by means of a flux balance.
This is fixed at 2000 in radiat and cannot be modified.

e ifgrno: grey or black wall face to which a conduction flux is imposed,

e ifrefl: reflecting wall face to which a conduction flux is imposed, which is equivalent to impose
this flux directly to the fluid.

27This must be less than the maximum allowable by the code, nozrdm. This is fixed at 2000 in radiat and cannot be
modified.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 114/201

Thermal radiative transfer

Gray or black wall and profile of fixed internal temperature
Gray or black wall and profile of fixed external temperature

Wall radiative ! !

caracteristics Value Unit
Emissivite 0,8
Initial tempe... 300 K

Post-processing zone: no.

Figure 52: Boundary conditions - choice of wall thermal radiative transfers

Depending on the selected boundary condition type at every wall face, the code needs to be given some

additional information:

e itpimp: the array tintp must be completed with the imposed temperature value and the array

epsp must be completed with the emissivity value (strictly positive).

e ipgrno: must be given: an initialisation temperature in the array tintp, the wall emissivity
(strictly positive, in epsp), thickness (in epap), thermal conductivity (in xlamp) and an external

temperature (in textp) in order to calculate a conduction flux across the wall.

e iprefl: must be given: an initialisation temperature (in tintp), the wall thickness (in epap)

and thermal conductivity (in xlamp) and an external temperature (in textp).

e ifgrno: must be given: an initialisation temperature (in tintp), the wall emissivity (in epsp)
and the conduction flux (in W/m? whatever the thermal scalar, enthalpy or temperature) in the
array rcodcl. The value of rcodcl is positive when the conduction flux is directed from the
inside of the fluid domain to the outside (for instance, when the fluid heats the walls). If the

conduction flux is null, the wall is adiabatic.

e ifrefl: must be given: an initialisation temperature (in tintp) and the conduction flux (in
W/m? whatever the thermal scalar) in the array rcodcl. The value of rcodcl is positive when
the conduction flux is directed from the inside of the fluid domain to the outside (for instance,
when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic. The flux

received by rcodcl is directly imposed as boundary condition for the fluid.

WARNING: it is mandatory to set a zone number to every boundary face, even those which are not
wall faces. These zones will be used during the printing in the listing. It is recommended to gather

together the boundary faces of the same type, in order to ease the reading of the listing.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 115/201

Thermal radiative transfer

Gray or black wall
and profile of fixed internal temperature

>

Wall radiative

caracteristics value Unit
Emissivite 0,8
Initial tempe... 300 K

Post-processing zone: no. [1

Figure 53: Boundary conditions - example of wall thermal radiative transfer

8.4.3 Absorption coefficient of the medium, boundary conditions for the lu-
minance and calculation of the net radiative flux

When the absorption coefficient is not constant, the subroutine usray3 is called instead at each time
step. It is composed of three parts. In the first one, the user must provide the absorption coefficient
of the medium in the array CK, for each cell of the fluid mesh. By default, the absorption coefficient
of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption coef-
ficient in this subroutine. In this case, the coefficient is either calculated automatically, or provided by
the user via a thermo-chemical parameter file (dp-C38P or dp-C3PSJ for gas combustion, and dp_FCP
for pulverised coal combustion).

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

8.4.4 Encapsulation of the temperature-enthalpy conversion

Subroutine called every time step.

The user subroutine usray4 is used to call the user subroutine usthht. usthht is used to encapsulate
a simple enthalpy-temperature conversion law and its inverse. The user can implement his own con-
version formulas into it.

This subroutine is useless when the thermal scalar is the temperature.

WARNING: when a specific physics is activated, it is forbidden to use this subroutine. In this case,
usray4 is replaced by ppray4, which is not a user subroutine.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 116/201

The value of the argument mode allows to know in which direction the conversion will be made:

e mode = 1: the fluid enthalpy in the cell must be converted into temperature (in Kelvin),

e mode = -1: the wall temperature (text or tparoi, in Kelvin) must be converted into enthalpy.

WARNING: the value of mode is passed as argument and must not be modified by the user.

8.4.5 Input of radiative transfer parameters

The routine usrayb is called twice. The first time is for boundary conditions. The second time is for
the net radiation flux computation

In this subroutine, during the first call (iappel=1), the boundary conditions are filled:

- the radiative intensity must be set in the array cofrua when the discrete ordinates model is used;
an example is given in usray5b for an isotropic radiation field on a grey wall. Proposed boundary
conditions for the intensity in usray5 are: symmetry, inlet/outlet, and wall boundary,

- the entering intensity for free boundaries is set to zero in cofrua (if the user has more information,
he can improve it),

- arrays cofrua and cofrub must be filled when the P-1 model is used. The boundary conditions
proposed are the same as with the discrete ordinates model.

During the second call (iappel=2), the density of the net radiation flux must be calculated consistently
with the boundary conditions of the intensity considering that the density of net flux is the balance
between the radiative emitting part of a boundary face (and not the reflecting one) and the radiative
absorbing part. The provided example is consistent with the example of the intensity boundary
conditions given when the discrete ordinates model is used.

8.5 Conjugate heat transfer
8.5.1 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the wall-affected thermal inertia. Some boundary faces are treated
as a solid wall with a given thickness, on which the code resolves a one-dimensional equation for the
heat conduction. The coupling between the 1D module and the fluid works in a similar way to the
coupling with the SYRTHES. By construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required in
order to evaluate the relevance of its usage by way of a report of the simple conditions (temperature,
zero-flux) or a coupling with SYRTHES.

The use of this code requires that the thermal scalar is defined as (iscalt> 0).

WARNING: The 1D thermal module is developed assuming the thermal scalar as a temperature. If the
thermal scalar is an enthalpy, the code calls the subroutine usthht for each transfer of data between
the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. This function
has not been tested and is firmly discouraged. If the thermal variable is the total (compressible) energy,
the thermal module will not work.

This procedure is called twice, at initialisation and again at each time step.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 117/201

e In the first call (initialisation) all of the boundary faces that will be treated as a coupled wall
are marked out. This figure is written noted as nfkptid. It applies dimension to the arrays in
the thermal module. nfkptid will be at 0 if there are no coupled faces (it is in fact the default
value, the remainder of the subroutine is not used in this case). The parameter isuit1 also must
be defined, this indicates if the temperature of the wall must be initialised or written in the file
(stored in the variable filmt1).

The 2nd call (initialisation) again concern the wall faces, it completes the ifpt1d array of dimen-

sion nfptid. ifpt1d(ifbt1d) is the number ifbt 1ath boundary faces coupled with the thermal
module of a 1D wall. The directional parameters are then completed for a pseudo wall associated
to each face

- npptld(nfptid): number of cells in the 1D mesh associated to the pseudo wall.
- epptld(nfptid): thickness of the pseudo wall.
- rgptld(nfptid): geometry of the pseudo wall mesh (refined as a fluid if rgtid is less than
1)
- tpptid(nfptild): initialisation temperature of the wall (uniform in thickness). In the course
of the calculation, the array stores the temperature of the solid at the fluid/solid interface.
Other than for re-reading a file (ficmtl), tpptid is not used. npptld, ifptld, rgptid and
epptld are compared to data from the follow-up file and they must be identical.

WARNING: The test in ifptid implicitly assumes that the array is completed in ascending
order (i.e ifptid(ii)>1ifpt1d(54) if ii>jj. This will be the case if the coupled faces are defined
starting from the unique loop on the boundary faces (as in the example). If this is not the case,
contact the development team to short circuit the test.

The third call (at each time step) is to confirm that all the arrays involving physical parameter

and external boundary conditions have been completed.

iclt1d(afptid):Typical boundary condition at the external (pseudo) wall: Dirichlet con-
dition (iclt1ld=1) or flux condition (iclt1d=3)

teptld(nfptld): External temperature of the pseudo wall in the Dirichlet case.
hept1d(nfpti1d): External coefficient of transfer in the pseudo wall under Dirichlet condi-
tions (in W.m~=2.K").

feptid(nfpt1d): External heat flux in the pseudo wall under flux conditions(in W.m~2,
negative value for energy entering the wall).

x1mt1d (nfpt1d): Conductivity\ of the wall uniform in thickness (in W.m=1.K~1).
rcptld(nfpt1d): Volumetric heat capacity pC), of the wall uniform in thickness (in Jom=3.K~1).

dtptild(nfptid): Physical time step associated with the solved 1D equation of the pseudo
wall(which can be different from the time step in the calculation).

The 3" call, done at each time step, allows to impose boundary conditions and physical values in time.

8.5.2 Fluid-Thermal coupling with SYRTHES

When the user wishes to couple Code_Saturne with SYRTHES to include heat transfers, he can do so
with using with the Graphical User Interface (GUI) or the cs_syrthes_coupling user function. To
set such a coupling in the Graphic User Interfacee (GUI), a thermal scalar must be selected first in
the item “Thermal scalar” under the heading “Thermophysical models”. Then the item “Conjugate
heat transfer” will appear, see Figureb4. The zones where the coupling occurs must be defined and a
projection axis can be specified in case of 2D coupling.

If the function cs_user_syrthes_coupling is used, the user must specify the arguments passed to the
‘cs_syr_coupling define’ function. These arguments are:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 118/201
®
Conjugate heat transfer: Syrthes coupling
[2 1dentity and paths
» B calculation environment Verbosity | Visualization | Projection Axis Selection criteria
< B Thermophy: s 0 1 x alll

[} Turbulence models
1] Thermal model
|_| Radiative transfers

Add Delete

Numerical parameters

Calculation control
Calculation management

Figure 54: Thermophysical models - coupling with SYRTHES

- syrthes name is the matching SYRTHES application name (useful only when more than one
SYRTHES and one Code_Saturne domain are present),

- boundary_criteria is the surface selection criteria,

- volume_criteria is the volume selection criteria,

Ye? 5,0

- projection_axis: ’ ’ if the user wishes to use a 3D standard coupling, or specify ’x’, 'y’, or 2’
as the projection axis if a 2D coupling with SYRTHES is used,

- verbosity is the verbosity level.

- visualization is the visualization level.

Examples are provided in cs_user_coupling.c.

The user may also define global coupling options relative to the handling of time-stepping, by adapting
the example cs_user_coupling in the cs_user_coupling.c file. In the case of multiple couplings, these
options are global to all SYRTHES and Code_Saturne couplings.

8.6 Particle-tracking (Lagrangian) Module
8.6.1 General information

- The particle-tracking (or Lagrangian) module enables the simulation of poly-dispersed particu-
late flows, by calculating the trajectories of individual particles, mainly characterized by their
diameter and density (if no heat nor mass transfer between particle and fluid are activated).

- The standard use of the particle-tracking module follows the Moments/PDF approach: the
instantaneous properties of the underlying flow needed to calculate the particle motion are re-
constructed from the averaged values (obtained by Reynolds-Averaged Navier-Stokes simulation)
by using stochastic processes. The statistics of interest are then obtained through Monte-Carlo
simulation.

- As a consequence, is is important to emphasize that the most important (and physically meaning-
ful) results of a particle-tracking calculation following the Moments/PDF approach are statistics.
Volume and surface statistics, steady or unsteady, can be calculated. Individual particle trajec-
tories (as 1D, EnSight-readable cases) and displacements (as EnSight-readable animations) can
also be provided, but only for illustrative purposes.

8.6.2 Activating the particle-tracking module

The activation of the particle-tracking module is performed either:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 119/201

e in the Graphical User Interface (GUI): Calculation features — Thermophysical models —
Eulerian-Lagrangian multi-phase treatment — particles and droplets tracking

e or in the user subroutine uslagl, by setting the iilagr parameter to a non-null value.

8.6.3 Basic guidelines for standard simulations

Except for cases in which the flow conditions depend on time, it is generally recommended to perform
a first Lagrangian calculation whose aim is to reach a steady-state (i.e. to reach a time starting from
which the relevant statistics do not depend on time anymore). In a second step, a calculation restart is
done to calculate the statistics. When the single-phase flow is steady and the particle volume fraction
is low enough to neglect the particles influence on the continuous phase behaviour, it is recommended
to perform a Lagrangian calculation on a frozen field.

It is then possible to calculate steady-state volumetric statistics and to give a statistical weight higher
than 1 to the particles, in order to reduce the number of simulated (“numerical”) particles to treat
while keeping the right concentrations. Otherwise, when the continuous phase flow is steady, but the
two-coupling coupling must be taken into consideration, it is still possible to activate steady statistics.
When the continuous phase flow is unsteady, it is no longer possible to use steady statistics. To have
correct statistics at every moment in the whole calculation domain, it is imperative to have an estab-
lished particle seeding and it is recommended (when it is possible) not to impose statistical weights
different from the unity.

Finally, when the so-called complete model is used for turbulent dispersion modelling, the user must
make sure that the volumetric statistics are directly used for the calculation of the locally undisturbed
fluid flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees
Celsius, whatever the thermal scalar associated with the continuous phase is (i.e. temperature or
enthalpy). If the thermal scalar associated with the continuous phase is the temperature in Kelvin,
the unit is converted automatically into Celsius. If the thermal scalar associated with the continuous
phase is the enthalpy, the enthalpy-temperature conversion subroutine usthht must be completed for
mode=1, and must express temperatures in degrees Celsius. In all cases, the thermal backward coupling
of the dispersed phase on the continuous phase is adapted to the thermal scalar transported by the
fluid.

8.6.4 Prescribing the main modelling parameters (GUI and/or uslagi)

USE oF THE GUI

In the GUI, the selection of the Lagrangian module activates the heading Particle and droplets
tracking in the tree menu. The initialization is performed in the three items included in this heading;:

e Global settings. The user defines in this item the kind of Euler/Lagrange multi-phase treat-
ment, the main parameters, the specific physics associated with the particles and advanced
numerical options, see Figure 55 to Figure56.

e Statistics. The user can select the volume and boundary statistics to be post-processed.

e Output. The user defines the output frequency and post-processing options for particles and
select the variables that will appear in the listing.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 120/201

®
Eulerian/Lagrangian Multi-phase Treatment
|4 Identity and paths

P £ calculation environment

> [Thermophysical models
b £ Physical properties Main parameters
> [volume conditions Calculation restart for particles]
- Particles and droplets tracking

One-way coupling | $

The continuous phase flow is & steady flow []

L
_| Statistics Pseudoe-continuous particle injection]

P [Boundary conditions

b FJ Numerical parameters Additional models associated with the particles

P £ calculation control

P [calculation management No model s

Turbulent deposition modeling

Particle deposition sub-model []

Numerical scheme

Advanced options %

Figure 55: Lagrangian module - View of the Global Settings page

USE OF THE SUBROUTINE USLAG1

When the GUI is not used, uslagl must be completed. This subroutine gathers in different headings
all the keywords which are necessary to configure the Lagrangian module. The different headings refer
to:

the global configuration parameters

the specific physical models describing the particle behaviour

the backward coupling (influence of the dispersed phase on the continuous phase)

the numerical parameters

the volumetric statistics

the boundary statistics

the post-processing in trajectory mode

For more details about the different parameters, the user may refer to the keyword list (§ 9.8).

8.6.5 Prescribing particle boundary conditions (GUI and/or uslag?2)

In the framework of the multiphase Lagrangian modelling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the Eulerian
fluid phase (but they are of course generally consistent). The boundary condition zones are actually
redefined by the Lagrangian module (cf. §3.9.4), and a type of particle behaviour is associated with
each one. The boundary conditions related to particles can be defined in the Graphical User Interface

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 121/201
I Advanced E
Integration for the stochastic differential equations
| second-order scheme)
Particle turbulent dispersion
Suppresses the crossing trajectory effect 0

[[] complete model for turbulent dispersion
Starting lagrangian iteration

Main direction of the flow

..annulerH ok ‘

Figure 56: Lagrangian module - Global Settings, advanced numerical options

(GUI) or in the subroutine uslag2. More advanced user-defined boundary conditions can be prescribed
in the user-subroutine uslain.

UseE oF THE GUI

In the GUI, selecting the Lagrangian module in the activates the item Particle boundary conditions
under the heading Boundary conditions in the tree menu. Different options are available depending
on the type of standard boundary conditions selected (wall, inlet/outlet, etc...), see Figure 57.

USE OF THE SUBROUTINE USLAG2

The main numerical variables are described below.

ifrlag(nfabor) [ia]: In the Lagrangian module, the user defines nfrlag boundary zones from the
color of the boundary faces, or more generally from their properties (colors, groups...),
from the boundary conditions defined in cs_user_boundary_conditions, or even from their
coordinates. To do so, the array ifrlag(nfabor) giving for each face ifac the number
ifrlag(ifac) corresponding to the zone to which it belongs, is completed. The zone num-
bers (i.e. the values of ifrlag(ifac)) are chosen freely by the user, but must be strictly
positive integers less than or equal to nflagm (parameter stored in lagpar, whose default
value is 100). A zone type is associated with every zone; it will be used to impose global
boundary conditions. WARNING: it is essential that every boundary face belongs to a zone..

iusncl(nflagm) [ia]: For all the nfrlag boundary zones previously identified, the number of classes
nbclas?® of entering particles is given: iusncl(izone) = nbclas. By default, value for the
number of particle classes is zero. The maximum number of classes is nclagm (parameter
stored in lagpar, whose default value is 20)..

iusclb(nflagm) [ia]: For all the nfrlag boundary zones previously identified, a particle boundary
condition type is given. The categories of particle boundary condition types are marked out
by the keywords ientrl, isortl, irebol, idepol, idepo2, iencrl).

e if ijusclb(izone) = ientrl, izone is a particle injection zone. For each particle class associated

28 A class is a set of particles sharing the same physical properties and the same characteristics concerning the injection
in the calculation domain

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 122/201
B®

Lagrangian boundary conditions

|4 Identity and paths
B £ calculation environment Label Nature
b £3 Thermophysical models

Particle-boundary

interaction Number of classes

I D Physical properties wall wiall Particles rebound 1]
P [volume conditions))))
b B Particles and droplets tracking injection inlet Particles inlet 0
< [Boundary conditions out outlet Particles outlet 0
|| Definition of boundary regi...
|_| Boundary conditions Deposition and eliminz £

L
|| Fluid structure interaction

P £ Mumerical parameters
b F3 calculation control
b [3 calculation management

Figure 57: Lagrangian module - boundary conditions

with this zone, information must be provided (see below). If a particle trajectory might cross an
injection zone, then this particle leaves the calculation domain.

if iusclb(izone) = isortl, the particles interacting with the zone izone leave definitely the
calculation domain.

if iusclb(izone) = irebol, the particles undergo an elastic rebound on the boundary zone
izone.

if iusclb(izone) = idepol, the particles settle definitely on the boundary zone izone. These
particles leave the calculation domain and are deleted from the calculation

if iusclb(izone) = idepo2, the particles settle definitively on the boundary zone izone and they
are kept in the calculation domain: the particles do not disappear after touching the boundary
zone. However, using idepo2 type zones necessitates more memory than using idepol type
zones.

if iusclb(izone) = iencrl, the particles which are coal particles (if iphyla = 2) can become
fouled up on the zone izone. The slagging is a idepol type deposit of the coal particle if a
certain criterion is respected. Otherwise, the coal particle rebounds (irebol type behaviour).
This boundary condition type is available if iencra = 1. A limit temperature tprenc, a critical
viscosity visref and the coal composition in mineral matters must be given in the uslagl
subroutine.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 123/201

iuslag(nclagm, nflagm, ndlaim) [ia]: Some pieces of information must be given for each par-
ticle class associated with an injection zone. The first part consists in integers contained in
the array iuslag. There are at the most ndlaim integers. These pieces of information must
be provided for each class iclas and each particle injection zone izone. They are marked
out by means of “pointers”:

— iuslag(iclas,izone,ijnbp): number of particles to inject in the calculation domain per class

and per zone.

— iuslag(iclas,izone,ijfre): injection period (expressed in number of time steps). If the

period is null, then there is injection only at the first absolute Lagrangian time step (including
the restart calculations).

— iuslag(iclas,izone,ijuvw): type of velocity condition:

- if iuslag(iclas,izone,ijuvw) = 1, the particle velocity vector is imposed, and its com-
ponents must be given in the array ruslag (see below).

- if iuslag(iclas,izone,ijuvw) = 0, the particle velocity is imposed perpendicular to the
injection boundary face and with the norm ruslag(iclas,izone,iuno).

- if iuslag(iclas,izone,ijuvw) = -1, the particle injection velocity is equal to the fluid
velocity at the center of the cell neighbouring the injection boundary face.

— iuslag(iclas,izone,inuchl): when the particles are coal particles (iphyla = 2), this part

of the array contains the coal index-number, between 1 and ncharb (defined by the user in the
thermochemical file dp_FCP, with ncharb<ncharm = 3).

ruslag(nclagm, nflagm, ndlagm) [ra]: Some pieces of information must be given for each parti-
cle class associated with an injection zone. The second and last part consists in real numbers
contained in the array ruslag. There are at the most ndlagm such real numbers. These
pieces of information must be provided for each class iclas and each particle injection zone
izone. They are marked out by means of “pointers”:

ruslag(iclas,izone,iuno): norm of the injection velocity,
useful if iuslag(iclas,izone,ijuvw) = 0.

ruslag(iclas,izone,iupt), ruslag(iclas,izone,ivpt),
ruslag(iclas,izone,iwpt): components of the particle injection vector,
useful if iuslag(iclas,izone,ijuvw) = 1.

ruslag(iclas,izone,idebt): allows to impose a particle mass flow. According to the number
of injected particles, the particle statistical weight pepa(jrpoi,npt) is recalculated in order to
respect the required mass flow (the number of injected particles does not change). When the
mass flow is null, it is not taken into account.

ruslag(iclas,izone,ipoit): particle statistical weight per class and per zone.

ruslag(iclas,izone,idpt): particle diameter. When the particles are coal particles (iphyla
= 2), this diameter is provided by the thermochemical file dp_FCP wvia the array diam20(iclg),
where iclg is the “pointer” on the total class number (i.e. for all the coal types). When the
standard deviation of the particle diameter is different from zero, this diameter becomes a mean
diameter.

ruslag(iclas,izone,ivdpt): standard deviation of the injection diameter. To impose this
standard deviation allows to respect granulometric distribution: the diameter of each particle
is calculated from the mean diameter, the standard deviation and a Gaussian random number.
In this case, it is strongly recommended to intervene in the subroutine uslain to restrict the
diameter variation range, in order to avoid aberrant values. If this standard deviation is null,
then the particle diameter is constant per class and per zone.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 124/201

— ruslag(iclas,izone,iropt): particle density. When the particles are coal particles (iphyla
= 2), this density is set in the thermochemical file dp_FCP wia the array rhoOch(icha), where
icha is the coal number.

— ruslag(iclas,izone,itpt): particle injection temperature in °C. Useful if iphyla = 1 and if
itpvar = 1.

— ruslag(iclas,izone,icpt): particle injection specific heat. Useful if iphyla = 1 and if itpvar
= 1. When the particles are coal particles (iphyla = 2), the specific heat is set in the thermo-
chemical file dp_FCP via the array cp2ch(icha).

— ruslag(iclas,izone,iepsi): particle emissivity. Useful if iphyla = 1 and if itpvar = 1, and
if the radiation module is activated for the continuous phase (note: when iphyla = 2, the coal
particle emissivity is given the value 1).

— ruslag(iclas,izone,ihpt): particle injection temperature in °C when these particles are coal
particles. The array ruslag(iclas,izone,itpt) is then no longer active. Useful if iphyla =
2.

— ruslag(iclas,izone,imcht): mass of reactive coal. Useful if iphyla = 2.

— ruslag(iclas,izone,imckt): mass of coke. This mass is null if the coal did not begin to burn
before its injection. Useful if iphyla = 2.

iusvis(nflagm) [ia]: In order to display the variables at the boundaries defined in the subroutine
uslagl, this array allows to select the boundary zones on which a display is wanted. To
do so, a number is associated with each zone izone. If this number is strictly positive,
the corresponding zone is selected; if it is null, the corresponding zone is eliminated. If
several zones are associated with the same number, they will be displayed together in the
same selection with EnSight. Each selection will be split in EnSight parts according to the
geometric types of the present boundary faces ((i.e. ’triad’, ‘quad4’ and 'nsided’)..

8.6.6 Advanced particle-tracking set-up

In this section, some information is provided for a more advanced numerical set-up of a particle-tracking
simulation.

USER-DEFINED INLET PARTICLE PROFILE

The user subroutine uslain can be used to complete uslag2 when the particles must be injected in
the domain according to fine constraints (profile, position, ...): the arrays eptp, pepa and ipepa can
be modified here for the new particles (these arrays were previously completed automatically by the
code from the data provided by the user in uslag?).

In the case of a more advanced use, it is possible to modify here all the arrays eptp, pepa and ipepa.
The particles already present in the calculation domain are marked out by an index varying between
1 and nbpart. The particles entering the calculation domain at the current iteration are marked out
by an index varying between nbpart+1 and nbpnew.

USER-DEFINED VOLUME STATISTICS: USLAST AND USLAEN
An intervention in both uslast and uslaen subroutines is required if the user wishes to obtain sup-
plementary volumetric statistics.

The subroutine uslast is called at the end of every Lagrangian iteration, it allows therefore the
modification of particless-related variables, or the extraction and preparation of data to display in the
listing or the post-processing.

The volumetric statistics are calculated by means of the array statis. Two situations may happen:

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 125/201

- the calculation of the statistics is unsteady: statis is reset at every Lagrangian iteration;

- the calculation of the statistics is steady: the array statis is used to store cumulated values of
variables, which will be averaged at the end of the calculation in the subroutine uslaen.

According to the user parameter settings, it may happen that during the same calculation, the statistics
will be unsteady in a first part and steady in second part.

In the subroutine uslaen, the variable whose volumetric statistic is wanted is stored in the array
statis. In the framework of steady statistics, the average itself is calculated in the subroutine uslaen.
This average is obtained through the division of the cumulated value by:

- either the duration of the steady statistics calculation stored in the variable tstat,

- or the number of particles in statistical weight.
This method of averaging is applied to every piece in the listing and to the post-processing outputs.

This subroutine is also used for the calculation of the average corresponding to the cumulated value ob-
tained in the subroutine uslast and for standard volumetric statistics. Several examples are therefore
provided.

USER-DEFINED STOCHASTIC DIFFERENTIAL EQUATIONS

An intervention in the uslaed subroutine is required if supplementary user variables are added to the
particle state vector (arrays eptp and eptpa). This subroutine is called at each Lagrangian sub-step.

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this subroutine.

When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called
twice.

The solved stochastic differential equations must be written in the form:

e, @, -1

dt T

where ®,, is the Ith supplementary user variable (nvls in total) available in eptp(jvls(i),nbpmax)
and in eptpa(jvls(i),nbpmax), 74 is a quantity homogeneous to a characteristic time, and II is a
coefficient which may be expressed as a function of the other particulate variables contained in eptp
and eptpa.

In order to do the integration of this equation, the following parameters must be provided:

- T4, equation characteristic time, in the array auxl1 for every particle,

- II , equation coefficient, in the array aux12. If the integration scheme is a first-order, then IT
is expressed as a function of the particulate variables at the previous iteration, stored in the
array eptpa. If the chosen scheme is a second-order, then IT is expressed at the first call of
the subroutine (prediction step nor = 1) as a function of the variables at the previous iteration
(stored in eptpa), then at the second call (correction step nor = 2) as a function of the predicted
variables stored in the array eptp.

If necessary, the thermal characteristic time 7., whose calculation can be modified by the user in the
subroutine uslatc, is stored for each particle in the part tempct (nbpmax,1) of the array tempct.

USER-DEFINED PARTICLE RELAXATION TIME

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 126/201

The particle relaxation time may be modified in the subroutine uslatp according to the chosen for-
mulation of the drag coefficient. The particle relaxation time, modified or not by the user, is available
in the array taup.

USER-DEFINED PARTICLE THERMAL CHARACTERISTIC TIME

The particle thermal characteristic time may be modified in the subroutine uslatc according to the
chosen correlation for the calculation of the Nusselt number. This subroutine is called at each La-
grangian sub-step. The thermal characteristic time, modified or not by the user, is available in the
zone tempct (nbpmax, 1) of the array tempct.

PARTICLE CLONING/MERGING TECHNIC

An intervention in the uslarusubroutine is required when the particle cloning/merging option is acti-
vated via the keyword iroule. The importance function ’croule’ must then be completed.

The values given to the importance function are strictly positive real numbers allowing to classify the
zones according to their importance. The higher the value given to the importance function, the more
important the zone.

The aim of this technique is to reduce the number of particles to treat in the whole flow and to refine
the description of the particle cloud only where the user wants to get more accurate volumetric statis-
tics than in the rest of the calculation domain.

For instance, when a particle moves from a zone of importance 1 to a zone of importance 2, it will
undergo a splitting process (clonning): the particle is replaced by two identical but idependant particles,
each having one-half the statistical weight of the initial particle. When a particle moves from a zone
of importance 2 to a zone of importance 1, it undergoes a fusion: the particle survives to its passing
through with a probability of 1/2. A random dawing is used to determine if the particle will survive
or disappear.

In the same way, when a particle moves from a zone of importance 3 to a zone of importance 7, it
undergoes a cloning. The particle is cloned in Int(7/3)=2 or Int(7/3)+1=3 particles with a probability
of respectively 1-(7/3-Int(7/3))=2/3 and 7/3-Int(7/3)=1/3. 1If the particle moves from a zone of
importance 7 to a zone of importance 3, it undergoes a fusion: it survives with a probability of 3/7.

WARNING: The importance function must be a strictly positive real number in every cell

8.7 Compressible module
When the compressible module?? is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in cs_user_parameters.f90
or specified with the GUI.

- keep the convective numerical schemes proposed by default (i.e.: upwind scheme).

With the compressible algorithm, the specific total energy is a new solved variable isca(ienerg)).
The temperature variable deduced from the specific total energy variable is isca(itempk) for the
compressible module.
Initialisation of the options of the variables, boundary conditions, initialisation of the variables and
management of variable physical properties can be done with the GUI. We describe below the subrou-
tines the user has to fill in without the GUI.

29For more details concerning the compressible version, the user may refer to the theory guide [11] and the document

“Implantation d’un algorithme compressible dans Code_Saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F.
Archambeau et J.-M. Hérard.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 127/201

8.7.1 Initialisation of the options of the variables

Subroutines called at each time step.

When the GUI is not being used, the subroutines uscfx1 and uscfx2 in cs_user_parameters.f90
must be completed by the user.

uscfx1 allows to specify:

- ieos: equation of state (only perfect gas with a constant adiabatic coefficient, ieos=1 is available,
but the user can complete the subroutine cfther, which is not a user subroutine, to add new
equations of state).

- call field set key_id(ivarfl(isca(itempk)), kivisl, ...): molecular thermal conduc-
tivity, constant (-1) or variable (0).

- iviscv: volumetric molecular viscosity, constant (0) or variable (1).
uscfx?2 allows to specify:

- ivivar: molecular viscosity, constant (0) or variable (1).

- vislsO(itempk): reference molecular thermal conductivity.
- viscvO: reference volumetric molecular viscosity.

- xmasmr: molar mass of the perfect gas (ieos=1).

- icfgrp: specify if the hydrostatic equilibrium must be accounted for in the boundary conditions.

8.7.2 Management of the boundary conditions

Subroutine called at each time step.

When running the compressible module without a GUI, the cs_user_boundary_conditions subroutine
can be used to define specific boundary conditions (see the cs_user boundary_conditions-compressible
file in the directory EXAMPLES for examples of boundary conditions with the compressible module).

With the compressible module, the following types of boundary condition are avaliable:

- Inlet/outlet for which velocity and two thermodynamics variables are known.

Subsonic inlet with imposed total pressure and total energy.
- Subsonic outlet with imposed static pressure.
- Supersonic outlet.

Wall (adiabatic or not).

Symmetry.

It is advised to only use these predefined boundary conditions type for the compressible module.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 128/201

8.7.3 Initialisation of the variables

Subroutine called only at the initialisation of the calculation

When the GUI is not used, the subroutine cs_user_initialization is used initialize the velocity,
turbulence and passive scalars (see the cs_user_initialization-compressible file in the directory
EXAMPLES for examples of initialisations with the compressible module). Concerning pressure, density,
temperature and specific total energy, only 2 variables out of these 4 are independent. The user may
then initialise the desired variable pair (apart from temperature-energy) and the two other variables
will be calculated automatically by giving the right value to the variable ithvar used for the call to
the subroutine cfther.

8.7.4 Management of variable physical properties

Subroutine called at each time step.

Without the GUI, all of the laws governing the physical properties of the fluid (molecular viscosity,
molecular volumetric viscosity, molecular thermal conductivity and molecular diffusivity of the user-
defined scalars) can be specified in the subroutine usphyv of the cs_user_physical_properties file,
which is then called at each time step. This subroutine replaces and is similar to usphyv.

The user should check that the defined laws are valid for the whole variation range of the variables.
Moreover, as only the perfect gas with a constant adiabatic coefficient equation of state is available,
it is not advised to give a law for the isobaric specific heat without modifying the equation of state in
the subroutine cfther which is not a user subroutine.

8.8 Management of the electric arcs module
8.8.1 Activating the electric arcs module

The electric arcs module is activated either:

e in the Graphical User Interface (GUI): Calculation features — Electrical models

e or in the user subroutine usppmo, by setting the ielarc or ieljou parameter to a non-null value.

8.8.2 Initialisation of the variables

Subroutine called only at initialisation of the calculation

The subroutine cs_user_initialization allows the user to initialise some of the specific physics
variables prompted via usppmo. It is called only during the initialisation of the calculation. As
usual,the user has access to many geometric variables so that the zones can be treated separately if
needed.

The values of potential and its constituents are initialised if required.

It should be noted that the enthalpy is relevant.

- For the electric arcs module, the enthalpy value is taken from the temperature of reference t0
(given in cs_user_parameters.f90) from the temperature-enthalpy tables supplied in the data
file dp_ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user . An ex-
ample is given of how to obtain the enthalpy from the temperature of reference t0(given in
cs_user _parameters.f90), the temperature-enthalpy law must be supplied. A code is suggested
in the usthht subroutine (provided for the determination of physical properties).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 129/201

8.8.3 Variable physical properties

All the laws of the variation of physical data of the fluid are written (when necessary) in the subroutine
cs_user_physical _properties. It is called at each time step.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventual user scalars): cs_user_physical properties is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular care should be taken with non-linear laws (for example, a 3™ degree polynomial law giving
negative values of density)

WARNING: In the electric module, all of the physical properties are considered as variables and are
therefore stored in the propce array. cp0, visclsO and visclO are not used

For the Joule effect, the user is required to supply the physical properties in the subroutine. Ex-
amples are given which are to be adapted by the user. If the temperature is to be determined
to calculate the physical properties, the solved variable, enthalpy must be deduced. The preferred
temperature-enthalpy law can be selected in the subroutine usthht (an example of the interpola-
tion is given from the law table. This subroutine can be re-used for the initialisation of the vari-
ables(cs_user_initialization)) For the electric arcs module, the physical properties are interpolated
from the data file dp_ELE supplied by the user. Modifications are generally not necessary.

8.8.4 Boundary conditions

For the electric module,each boundary face in cs_user_boundary_conditions should be associated
with a izone number 3°(the color icoul for example) in order to group together all the boundary
faces of the same type. In the cs_user_boundary_conditions report, the main change from the
users point of view concerns the specification of the boundary conditions of the potential, which isn’t
implied by default. The Dirichlet and Neumann conditions must be imposed explicitly using icodcl
and rcodcl (as would be done for the classical scalar).

Furthermore, if one wishes to slow down the power dissipation (Joule effect module) or the current
(electric arcs module) from the imposed values (puismp and couimp respectively), they can be changed
by the potential scalar as shown below:

- For the electric arcs, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in uselil (in cs_user_parameters.f90) by an estimated potential difference. If
ielcor=1 (see uselil), dpot is updated automatically during the calculation to obtain the
required current.

- For the Joule effect module, dpot is again used with the same signification as in the electric arcs
module. If dpot is not wanted in the setting of the boundary conditions, the variable coejou can
be used. coejou is the coefficient by which the potential difference is multiplied to obtain the
desired power dissipation. By default this begins at 1 and is updated automatically. If ielcor=1
(see uselil), multiply the imposed potentials in cs_user_boundary_conditions by coejou at
each time step to achieve the desired power dissipation.

WARNING: In the case of alternating current, attention should be paid to the values of potential
imposed at the limits: the variable named “real potential” represents an affective value if the current
1s in single phase, and a "real part” if not.

- For the Joule studies, a complex potential is sometimes needed (ippmod(ieljou)=2): this is
the case in particular where the current has three phases. To have access to the phase of the

30jizone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar and cannot
be modified.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 130/201

potential, and not just to its amplitude, the two variables must be deleted: in Code_Saturne, there
are two arrays specified for this role, the real part and the imaginary part of the potential. For
use in the code, these variables are named “real potential” and “imaginary potential”. For an
alternative sinusoidal potential Pp, the maximum value is noted as Ppmax, the phase is noted as
¢, the real potential and the imaginary potential are respectively Ppmax cos¢ and Ppyax sing.

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary
part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continuous current,
but also with single phase alternative current. In Code_Saturne there is only 1 variable for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the "real
potential” represents a effective value of potential , % Ppuax (in continuous current there is no

such ambiguity).

ADDITIONS FOR TRANSFORMERS

The following additional boundary conditions must be defined for tansformers:

e the intensity at each electrode

e the voltage on each terminal of transformers. To achieve it, the intensity, the rvoltage at each
termin, the Rvoltage, and the total intensity of the transformer are calculated.

Finally, a test is performed to check if the offset is zero or if a boundary face is in contact with the
ground.

8.8.5 Initialisation of the variable options

The subroutine uselil (in cs_user_parameters.f90) is called at each time step. It allows:

e to give the coeflicient of relaxation of the density srrom:
p" ! = srrom x p" + (1 — srrom)p®
(for the electric arcs, the sub-relaxation is taken into account during the 2nd time step; for the
Joule effect the sub relaxation is not accounted for unless the user specifies in uselph

e to indicate if the data will be fixed in the power dissipation or in the current, done in ielcor.

e target either the current fixed as couimp (electric arcs module) or the power dissipation puism
(Joule module effect).

e to fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

e to define type of scaling model for electric arcs modrec. If scaling by a resetting plane is choosen
then idreca defines the current density component and crit_reca the plane used for resetting
of electromagnetic variables.

8.8.6 Post-processing output

The algebraic variables related to the electric module are provided by default as long as that they are
not explicitly contained in the propce array:

- gradient of real potential in Vm ™! (VPotr = —E)

- density of real current in Am=? (j = oE)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 131/201

specifically for the Joule module effect with ippmod(ieljou)=2:

- gradient of imaginary potential in Vm ™!

- density of real current in Am =2
specifically for the electric arcs module with ippmod(ielarc)=2 :
- magnetic field in T (B = rot A)

The post-processing output will be created automatically (on all output volume meshes for which the
automatic output of main variables is active).

8.9 Code_Saturne-Code _Saturne coupling

Subroutine called once during the calculation initialisation.

The user function cs_user_saturne_coupling (in cs_user_coupling.c is used to couple Code_Saturne
with itself. It is used for turbo-machine applications for instance, the first Code_Saturne managing the
fluid around the rotor and the other the fluid around the stator. In the case of a coupling between
two Code_Saturne instances, first argument saturne name of the function cs_sat_coupling define’ is
ignored. In case of multiple couplings, a coupling will be matched with available Code_Saturne instances
based on that argument, which should match the directory name for the given coupled domain..

The arguments of 'cs_sat_coupling define’ are:

- saturne_name: the matching Code_Saturne application name,

- volume_sup_criteria: the cell selection criteria for support,

- boundary_sup_criteria: the boundary face selection criteria for support (not functional),
- volume_cpl_criteria: the cell selection criteria for coupled cells,

- boundary_cpl_criteria: the boundary face selection criteria for coupled faces,

- verbosity: the verbosity level.

8.10 Fluid-Structure external coupling

Subroutine called only once

The subroutine usaste belongs to the module dedicated to external Fluid-Structure coupling with
Code_Aster. Here one defines the boundary faces coupled with Code_Aster and the fluid forces com-
ponents which are given to structural calculation. When using external coupling with Code_Aster,
structure numbers necessarily need to be negative; the references of coupled faces being i.e. -1, -2, etc.
The subroutine performs the following operations:

- ’'getfbr’ is called to get a list of elements matching a geometrical criterion or reference number
then a structure number (negative value) is associated to these elements.

- the value passed to asddlf, for user-chosen component, for every negative structure number,
defines the movement imposed to the external structure.

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 132/201

8.11 ALE module
8.11.1 Initialisation of the options

This initialisation can be performed in the Graphical User Interface (GUI) or in the subroutines usipph
and usstrl. Firstly, when the “Mobile mesh” is selected in GUI under the “Thermophysical models”
heading, additional options are displayed. The user must choose the type of mesh viscosity and describe
its spatial distribution, see Figure 58.

(%] Mobile mesh (ALE method)

Number of iterations for fluid initialization C]
Type of the viscosity of mesh

Spatial distribution of
the viscosity of the mesh

[user formula |vl

Formula for the viscosity of mesh =4

" Mathematical expression editor

Userexpressmn Predefined symbols Examples

mesh vil = 1; ‘

[oK H Cancel

Figure 58: Thermophysical models - mobile mesh (ALE method)

The following paragraphs are relevant if the GUI is not used.

SUBROUTINE USIPPH
Subroutine called at the beginning. This subroutine completes cs_user_parameters.f£90.

usipph allows setting options for the ALE module, and in particular to activate the ALE module
(iale=1).

SUBROUTINE USSTR1

This subroutine reads in cs_user_fluid _structure_interaction.f90. It allows to specify the follow-
ing pieces of information for the structure module:

- the index of the structure, (idfstr(ifac) where ifac is the index of the face). Then the total
number of structures nbstru is automatically computed by the code. Be careful, the value must
belong to 1, ..., nbstru.

- the initial value of displacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 133/201

e idfstr(ifac)
the index of the structure, (idfstr(ifac) where ifac is the index of the face), 0 if the face is
not coupled to any structure.

e xstr0(i,k)
initial position of a structure, where i is the dimension of space and k the index of the structure

e xstreq(i,k)
equilibrum position of a structure, where i is the dimension of space and k the index of the
structure

e vstr0(i,k)
initial velicity of a structure, where i is the dimension of space and k the index of the structure

8.11.2 Mesh velocity boundary conditions

These boundary conditions can be managed through the Graphical User Interface (GUI) or using the
subroutine usalcl (called at each time step). With the GUI, when the item “Mobile mesh” is activated
the item “Fluid structure interaction” appears under the heading “Boundary conditions”. Two types
of fluid-structure coupling are offered. The first one is internal, using a simplified structure model and
the second is external with Code_Aster, see Figure 59 and Figure 60.

SUBROUTINE USALCL

When the GUI is not used, the use of usalcl is mandatory to run a calculation using the ale module
just as it is in cs_user_parameters.f90. It is used the same way as cs_user_boundary_conditions
in the framework of standard calculations, that is to say a loop on the boundary faces marked out
by their colour (or more generally by a property of their family), where the type of mesh velocity
boundary condition is definied for each variable.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the mesh velocity from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the bound-
ary conditions defined in cs_user_boundary_conditions, or even from their coordinates. To
do so, the array ialtyb(nfabor) gives for each face ifac the mesh velocity boundary con-
dition types marked out by the key words ivimpo, igliss, ibfixe or ifresf..

e If ialtyb(ifac) = ivimpo: imposed velocity.

— In the cases where all the nodes of a face have a imposed displacement, it is not necessary
to fill the tables with mesh velocity boundary conditions for this face, these will be erased.
In the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for
every value of ivar (iuma, ivma and iwma). The other boxes of rcodcl and icodcl are
completed automatically.
The tangential mesh velocity is taken like a tape speed under the boundary conditions of
wall for the fluid, except if wall fluid velocity was specified by the user in the interface or
cs_user_boundary_conditions (in which case it is this speed which is considered).

e if ialtyb(ifac) = ibfixe: fixed wall

— the velocity is null.

o if ialtyb(ifac) = igliss: sliding wall

— symmetry boundary condition on the mesh velocity vector, which means a homogeneous
Neumann on the tangential mesh velocity and a zero Dirichlet on the normal mesh velocity.

e if ialtyb(ifac) = ifresf: free-surface

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 134/201

— an imposed mesh velocity such that the fluid mass flux is equal to the mesh displacement
in order to mimic the free-surface automatically. Note that the boundary condition on the
fluid velocity must be set separately (homogeneous Neumann conditionfor instance).

8.11.3 Modification of the viscosity

The user subroutine usvima is used along the ALE (Arbitrary Lagrangian Eulerian Method) module,
and fills mesh viscosity arrays. It is called at each time step. The user can modify mesh viscosity
values to prevent cells and nodes from huge displacements in awkward areas, such as boundary layer
for example. If iortvm = 0, the mesh viscosity modelling is considered as isotropic and therefore only
the viscmx array must be filled. If iortvm = 1, mesh viscosity modelling is orthotropic therefore all
arrays viscmy, viscmx, and viscmz need to be filled. Note that viscmx, viscmy and viscmz arrays
are initialized at the first time step with the value 1.

8.11.4 Fluid - Structure internal coupling

In the subroutine cs_user_fluid_structure_interaction the user provides the parameters of two
other subroutines. usstrl is called at the beginning of the calculation. It is used to define and
initialise the internal structures where fluid-Structure coupling occurs. For each boundary face ifac,
idfstr(ifac) is the index of the structure the face belongs to (if idfstr(ifac) = 0, the face ifac
doesn’t belong to any structure). When using internal coupling, structure index necessarily must be
strictly positive and smaller than the number of structures. The number of ”internal” structures is
automatically defined with the maximum value of the idfstr table, meaning that internal structure
numbers must be defined sequentially with positive values, beginning with integer value ’1’.

For each internal structure the user can define:

- an initial velocity vstr0

- an initial displacement xstr0 (i.e. xstr0 is the value of the displacement xstr compared to the
initial mesh at time t = 0)

- a displacement compared to equilibrium xstreq (i.e. xstreq is the initial displacement of the
internal structure compared to its position at equilibrium; at each time step t and for a displace-
ment xstr(t), the associated internal structure will undergo a force —k * (t + X STREQ) due to
the spring).

xstr0 and vstr0 are initialised with the value 0. When starting a calculation using ALE, or re-starting a
calculation with ALE, based on a first calculation without ALE, an initial iteration 0 is automatically
performed in order to take initial arrays xstr0, vstr0 and xstreq into account. In any other case, add
the following expression ’italin=1’ in subroutine usipsu, so that the code can deal with the arrays xstr0,
vstrO and xstreq.

When ihistr is set to 1, the code writes in the output the history of the displacement, of the structural
velocity, of the structural acceleration and of the fluid force. The value of structural history output
step is the same as the one for standard variables nthist.

The second subroutine, usstr2, is called at each iteration. One defines in this subroutine structural pa-
rameters (considered as potentially time dependent): i.e., mass m xmstru, friction coefficients ¢ xcstru,
and stiffness k xkstru. forstr array gives fluid stresses acting on each internal structure. Moreover it is
also possible to take external forces (gravity for example) into account.

. the xstr array indicates the displacement of the structure compared to its position in the initial
mesh,

. the xstr(Q array gives the displacement of the structures in the initial mesh compared to structural
equilibrium,

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 135/201

. the vstr array stands for structural velocity.

xstr, xstrQ and vstr are DATA tables that can be used to define the Mass, Friction and Stiffness arays.
These are not to be modified.

The 3D structural equation that is solved is the following one:
m.Oyz + c.oz + k. (2 + 20) = f, (6)

where x stands for the structural displacement compared to initial mesh position xstr, xzg represents
the displacement of the structure in initial mesh compared to equilibrium. Note that m,c, and k are
3x3 matrices. Equation (6) is solved using a Newmark HHT algorithm. Note that the time step used
to solve this equation, dtstr, can be different from the one of fluid calculations. The user is free to
define dtstr array. At the beginning of the calculation dtstr is initialised to the value of dtcel (fluid
time step).

8.12 Management of the structure property

The use of usstr2 is mandatory to run a calculation using the ALE module with a structure module.
It is called at each time step.

For each structure, the system that will be solved is:
Mz +Caz" +K.(x—z9=0 (7)
where
- M is the mass structure (xmstru).

- C is the damping coefficient of the structure (xcstru).

- K is the spring constant or force constant of the structure (xkstru).

xo is the initial position.
Below is a list of the different variables that might be modified:

e xmstru(i,j,k)
mass matrix of the structure, where i,j is the array of mass structure and k the index of the
structure.

e xcstru(i,j,k)
damping matrix coefficient of the structure, where i,j is the array of damping coefficient and k
the index of the structure.

e xkstru(i,j,k)
spring matrix constant of the structure, where 1,j is the array of spring constant and k the index
of the structure.

e forstr(i,k)
force vector of the structure, where i is the force vector and k the index of the structure.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 136/201

8.13 Management of the Atmospheric module

The selection of an atmospheric flow model can be made in the Graphical User Interface (GUI) under
the heading “Thermophysical models” in the item “Calculation features” or in the routine usppmo as
described in the section “Advanced modelling setup”.

The user can choose one of the following atmospheric flow models:

- “constant density”: no thermal variable, to simulate neutral atmosphere,

- “dry atmosphere”: potential temperature is used as thermal variable in order to simulate dry,
thermally-stratified atmospheric flows,

- “humid atmosphere”: liquid potential temperature, total water content, and droplet number are
used to simulate stratified atmospheric flows with water (liquid and vapor) together with phase
changes. The model is described in (Bouzereau, 2004).

When one of the atmospheric option is selected, it activates an item under the same heading: “Atmo-
spheric flows” where the path leading to a file containing meteorological data can be specified, see fig.
61. An example is given in the DATA/REFERENCE/meteo file.

The user can use the standard set of Code_Saturne boundary conditions but is warned that even small
inconsistencies can create very large buoyancy forces and spurious circulations.

Alternatively, the meteorological profile can be used to initialize the fields and to set up the inlet
boundary conditions. Optionally, the inlet can be detected automatically according to the direction of
the wind given in the meteorological file. This is often used for the lateral boundaries of the atmospheric
domain.

WARNING: the definition of the potential temperature (and the liquid potential temperature) requires
that the vertical component of the gravity is set at GZ=-9.81 (GX=GY=0) otherwise pressure and
density are not correctly computed.

8.13.1 Initialisation of the variables

If a meteorological file is given, it is used by default for initializing the variables. If not the standard
initialization is performed. The initialisation can be modified in the Graphical User Interface (GUI)
or in the subroutine cs_user_initialization_atmospheric example. In addition if the atmospheric
flow model chosen is “dry atmosphere”, the additional variable “PotTemp” appear below the other
code variables. For the “humid atmosphere”, the additional variables are: “LigPotTemp”, “TotWater”
and “NbDrop”.

When the GUI is not used, cs_user_initialization_atmospheric example (called only during the
calculation initialisation) allows to initialise or modify (in case of a restarted calculation) the calcu-
lation variables and the values of the time step. The example provided in the user file performs the
initialisation of the variables from meteorological profiles using the interpolation routine intprf.

8.13.2 Management of the boundary conditions

Boundary conditions can be set with the GUI, including the automatic use of the meteorological
profile for inlets. If not managed by the GUI, the boundary conditions must be managed by the
cs_user_boundary_conditions_atmospheric subroutine which gives various examples. For each type
of boundary condition, faces should be grouped as physical zones characterised by an arbitrary number
izone chosen by the user. If a boundary condition is retrieved from a meteorological profile, the variable
iprofm(izone) of the zone must be set to 1.

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 137/201

8.14 Cavitation module

The cavitation module is based on an homogeneous mixture model. The physical properties (density
and dynamic viscosity) of the mixture depends on a resolved void fraction and constant reference
properties of the liquid phase and the gas phase.

For a description of the user management of the cavitation module, please refer to the dedicated
doxygen documentation.

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 138/201

Internal coupling with a simplified structure model | External coupling with Code Aster]

~Internal coupling

Maximum number of sub-iterations for implicit 1
coupling with internal structures

with internal structures

Advanced options

Relative precision for implicit coupling 1e-05

~Structures definition

Structure number | Label | Location

Initial position

x| m | L a—r

Pasition of equilibrium

1 n LR e—

Initial velocity

Caracteristics of the structure

Mass matrix g
Damping matrix &

Stiffness matrix w

Force applied to the structure

Figure 59: Boundary conditions - internal coupling

EDF R&D

Code_Saturne version 4.0.5 practical user’s
guide

Code_Saturne
documentation
Page 139/201

Internal coupling with a simplified structure model

~External coupling

Fluid-structure post-treatement synchronisation ||

~Structures definition

Structure number | Label | Location

Blocage des DDL de force:
DDLX []
ooy [

DoLZ [

External coupling with Code_Aster

Atmospheric flows

Figure 60: Boundary conditions - external coupling

[%| Read the file of metecrological data

name of the data file: | |

Figure 61: Thermophysical models - atmospheric flows

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 140/201

9 Keyword list

The keywords are classified under relevant headings. For each keyword of Code_Saturne Kernel, the
following informations are given:

Variable name Type Allowed values [Default) 0/C Level
Description
Potential dependences

e Variable name: Name of the variable containing the keyword.
e Type: a (Array), i (Integer), r (Real number), ¢ (Character string).
e Allowed values: list or range of allowed values.

e Default: value defined by the code before any user modification (every keyword has one). In
some cases, a non-allowed value is given (generally —999 or —10'2), forcing the user to specify a
value. If he does not do it, the code may:

- automatically use a recommended value (for example, automatic choice of the variables for
which chronological records will be generated).

- stop, if the keyword is essential.

e O/C: Optional/Compulsory
- O: optional keyword, whose default value may be enough.
- C: keyword which must imperatively be specified.

e Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 keywords are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 keywords are all optional.

- L3 (level 3): the developers may have to modify it; it keeps its default value in any other
case. The L3 keywords are all optional.

e Description: keyword description, with its potential dependences.
The L1 keywords can be modified through the Graphical Use Interface or in the cs_user_parameters.f90
file. L2 and L3 keywords can only be modified through the cs_user_parameters.f90 file, even if they

do not appear in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the keywords which do not belong to the L1 level.

The alphabetical keyword list is displayed in the index, in the end of this report.

NOTES
e The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
e The notation “grand” (which can be used in the code) corresponds to 102,

9.1 Input-output

NOTES

o Two different files can have neither the same unit number nor the same name.

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 141/201

9.1.1 ”Calculation” files

GENERAL

VORTEX METHOD FOR LES

impmvo i strictly positive integer [impmvo] O L3
unit of the upstream restart file for the vortex method
useful if and only if isuivo = 1 and ivrtex=1

impvvo i strictly positive integer [impvvo] O L3
unit of the downstream restart file for the vortex method
useful if and only if ivrtex=1

impdvo i strictly positive integer [impdvo] O L3
unit of the ficvor data files for the vortex method. These files are text files. Their
number and names are specified by the user in the usvort subroutine.
(Although it corresponds to an “upstream” data file, impdvo is initialized to 20 be-
cause, in case of multiple vortex entries, it is opened at the same time as the ficmvo
upstream restart file, which already uses unit 11)
useful if and only if ivrtex=1

THERMOCHEMISTRY

impfpp i strictly positive integer [25] 0] L3
unit of the thermochemical data file
useful in case of gas or pulverised coal combustion or electric arcs

ficfpp c string of 32 characters [dp-tch] 0] L3
name of the thermochemical data file. The launch script is designed to copy the user
specified thermochemical data file in the temporary execution directory under the
name dp_tch, for Code_Saturne to open it properly. Should the value of ficfpp be
changed, the launch script would have to be adapted.
useful in case of gas or pulverised coal combustion

impjnf i strictly positive integer [impfpp] @) L3
unit of the JANAF data file
useful in case of gas or pulverised coal combustion

ficjnf ¢ string of 5 characters [JANAF] Q) L3

LAGRANGIAN

name of the JANAF data file. The launch script is designed to copy the user specified
JANAF data file in the temporary execution directory under the name JANAF, for
Code_Saturne to open it properly. Should the value of ficjnf be changed, the launch
script would have to be adapted.

useful in case of gas or pulverised coal combustion

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 142/201
implal i strictly positive integer [50]) L3

unit of a file specific to Lagrangian modelling
useful in case of Lagrangian modelling

impla?2 i strictly positive integer [51] @) L3
unit of a file specific to Lagrangian modelling
useful in case of Lagrangian modelling

impla3 i strictly positive integer [52] O L3
unit of a file specific to Lagrangian modelling
useful in case of Lagrangian modelling

implad i strictly positive integer [53] O L3
unit of a file specific to Lagrangian modelling
useful in case of Lagrangian mode ling

implab ia strictly positive integer [54 to 68] O L3
units of files specific Lagrangian modelling, 15-dimension array
useful in case of Lagrangian modelling

9.1.2 Post-processing for EnSight or other tools

NOTES

e The format depends on the user choices, and most options are defined using the GUI or
cs_user_postprocess.c.

e The post-processing files can be of the following formats: Ensight Gold, MED or CGNS. The use
of the two latter formats depends on the installation of the corresponding external libraries.

e For each quantity (problem unknown, preselected numerical variable or preselected physical pa-
rameter), the user specifies if a post-processing output is wanted. The output frequency can be set.

keyvis ifk field key, 0, 1, 2, or 3 [0] 0] L1

for each quantity defined at the cell centres (physical or numerical variable), indicator
of whether it should be post-processed or not

= -999: not initialised. By default, the post-processed quantities are the
unknowns (pressure, velocity, k, €, R;;, w, ¢, f, scalars), density, turbulent viscosity
and the time step if is not uniform

= 0: not post-processed

= 1: post-processed on main location

= 2: non-reconstructed values postprocessed on boundary if main location is
cells

= 3: both 1 and 2
useful if and only if the variable is defined at the cell centers or boundary faces:
calculation variable, physical property (time step, density, viscosity, specific heat) or
turbulent viscosity if iturb > 10

9.1.3 Chronological records of the variables on specific points

STANDARD USE THROUGH INTERFACE OR CS_USER_PARAMETERS.F90
For each quantity (problem unknown, preselected numerical variable or preselected physical parame-
ter), the user indicates whether chronological records should be generated, the output period and the

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 143/201

position of the probes. The code generates chronological records at the cell centers located closest to
the geometric points defined by the user by means of their coordinates. For each quantity, the number
of probes and their index-numbers must be specified (it is not mandatory to generate all the variables
at all the probes).

ncapt

Xyzcap

ihisvr

emphis

nthist

i positive or null integer [0] 0] L1
total number of probes (limited to ncaptm=100)
always useful

ra real numbers [0.0]) L1
3D-coordinates of the probes

the coordinates are written: xyzcap(i,j), with i =1, 2 or 3 and j < ncapt

useful if and only if ncapt > 0

ia -999, -1 or positive or null integer [-999] 0 L1
number ihisvr(n, 1) and index-numbers ihisvr(n, j>1) of the recording probes
to be used for each variable, i.e. calculation variable or physical property defined at
the cell centers. With ihisvr(n, 1)=-999 or -1, ihisvr(n, j>1) is useless.
e ihisvr(n, 1): number of recording probes to use for the variable N

= -999: default value: chronological records are generated on all the probes if
N is one of the main variables (pressure, velocity, turbulence, scalars), the local time
step or the turbulent viscosity. For the other quantities, no chronological record is
generated.

= -1: chronological records are produced on all the probes

= 0: no chronological record on any probe

> 0: chronological record on ihisvr(n, 1) probes to be specified with
ihisvr(n, j>1)
always useful, must be less than or equal to ncapt

e ihisvr(n, j>1): index-numbers of the probes used for the variable n

(with j <ihisvr(a,1)+1)

= -999: by default: if ihisvr(n, 1) # -999, the code stops. Otherwise, refer
to the description of the case ihisvr(n, 1)=-999
useful if and only if ihisvr(n, 1) >0
The condition ihisvr(n, j) <ncapt must be respected.
For ease to use, it is recommended to simply specify ihisvr(n,1)=-1 for all of the
interesting variables.

¢ string of less than 80 characters [./] Q) L3
directory in which potential chronological record files generated by the Kernel will be
written (path related to the execution directory)

it is recommended to keep the default value and, if necessary, to modify the launch
script to copy the files in the alternate destination directory

useful if and only if chronological record files are generated (i.e. there is n for which
ihisvr(n, 1) # 0)

i -1 or strictly positive integer [1 or -1] @) L1
output period of the chronological record files

= -1: no output

> 0: period (every nthist time step)
The default value is -1 when there is no chronological record file to generate (if there
is no probe, ncapt = 0, or if ihisvr(n, 1)=0 for all the variables) and 1 otherwise
If chronological records are generated, it is usually best to keep the default value
nthist=1, in order to avoid missing any high frequency evolution (unless the total
number of time steps is too large to do so)

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 144/201

useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) or there is n for which ihisvr(n, 1) # 0)

nthsav i -1 or positive or null integer [0] 0) L3
saving period the chronological record files (they are first stored in a temporary file
and then saved every nthsav time step)
= 0: by default (4 times during a calculation)
= -1: saving at the end of the calculation
> 0: period (every nthsav time step)
During the calculation, the user can read the chronological record files in the ex-
ecution directory when they have been saved, i.e. at the first time step, at the
tenth time step and when the time step number is a multiple of nthsav (multiple
of (ntmabs-ntpabs)/4 if nthsav=0)
Note: using the control_file file enables to update the value of ntmabs. Hence, if the
calculation is at the time step n, a save of the chronological record files can be forced
by changing ntmabs to ntpabs+4(n+1) using control_file; after the files have been
saved, ntmabs can be reset to its original value, still using control_file.
useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) there is n for which ihisvr(n, 1) # 0)

NON-STANDARD USE THROUGH USHIST

(see p. 96)

impush ia strictly positive integer [33 to 324+nushmx=49] O L3
units of the user chronological record files
useful if and only if the subroutine ushist is used

ficush ca strings of 13 characters [ush* or ush*.n_%] 0] L2

names of the user chronological record files. In the case of a non-parallel calculation,
the suffix applied the file name is a three digit number: ush001, ush002, ush003...

In the case of a parallel-running calculation, the processor index-number is added to
the suffix. For instance, for a calculation running on two processors: ush001.n_0001,
ush002.n_0001, ush003.n_0001... and ush001.n_0002, ush002.n_0002, ush003.n_0002...
The opening, closing, format and location of these files must be managed by the user.
useful if and only if the subroutine ushist is used

9.1.4 Time averages

See the dedicated Doxygen documentation.

9.1.5 Others

impusr ia strictly positive integer [70 to 69+nusrmx="T79] O L3
unit numbers for potential user specified files
useful if and only if the user needs files (therefore always useful, by security)

ficusr ca string of 13 characters [usrf* or usrf*.n*] O L1
name of the potential user specified files. In the case of a non-parallel calculation, the
suffix applied the file name is a two digit number: from usrf01 to usrf10. In the case
of a parallel-running calculation, the four digit processor index-number is added to the
suffix. For instance, for a calculation running on two processors: from usrf01.n_0001

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
cuide Page 145/201
to usrf10.n_0001 and from usrf01.n_0002 to usrf10.n_0002. The opening, closing,
format and location of these files must be managed by the user.
useful if and only if the user needs files (therefore always useful, by security)
keylog ifk lor0 [-1] O L1
for every quantity (variable, physical or numerical property ...), indicator concerning
the writing in the execution report file
= 1: writing in the execution listing.
= 0: no writing.
always useful
iwarni ia integer [0] @) L1
iwarni (ivar) characterises the level of detail of the outputs for the variable ivar
(from 1 to nvar). The quantity of information increases with its value.
Impose the value 0 or 1 for a reasonable listing size. Impose the value 2 to get a
maximum quantity of information, in case of problem during the execution.
always useful
nomvar ca string of less than 80 characters [“7] 0] L1
name of the variables (unknowns, physical properties ...): used in the execution listing,
in the post-processing files, etc.
“”: not initialised (the code chooses the manes by default)
It is recommended not to define variable names of more than 16 characters, to get a
clear execution listing (some advanced writing levels take into account only the first
16 characters).
always useful
ntlist i -1 or strictly positive integer [1] O L1
writing period in the execution report file
= -1: no writing
> 0: period (every ntlist time step)
The value of ntlist must be adapted according to the number of iterations carried
out in the calculation. Keeping ntlist to 1 will indeed provide a maximum volume
of information, but if the number of time steps is too large, the execution report file
might become too big and unusable (problems with disk space, memory problems
while opening the file with a text editor, problems finding the desired information in
the file, ...).
always useful
ntsuit i -1, 0 or positive or null integer [0] 0 L3

saving period of the restart files
= -2: no restart at all
= -1: only at the end of the calculation
= 0: by default (four times during the calculation)
> 0: period
always useful

9.2 Numerical options

9.2.1 Calculation management

iecaux

i Oorl [1] 0) L2
indicates the writing (=1) or not (=0) of the auxiliary calculation restart file

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
cuide Page 146/201

always useful

ileaux i Oorl [1] 0] L2
indicates the reading (=1) or not (=0) of the auxiliary calculation restart file
useful only in the case of a calculation restart

inpdt0 i Oorl [0] o) L1
indicates the calculation mode: 1 for a zero time step control calculation, i.e. without
solving the transport equations, and 0 for a standard calculation.
In case of a calculation using the control mode (inpdt0=1), when the calculation is not
a restart, the equations are not solved, but the physical properties and the boundary
conditions are calculated. When the calculation is a restart, the physical properties
and the boundary conditions are those read from the restart file (note: in the case of
a second-order time scheme, the mass flow is modified as if a normal time step was
realised: the mass flow generated in an potential post-processing is therefore not the
mass flow read from the restart file).
In the control mode (inpdt0=1), the variable ntmabs is not used.
In the standard mode (inpdt0=0), the code solves the equations at least once, even
if ntmabs=0.
always useful

isuite i Oorl [0] C L1
indicator of a calculation restart (=1) or not (=0)
always useful. This value is set automatically by the code; depending on whether a
restart directory is present, and should not be modified by the user

ntcabs i integer [ntpabs] Q) L3
current time step number
always useful
ntcabs is initialised and updated automatically by the code, its value is not to be
modified by the user

ntmabs i integer > ntpabs [10] C L1
number of the last time step after which the calculation stops. It is an absolute
number: for the restart calculations, ntmabs takes into account the number of time
steps of the previous calculations. For instance, after a first calculation of 3 time steps,
a restart file of 2 time steps is realised by setting ntmabs=3+2=5
always useful

ntpabs i integer [0, read] 0 L3
number of the last time step in the previous calculation. In the case of a restart
calculation, ntpabs is read from the restart file. Otherwise it is initialised to 0
always useful
ntpabs is initialised automatically by the code, its value is not to be modified by the
user

tmarus r -1 or strictly positive real [-1] Q) L3

margin in seconds on the remaining CPU time which is necessary to allow the calcula-
tion to stop automatically and write all the required results (for the machines having
a queue manager)

= -1: calculated automatically

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
cuide Page 147/201
> 0: margin defined by the user
always useful, but the default value should not be changed unless absolutely necessary.
ttcabs T positive or null real number [ttpabs] @) L3
physical simulation time at the current time step. For the restart calculations, ttcabs
takes into account the physical time of the previous calculations.
If the time step is uniform (idtvar=0 or 1), ttcabs increases of dt (value of the time
step) at each iteration. If the time step is non-uniform (idtvar=2), ttcabs increases
of dtref at each time step.
always useful
ttcabs is initialised and updated automatically by the code, its value is not to be
modified by the user
ttpabs r positive or null real number [0, read]) L3

simulation physical time at the last time step of the previous calculation. In the case
of a restart calculation, ttpabs is read from the restart file. Otherwise it is initialised
to 0.

always useful

ttcabs is initialised automatically by the code, its value is not to be modified by the
user

9.2.2 Scalar unknowns

nscaus

itherm

iscalt

i 0< integer < nscmax [0] 0) L1
number of user scalars solutions of an advection equation
always useful

ia 0,1,2o0r3 [0] Q) L1

= 0: no thermal model

= 1: temperature

= 2: enthalpy

= 3: total energy (only for compressible module).
When a particular physics module is activated (gas combustion, pulverised coal, elec-
tricity or compressible), the user must not modify itherm (the choice is made auto-
matically: the solved variable is either the enthalpy or the total energy). The user is
also reminded that, in the case of a coupling with SYRTHES, the solved thermal vari-
able should be the temperature (itherm=1). More precisely, everything is designed
in the code to allow for the running of a calculation coupled with SYRTHES with the
enthalpy as thermal variable (the correspondence and conversion is then specified by
the user in the subroutine usthht). However this case has never been used in practice
and has therefore not been tested. With the compressible model, it is possible to carry
out calculations coupled with SYRTHES, although the thermal scalar represents the
total energy and not the temperature.

ia -1 or integer > 0 [-1] @) L1
iscalt is the index-number of the scalar representing the temperature or the en-
thalpy. If iscalt=-1, neither the temperature nor the enthalpy is represented by a
scalar. When a specific physics module is activated (gas combustion, pulverised coal,
electricity or compressible), the user must not modify iscalt (the choice is made au-
tomatically)3!.

useful if and only if nscal > 1.

31Tn the case of the compressible module, iscalt does not correspond to the temperature nor enthalpy but to the total

energy

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
cuide Page 148/201
iscacp ia Oorl [0] @) L2
= 0: scalar does not behave like a temperature
= 1: scalar behaves like a temperature (use C, for wall law).
useful if and only if nscal > 1.
itpscl ia 0,1or2 [0] 0) L1
= 0: none
= 1: Kelvin
= 2: Celsius
The distinction between itpscl = 1 or 2 is useful only in case of radiation modelling.
For calculations without radiation modelling, use itpscl=1 for the temperature.
useful if and only if nscal > 1.
iclvfl ia -1,0,1or 2 [-1] @) L3
for every scalar iscal representing the average of the square of the fluctuations of
another scalar ii=iscavr(iscal) (noted f), indicator of the clipping method
= -1: no clipping because the scalar does not represent the average of the
square of the fluctuations of another scalar
= 0: clipping to 0 for the lower range of values
= 1: clipping to 0 for the lower range of values and to (f — fimin)(fimaz — f)
for higher values, where f is the associated scalar, fpin and finee its minimum and
maximum values specified by the user (i.e. scamin(ii) and scamax(ii))
= 2: clipping to max (0,scamin(iscal)) for lower values and to scamax (iscal)
for higher values. scamin and scamax are limits specified by the user
useful for the scalars iscal for which iscavr(iscal)>0.
itbrrb i Oorl [0] O L3
Reconstruction (=1) or not (=0) of the temperature, enthalpy or total energy value in
the boundary cells. Useful in the case of coupling with SYRTHES and with radiation.
icpsyr ia -999,0,1 [-999] 0] L3

For each scalar iscal, icpsyr(iscal) indicates whether it is coupled with SYRTHES
(=1) or not (=0). There can be only one coupled scalar per calculation.
=-999: by default
e icpsyr(iscal)=1 for the thermal scalar iscal=(iscalt) when a
coupling with SYRTHES has been specified
e icpsyr(iscal)=0 otherwise
= 0: the scalar iscal is not coupled with SYRTHES
= 1: the scalar iscal is coupled with SYRTHES
useful in case of coupling with SYRTHES

9.2.3 Definition of the equations

istat

iconv

ia Oorl [1 or 0] @) L2
for each unknown ivar to calculate, indicates whether unsteady terms are present
(istat(ivar)=1) or not (0) in the matrices.

By default, istat is set to 0 for the pressure (variable ivar=ipr) or f in v2f modelling
(variable ivar=ifb) and set to 1 for the other unknowns.

useful for all the unknowns

ia Oorl [1 or 0] 0) L2
for each unknown ivar to calculate, indicates if the convection is taken into account

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 149/201

(iconv(ivar)=1) or not (0).

By default, iconv is set to 0 for the pressure (variable ivar=ipr) or f in v2f modelling
(variable ivar=ifb) and set to 1 for the other unknowns.

useful for all the unknowns

idiff ia Oorl 1] O L2
for each unknown ivar to calculate, indicates whether the diffusion is taken into
account (idiff (ivar)=1) or not (0)
useful for all the unknowns

idifft ia Oorl [1] @) L3
for each unknown ivar to calculate, when diffusion is taken into account (idiff (ivar)=1),
idifft(ivar) indicates if the turbulent diffusion is taken into account (idifft(ivar)=1)
or not (0)
useful for all the unknowns

idircl ia Oor1l [1 or 0] Q) L3
for each unknown ivar to calculate, indicates whether the diagonal of the matrix
should be slightly shifted (idircl(ivar)=1) or not (0) if there is no Dirichlet bound-
ary condition and if istat=0. Indeed, in such a case, the matrix for the general
advection/diffusion equation is singular. A slight shift in the diagonal will make it
invertible again.
By default, idircl is set to 1 for all the unknowns, except f in v2f modelling, since
its equation contains another diagonal term that ensures the regularity of the matrix.
useful for all the unknowns

ivisse ia Oor1l [1] 0 L3

indicates whether the source terms in transposed gradient and velocity divergence
should be taken into account in the momentum equation. In the compressible module,
these terms also account for the volume viscosity (cf. viscv0 and iviscv):
9: (5 — 2/3 (1 + 1)) O] + 0 [(1 + 1)U

= 0: not taken into account

= 1: taken into account
always useful

9.2.4 Definition of the time advancement

idtvar i -1,0,1,2 [0] O L1

type of time step

= 0: constant in time and spatially uniform

= 1: variable in time and spatially uniform

= 2: variable in time and in space

= -1: steady-state algorithm
If the numerical scheme is a second-order in time, only the option 0 is allowed.
always useful

idilat i 1,2,3,4 [1] 0] L1
Algorithm to take into account the density variation in time
= 1: steady dilatable flow algorithm (default)
= 2: unsteady dilatable flow algorithm
= 3: low-Mach number algorithm

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 150/201
= 4: non conservative algorithm for fire simulation

always useful

iptlro i Oorl [0] 0] L2
when density gradients and gravity are present, a local thermal time step can be cal-
culated, based on the Brunt-Vaisala frequency. In numerical simulations, it is usually
wise for the time step to be lower than this limit, otherwise numerical instabilities
may appear
iptlro indicates whether the time step should be limited to the local thermal time
step (=1) or not (=0)
when iptlro=1, the listing shows the number of cells where the time step has been
clipped due to the thermal criterion, as well as the maximum ratio between the time
step and the maximum thermal time step. If idtvar=0, since the time step is fixed
and cannot be clipped, this ratio can be greater than 132. When idtvar>0, this ratio
will be less than 1, except if the constraint dtmin has prevented the code from reaching
a sufficiently low value for dt
useful when density gradients and gravity are present

cdtvar ra strictly positive real number [1] 0] L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity /pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar (isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly not recommended
useful if and only if nscal > 1

coumax r strictly positive real number [1]) L1
target Courant number (local or maximum) in case of non-constant time step
useful if idtvar # 0

foumax r strictly positive real number [10] 0) L1
target Fourrier nmber (local or maximum) in case of non-constant time step
useful if idtvar # 0

dtref T strictly positive real number [-grand*10] C L1
reference time step value
always useful.
This is the time step value used in the case of a calculation run with a uniform and
constant time step, i.e. idtvar=0 (restart calculation or not). It is the value used to
initialise the time step in the case of an initial calculation run with a non-constant time
step (idtvar=1 or 2). It is also the value used to initialise the time step in the case
of a restart calculation in which the type of time step has been changed (for instance,
idtvar=1 in the new calculation and idtvar=0 or 2 in the previous calculation): see
cs_user_initialization

dtmin r positive or null real number [0.1*dtref] @) L2

lower limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0

32Tt is then the user’s choice to decide whether he should diminish DTREF or not

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 151/201
dtmax r strictly positive real number [1000*dtref] O L2
upper limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0
varrdt r strictly positive real number [0.1] 0 L3
maximum allowed relative increase in the calculated time step value between two
successive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)
useful if idtvar # 0
relxst r 0<real <1 [0.9] Q) L2
relaxation coefficient for the steady algorithm (relaxp=1: no relaxation)
useful if idtvar=-1
relaxv ra 0<real <1 [0.7 or 1] 0] L3

for each variable ivar, relaxation coefficient of the variable. This relaxation parame-
ter is only useful for the pressure with the unsteady algorithm (so as to improve the
convergence in case of meshes of insufficient quality or and for some of the turbulent
models (iturb = 20, 21, 50 or 60 and ikecou=0; if ikecou=1, relaxv(ivar) is not
used, whatever its value may be). Default values are 0.7 for turbulent variables and
1. for pressure.

relaxv also stores the value of the relaxation coefficient when using the steady algo-
rithm, deduced from the value of relxst (defaulting to relaxv(ivar eq 1. - relxst)
useful only for the pressure and for turbulent variables if and only if (k — e, v2f or
k — w models without coupling) with the unsteady algorithm

always useful with the steady algorithm

NON-CONSTANT TIME STEP

The calculation of the time step uses a reference time step DTREF (at the calculation beginning).
Later, every time step, the time step value is calculated by taking into account the different existing
limits, in the following order:

e coumax, foumax: the more restrictive limit between both is used (in the compressible module,
the acoustic limitation is added),

e varrdt: progressive increase and immediate decrease in the time step,

e iptlro: limitation by the thermal time step,

e dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

9.2.5 Turbulence

iturb

. 0, 10, 20, 21, 30, 31, 32,
! 40, 41, 42, 50, 51, 60, 70 [-999] © L1
indicator of the turbulence model iturb

= -999: not initialised. This value is not allowed and must be modified by
the user

= 0: laminar

= 10: mixing length (not valided)

=20: k—¢

= 21: k — ¢ with linear production (Laurence & Guimet)

= 30: R;; — ¢ “standard” LRR (Launder, Reece & Rodi)

= 31: R;; —e SSG (Speziale, Sarkar & Gatski)

= 32: R;; —e EBRSM (elliptic blending)

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 152/201

= 40: LES (Smagorinsky model)
= 41: LES (dynamic model)
= 42: LES (WALE model)
= 50: v2-f, p-model version
= 51: v2-f, BL-v2/k version
= 60: k — w, SST version
= 70: Spalart-Allmaras
always useful

The k — ¢ (standard and linearized production) and R;; —e (LRR and SSG) turbulence models imple-
mented in Code_Saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sub-layer (at
the wall, y* > 2.5 is required as a minimum, and preferably between 30 and 100)33. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. keyword ideuch) may help avoiding this problem.

The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sub-layer (y* < 1).
The k — w SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the keyword icdpar for more details about the potential limitations.

The k£ — € model with linear production allows to correct the known flaw of the standard k& — & model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).

With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sub-layer, where the
boundary conditions are simple natural no-slip conditions.

Concerning the LES model, the user may refer to the subroutine ussmag for complements about the
dynamic model. Its usage and the interpretation of its results require particular attention. In addi-
tion, the user must pay further attention when using the dynamic model with the least squares method
based on a partial extended neighbourhood (imrgra=3). Indeed, the results may be degraded if the
user does not implement his own way of averaging the dynamic constant in ussmag (i.e. if the user
keeps the local average based on the extended neighbourhood).

iturt ia 0, 10, 20 or 30 [0] @) L2

indicator of the turbulent flux model Y’v’ for any scalar Y’

= 0: Simple Gradient Hypothesis (default value)

= 10: Generalized Gradient Hypothesis

= 20: Algebraic Flux Model

= 30: Differential Flux Model (transport equations of the turbulent flux)
GGDH, AFM and DFM are only available when a second order closure is used (i.e.
iturb=30, 31, 32).

ideuch i 0,1or2 [0 or 1] 0O L2

indicates the type of wall function is used for the velocity boundary conditions on a
frictional wall.

= 0: one-scale model

= 1: two-scale model

= 2: scalable wall function
ideuch is initialised to 0 for iturb=0, 10, 40 or 41 (laminar, mixing length, LES).
ideuch is initialised to 1 for iturb=20, 21, 30, 31 or 60 (k — ¢, R;; —¢ LRR, R;; — ¢
SSG and k£ —w SST models).
The v2f model (iturb=>50) is not designed to use wall functions (the mesh must be

33While creating the mesh, y* = % is generally unknown. It can be roughly estimated as %, where U is the

characteristic velocity, v is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 153/201
“low Reynolds”).
The value ideuch=1 is not compatible with iturb=0, 10, 40 or 41 (laminar, mixing
length and LES).
Concerning the k — ¢ and R;; — € models, the two-scales model is usually at least as
satisfactory as the one-scale model.
The scalable wall function allows to virtually “shift” the wall when necessary in order
to be always in a logarithmic layer. It is used to make up for the problems related to
the use of High-Reynolds models on very refined meshes.
useful if iturb is different from 50
ilogpo i Oor1l 1] 0O L3
type of wall function used for the velocity: power law (ilogpo=0, deprecated) or
logarithmic law (ilogpo=1)
always useful
ypluli T real number > 0 [1/xkappa, 10.88] O L3

limit value of y* for the viscous sub-layer

ypluli depends on the chosen wall function: it is initialised to 10.88 for the scalable
wall function (ideuch=2), otherwise it is initialised to 1/k = 2, 38

In LES, ypluli is taken by default to be 10.88

always useful

k —e, k — e WITH LINEAR PRODUCTION, V2-F AND k —w SST

igrake

igrhok

ikecou

iclkep

i Oor1l [1] 0O L1
indicates if the terms related to gravity in the equations of k and ¢ or w are taken into
account (igrake=1) or not (0)
useful if and only if iturb = 20, 21, 50 or 60, (gx, gy, gz) # (0,0,0) and the density
is not uniform

i Oorl [0] @) L2
indicates if the term %Zpk is taken into account

(igrhok=1) or not (0) in the velocity equation

useful if and only if iturb = 20, 21, 50 or 60.

This term may generate non-physical velocities at the wall. When it is not explicitly
taken into account, it is implicitly included into the pressure.

i Oorl [0 or 1] 0] L3
indicates if the coupling of the source terms of k£ and € or k and w is taken into account
(ikecou=1) or not (0)

if ikecou=0 in k — € model, the term in ¢ in the equation of k in made implicit
ikecou is initialised to 0 if iturb = 21 or 60, and to 1 if iturb= 20

ikecou=1 is forbidden when using the v2f model (iturb=>50)

useful if and only if iturb = 20, 21 or 60 (k — ¢ and k — w models)

i Oorl [0] 0 L3
indicates the clipping method used for k and €, for the & — € and v2f models

= 0: clipping in absolute value

= 1: clipping from physical relations
useful if and only if iturb = 20, 21 or 50 (k — e and v2f models). The results obtained

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 154/201
with the method corresponding to iclkep=1 showed in some cases a substantial sen-
sitivity to the values of the length scale almax.
The option iclkep=1 is therefore not recommended, and, if chosen, must be used
cautiously.
irccor i Oorl [0] 0] L2
Activation of rotation/curvature correction for eddy viscosity turbulence models.
= 0: activated
= 1: not activated
useful if and only if iturb = 20, 21, 50, 51, 60, 70 (eddy viscosity models)
itycor i lor2 [1 or 2] @) L2

Type of rotation/curvature correction for eddy viscosity turbulence models:

= 1: Cazalbou correction (default when irccor=1 and iturb=20, 21 or 50,
51)

= 2: Spalart-Shur correction (default when irccor=1 and iturb=60 or 70)

Rij — € (LRR AND SSG)

iclptr

iclsyr

idifre

igrari

idirsm

irijec

i Oorl [0] o) L3
indicates if R;; is made partially implicit (iclptr=1) or not (0) in the wall boundary
conditions.
useful if and only if iturb = 30 or 31 (R;; — € model)

i Oor1 [0] 0O L3
indicates if R;; is made partially implicit (iclsyr=1) or not (0) in the symmetry
boundary conditions.

useful if and only if iturb = 30 or 31 (R;; — ¢ model)

i Oor 1 1] 0 L3
complete (idifre=1) or simplified (0) taking into account of the diagonals of the
diffusion tensors of R;; and ¢, for the LLR model.
useful if and only if iturb = 30 (LLR R;; — ¢ model)

i Oor1 [1]) L1
indicates if the terms related to gravity are taken into account (igrari=1) or not (0)
in the equations of R;; —e¢.
useful if and only if iturb = 30 or 31 and (gx, gy, gz) # (0,0,0) (R;; —¢ model with
gravity) and the density is not uniform

i Oorl [1] Q) L3
model for the turbulent diffusion of R;; and € in second moment closure. Shir model
(isotropic diffusion) if 0, Daly and Harlow model if 1, default value.

i Oorl [0] 0 L2
indicates if the wall echo terms in R;;—s LRR model are taken into account (irijec=1)
or not (0).

useful if and only if iturb = 30 (R;; — ¢ LRR).

It is not recommended to take these terms into account: they have an influence only
near the walls, their expression is hardly justifiable according to some authors and, in

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 155/201
the configurations studied with Code_Saturne, they did not bring any improvement in
the results.
In addition, their use induces an increase in the calculation time.
The wall echo terms imply the calculation of the distance to the wall for every cell in
the domain. See icdpar for potential restrictions due to this.
irijnu i Oor1 [0] 0 L3
addition (irijnu=1) or not (0) of a turbulent viscosity in the matrix of the incre-
mental system solved for the velocity in R;; — ¢ models. The goal is to improve the
stability of the calculation. The usefulness of irijnu=1 has however not been clearly
demonstrated.
Since the system is solved in incremental form, this extra turbulent viscosity does not
change the final solution for steady flows. However, for unsteady flows, the parameter
nswrsm should be increased.
useful if and only if iturb = 30 or 31 (R;; — ¢ model).
irijrb i Oor1l [0] 0] L3
reconstruction (irijrb=1) or not (0) of the boundary conditions at the walls for R;;
and e.
useful if and only if iturb = 30 or 31 (R;; — ¢ model)
LES
ivrtex i Oorl [0] 0 L1
activates (=1) or not (=0) the generation of synthetic turbulence at the different inlet
boundaries with the LES model (generation of unsteady synthetic eddies)
useful if iturb=40, 41 or 42
this keyword requires the completion of the routine usvort
isuivo i Oorl [isuite] o) L1
for the vortex method, indicates whether the synthetic vortices at the inlet should be
initialised (=0) or read from the restart file.
useful if iturb=40, 41, 42 and ivrtex=1
isuisy i Oorl [isuite] 0] L1
Reading of the LES inflow module restart file.
= 0: not activated
= 1: activated
If isuisy=1, synthetic fluctuations are not re-initialized in case of restart calculation.
useful if iturb=40, 41 or 42
idries i Oorl [0,1] 0] L2
idries activates (1) or not (0) the van Driest wall-damping for the Smagorinsky con-
stant (the Smagorinsky constant is multiplied by the damping function 1 — v/ cdries
where yT designates the non-dimensional distance to the nearest wall). The default
value is 1 for the Smagorinsky model and 0 for the dynamic model.
the van Driest wall-damping requires the knowledge of the distance to the nearest wall
for each cell in the domain. Refer to keyword icdpar for potential limitations
useful if and only if iturb = 40 or 41
cdries r real number > 0 [26] 0) L3

cdries is the constant appearing in the van Driest damping function applied to the

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 156/201

Smagorinsky constant: 1 — ¥ /cdries
useful if and only if iturb = 40 or 41

csmago r real number > 0 [0.065] @) L2
csmago is the Smagorinsky constant used in the Smagorinsky model for LES
the sub-grid scale viscosity is calculated by psq = pC’fmagoﬁzy /25;;S;; where A is the
width of the filter and S;; the filtered strain rate
useful if and only if iturb = 40

smagmx r real number > 0 [10*csmago] o) L3
smagmx? is the maximum allowed value for the variable C' appearing in the LES dy-
namic model (the “square” comes from the fact that the variable of the dynamic model
corresponds to the square of the constant of the Smagorinsky model). Any larger value
yielded by the calculation procedure of the dynamic model will be clipped to smagmx?
useful if and only if iturb = 41

xlesfl r real number > 0 [2] 0] L3
xlesfl is a constant used to define, for each cell §2;, the width of the (implicit) filter:
A = zlesfl(ales x |Q;])btes
useful if and only if iturb = 40 or 41

ales r real number > 0 [1] o) L3
ales is a constant used to define, for each cell §;, the width of the (implicit) filter:
A = zlesfl(ales x |Q;])btes
useful if and only if iturb = 40 or 41

bles r real number > 0 [1/3] 0] L3
bles is a constant used to define, for each cell ;, the width of the (implicit) filter:
A = zlesfl(ales * |Q;])bes
useful if and only if iturb = 40 or 41

xlesfd r real number > 0 [1.5] 0] L3

xlesfd is the constant used to define, for each cell €;, the width of the explicit filter
used in the framework of the LES dynamic model:

A = zlesfdA

useful if and only if iturb = 41

9.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modelling. On the other hand, when “specific physics” (gas combustion, pulverised coal,
compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modelling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 157/201

ischtp

istmpf

isno2t

isto2t

i 1or2 [1 or 2] O L2
ischtp indicates the order of the activated time scheme (this indicator allows the code
to automatically complete the other indicators related to the time scheme)

= 1: first-order

= 2: second-order
when ischtp=2, the physical properties are by default not second-order. It it possible
to modify this by means of the following indicators.
due to specific coupling between certain variables, the source terms in the turbulence
equations (except convection and diffusion) cannot be second order, except with the
R;; models (cf. keyword isto2t)
by default, ischtp is initialised to 2 with the LES model and 1 otherwise
always useful

i 0,1or2 [0 or 1] 0 L3
istmpf specifies the time scheme activated for the mass flow. The chosen value for
istmpf will automatically determine the value given to the variable thetfl

= 0: “explicit” first-order: the mass flow calculated at the previous time step
(“n”) is used in the convective terms of all the equations (momentum, turbulence and
scalars

= 1. “standard” first-order: the mass flow calculated at the previous time
step (“n”) is used in the convective terms of the momentum equation, and the up-
dated mass flow (time “n+1”) is used in the equations of turbulence and scalars

= 2: second-order: the mass flow used in the momentum equations is ex-
trapolated at “n+thetfl” (=n+1/2) from the values at the two former time steps
(Adams Bashforth); the mass flow used in the equations for turbulence and scalars is
interpolated at time “n+thetfl” (=n+1/2) from the values at the former time step
and at the newly calculated “n+1" time step.
by default, istmpf=2 is used in the case of a second-order time scheme (if ischtp=2)
and istmpf=1 otherwise
always useful

i 0,1 or2 [0 or 1] 0] L3
isno2t specifies the time scheme activated for the source terms of the momentum
equation, apart from convection and diffusion (for instance: head loss, transposed
gradient, ...).

= 0: “standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)" % = SP[(1 — 0)¢™ + 6¢"F1], 6 being given by the value of thetav
associated with the variable ¢) ; the other terms S. are expressed as second-order
terms by extrapolation (according to the formula (S.)"T? = [(1 + 6)S? — 0S?71], 0
being given by the value of thetsn=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isno2t=1; the
other terms S, are extrapolated according to the same formula as when isno2t=1,
but with 6=thetsn=1
by default, isno2t is initialised to 1 (second-order) when the selected time scheme is
second-order (ischtp=2), otherwise to 0.
always useful

i 0,1or2 [0] O L3
isto2t specifies the time scheme activated for the source terms of the turbulence

equations (i.e. related to k, R;j, €, w, ¢, f), apart from convection and diffusion.
= 0: “standard” first-order: the terms which are linear functions of the solved

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation

guide Page 158/201

isso2t

iroext

iviext

variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)" % = SP[(1 — 0)¢™ + 6¢"F1], § being given by the value of thetav
associated with the variable ¢); the other terms S, are expressed as second-order terms
by extrapolation (according to the formula (S.)"*? = [(1 + 0)S? — 0S"~1], 6 being
given by the value of thetst=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isto2t=1; the
other terms S, are extrapolated according to the same formula as when isto2t=1,
but with §=thetst=1
due to certain specific couplings between the turbulence equations, isto2t is allowed
the value 1 or 2 only for the R;; models (iturb=30 or 31); hence, it is always initialised
to 0.
always useful

ia 0,1or?2 [0 or 1] 0) L3
for each scalar iscal, isso2t(iscal) specifies the time scheme activated for the
source terms of the equation for the scalar, apart from convection and diffusion (for
instance: variance production, user-specified terms, ...).

= 0: “standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)"*? = SP[(1 — 0)¢™ + 0¢" 1], 0 being given by the value of thetav
associated with the variable ¢); the other terms S, are expressed as second-order terms
by extrapolation (according to the formula (S.)"*? = [(1 + 6)S? — 0S7~1], § being
given by the value of thetss(iscal)=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isso2t=1; the
other terms S, are extrapolated according to the same formula as when isso2t=1,
but with 6=thetss(iscal)=1
by default, isso2t(iscal) is initialised to 1 (second-order) when the selected time
scheme is second-order (ischtp=2), otherwise to 0.
always useful

i 0,1or2 [0] 0) L3
iroext specifies the time scheme activated for the physical property ¢ “density”.

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢"*? = [(1+ 0)¢™ — g™~ 1], § being given by the value of thetro=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when iroext=1 but with f=thetro=1
always useful

i 0,1o0r2 [0] O L3
iviext specifies the time scheme activated for the physical property ¢ “total viscosity”
(molecular+turbulent or sub-grid viscosities).

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" % = [(1 + 0)¢™ — 04" '], being given by the value of thetvi=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation

guide Page 159/201

icpext

ivsext

thetav

thetfl

thetsn

the same formula as when iviext=1, but with §=thetvi=1
always useful

i 0,1or2 [0] O L3
icpext specifies the time scheme activated for the physical property ¢ “specific heat”.

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" % = [(1 + 0)¢™ — 04" 1], 6 being given by the value of thetcp=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when icpext=1, but with §=thetcp=1
always useful

ia 0,1o0r?2 [0] 0] L3
for each scalar iscal, ivsext(iscal) specifies the time scheme activated for the
physical property ¢ “diffusivity”.

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" ¢ = [(1+0)¢"™ — 0" 1], § being given by the value of thetvs (iscal) =0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when ivsext=1, but with #=thetvs(iscal)=1
always useful

ra 0 < real <1 [1 or 0.5 0] L3
for each variable ivar, thetav(ivar) is the value of 6 used to express at the second-
order the terms of convection, diffusion and the source terms which are linear functions
of the solved variable (according to the formula ¢" % = (1—60)¢™ +60¢"+1). Generally,
only the values 1 and 0.5 are used. The user is not allowed to modify this variable.
= 1: first-order
= 0.5: second-order
Concerning the pressure, the value of thetav is always 1. Concerning the other vari-
ables, the value thetav=0.5 is used when the second-order time scheme is activated
by ischtp=2 (standard value for LES calculations), otherwise thetav is set to 1.
always useful

r 0 < real <1 [0 or 0.5 0] L3
thetfl is the value of 6 used to interpolate the convective fluxes of the variables when
a second-order time scheme has been activated for the mass flow (see istmpf)
generally, only the value 0.5 is used. The user is not allowed to modify this variable.

= 0.0: “explicit” first-order (corresponds to istmpf=0 or 1)

= 0.5: second-order (corresponds to istmpf=2). The mass flux will be inter-
polated according to the formula Q¢ = ;L Q@+ 4 I=6Qnti-9),
always useful

T 0 < real <1 [0, 0.5 or 1] O L3
thetsn is the value of 6 used to extrapolate the nonlinear explicit source terms S, of
the momentum equation, when the source term extrapolation has been activated (see
isno2t), following the formula

(Se)"t = (1+6)Sm —oSn—t

the value of §=thetsn is deduced from the value chosen for isno2t. Generally, only

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 160/201
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isno2t=0)
= 0.5: second-order (used when isno2t=1)
= 1: first-order (used when isno2t=2)
always useful
thetst r 0 <real <1 [0, 0.5 or 1] O L3
thetst is the value of 6 used to extrapolate the nonlinear explicit source terms S, of
the turbulence equations, when the source term extrapolation has been activated (see
isto2t), following the formula
(S.)"+0 = (1+)82 — 450~
the value of f=thetsn is deduced from the value chosen for isto2t. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isto2t=0)
= 0.5: second-order (used when isto2t=1)
= 1: first-order (used when isto2t=2)
always useful
thetss ra 0 < real <1 [0, 0.5 or 1] Q) L3
for each scalar iscal, thetss(iscal) is the value of 6 used to extrapolate the nonlin-
ear explicit source terms S, of the scalar equation, when the source term extrapolation
has been activated (see isso2t), following the formula
(S.)™+0 = (1+6)57 — 65~
the value of f=thetss(iscal) is deduced from the value chosen for isso2t(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isso2t (iscal)=0)
= 0.5: second-order (used when isso2t(iscal)=1)
= 1: first-order (used when isso2t(iscal)=2)
useful if nscal>1
thetro r 0 < real <1 [0, 0.5 or 1] 0) L3
thetro is the value of 6 used to extrapolate the physical property ¢ “density” when
the extrapolation has been activated (see iroext),according to the formula ¢"*+? =
(1+0)¢" — 0"~
the value of §=thetro is deduced from the value chosen for iroext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to iroext=0)
= 0.5: second-order (corresponds to iroext=1)
= 1: first-order (corresponds to iroext=2)
always useful
thetvi r 0 < real <1 [0, 0.5 or 1] 0) L3
thetvi is the value of 6 used to extrapolate the physical property ¢ “total viscos-
ity” when the extrapolation has been activated (see iviext),according to the formula
¢n+6 — (1 4 a)d)n _ 9(}5”71
the value of §=thetvi is deduced from the value chosen for iviext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to iviext=0)
= 0.5: second-order (corresponds to iviext=1)
= 1: first-order (corresponds to iviext=2)
always useful
thetcp r 0 < real <1 [0, 0.5 or 1] O L3

thetcp is the value of 6 used to extrapolate the physical property ¢ “specific heat”

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 161/201
when the extrapolation has been activated (see icpext),according to the formula
¢n+9 —_ (1 4 0)¢n _ 9(;5”71
the value of f=thetcp is deduced from the value chosen for icpext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to icpext=0)
= 0.5: second-order (corresponds to icpext=1)
= 1: first-order (corresponds to icpext=2)
always useful
thetvs ra 0 <real <1 [0, 0.5 or 1] @) L3

for each scalar iscal, thetvs(iscal) is the value of € used to extrapolate the physi-
cal property ¢ “diffusivity” when the extrapolation has been activated (see ivsext),
according to the formula ¢"*% = (1 +)" — ¢!
the value of f=thetvs(iscal) is deduced from the value chosen for ivsext(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to ivsext(iscal)=0)
= 0.5: second-order (corresponds to ivsext(iscal)=1)
= 1: first-order (corresponds to ivsext(iscal)=2)
useful if nscal>1

9.2.7 Gradient reconstruction

imrgra

nswrgr

i 0,1,2,3,4,5,0r6 [0] O L2
indicates the type of gradient reconstruction (one method for all the variables)

= 0: iterative reconstruction of the non-orthogonalities

= 1: least squares method based on the first neighbour cells (cells which share
a face with the treated cell)

= 2: least squares method based on the extended neighbourhood (cells which
share a node with the treated cell)

= 3: least squares method based on a partial extended neighbourhood (all
first neighbours plus the extended neighbourhood cells that are connected to a face
where the non-orthogonality angle is larger than parameter anomax)

= 4: iterative reconstruction with initialisation using the least squares method
(first neighbours)

= 5: iterative reconstruction with initialisation using the least squares method
based on an extended neighbourhood

= 6: iterative reconstruction with initialisation using the least squares method
based on a partial extended neighbourhood
if imrgra fails due to probable mesh quality problems, it is usually effective to use
imrgra=3. Moreover, imrgra=3 is usually faster than imrgra=0 (but with less feed-
back on its use).
It should be noted that imrgra=1, 2 or 3 automatically triggers a gradient limitation
procedure. See imligr.
useful if and only if there is n so that nswrgr(n) > 1. Also, pressure gradients (or other
gradients deriving from a potential) always use an iterative reconstruction. To force a
non-iterative reconstruction for those gradients, a negative value of this keyword may
be used, in which case the method matching the absolute value of the keyword will be
used.

ia positive integer [100] O L3
for each unknown ivar, nswrgr(ivar) < 1 indicates that the gradients are not recon-
structed

if imrgra = 0 or 4, nswrgr (ivar) is the number of iterations for the gradient

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 162/201
reconstruction

if imrgra = 1, 2 or 3, nswrgr(ivar) > 1 indicates that the gradients are
reconstructed (but the method is not iterative, so any value larger than 1 for nswrgr
yields the same result)
useful for all the unknowns

epsrgr ra real number > 0 [1079] @) L3
for each unknown ivar, relative precision for the iterative gradient reconstruction:
epsrgr (ivar)

useful for all the unknowns when imrgra = 0 or 4

imligr ia -1,00r1 [-1 or 1] Q) L3
for each unknown ivar, indicates the type of gradient limitation: imligr(ivar)
=-1: no limitation
= 0: based on the neighbours
= 1: superior order
for all the unknowns, imligr is initialised to -1 if imrgra=0or 4 and to 1 if imrgra =1, 2 or 3
useful for all the unknowns

climgr ra real number > 0 [1.5] 0] L3
for each unknown ivar, factor of gradient limitation: climgr(ivar) (high value means
little limitation)
useful for all the unknowns ivar for which imligr(ivar) # -1

extrag ra 0,0.50r1 [0] 0] L3

for the variable “pressure” ivar=ipr, extrapolation coefficient of the gradients at the
boundaries. It affects only the Neumann conditions. The only possible values of
extrag(ipr) are:

= 0: homogeneous Neumann calculated at first-order

= 0.5: improved homogeneous Neumann, calculated at second-order in the
case of an orthogonal mesh and at first-order otherwise

= 1: gradient extrapolation (gradient at the boundary face equal to the gra-
dient in the neighbour cell), calculated at second-order in the case of an orthogonal
mesh and at first-order otherwise
extrag often allows to correct the non-physical velocities that appear on horizontal
walls when density is variable and there is gravity. It is strongly advised to keep
extrag=0 for the variables apart from pressure. See also iphydr.
In practice, only the values 0 and 1 are allowed. The value 0.5 is not allowed by default
(but the lock can be overridden if necessary, contact the development team).
always useful

anomax r 0 < real < 7/2 [m/4] 0] L3
limit non-orthogonality angle used to restrict the extended neighbourhood for the
gradient calculation with imrgra=3.
anomax=0 will yield the same result as imrgra=2 (full extended neighbourhood).
anomax=7/2 will yield the same result as imrgra=1 (first neighbours only)34
useful if and only if imrgra=3

34Except for pathological cases where the non-orthogonality angle of a face would be larger than /2

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 163/201

9.2.8 Solution of the linear systems

See the dedicated Doxygen documentation for most settings related to linear solver options.

epsilo

ra real number > 0 [1078,1079) 0] L3
for each unknown ivar, relative precision for the solution of the linear system. The
default value is epsilo(ivar)=10"8. This value is set low on purpose. When there
are enough iterations on the reconstruction of the right-hand side of the equation, the
value may be increased (by default, in case of second-order in time, with nswrsm = 5
or 10, epsilo is increased to 107°).

always useful

9.2.9 Convective scheme

blencv

ischcv

isstpc

ra 0<real <1 [0 or 1] O L1
for each unknown ivar to calculate, blencv(ivar) indicates the proportion of second-
order convective scheme (0 corresponds to an “upwind” first-order scheme); in case
of LES calculation, a second-order scheme is recommended and activated by default
(blencv=1)

useful for all the unknowns ivar for which iconv(ivar) =1

ia Oor1l 1] 0 L2
for each unknown ivar to calculate, ischcv(ivar) indicates the type of second-order
convective scheme

= 0: Second Order Linear Upwind

= 1: Centered
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0)

ia Oorl [0] 0) L2
for each unknown ivar to calculate, isstpc(ivar) indicates whether a “slope test”
should be used to switch from a second-order to an “upwind” convective scheme under
certain conditions, to ensure stability.

= 0: “slope test” activated for the considered unknown

= 1: “slope test” deactivated for the considered unknown
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0).
the use of the “slope test” stabilises the calculation but may bring the order in space
to decrease quickly.

9.2.10 Pressure-continuity step

iprco

arak

irevmc

i Oor 1 1] 0 L3
indicates if the pressure-continuity step is taken into account (1) or not (0)
always useful

ra 0 <real <1 [1] Q) L3
arak is the Arakawa coefficient before the Rhie& Chow filter
always useful

i 0 [0] Q) L3
method used to update the velocity after the pressure correction:

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation

guide Page 164/201

iphydr

icalhy

epsdp

iporos

- standard gradient of pressure increment (irevmc=0)
always useful

i Oorlor?2 [0] 0] L2
method for taking into account the balance between the pressure gradient and the
source terms (gravity and head losses): by extension it will be referenced as “taking
into account of the hydrostatic pressure”

= 0: standard algorithm

= 1: improved algorithm
always useful
When the density effects are important, the choice of iphydr=1 allows to improve the
interpolation of the pressure and correct the non-physical velocities which may appear
in highly stratified areas or near horizontal walls (thus avoiding the use of extrag if
the non-physical velocities are due only to gravity effects).
The improved algorithm also allows eradicating the velocity oscillations which tend to
appear at the frontiers of areas with high head losses.
In the case of a stratified flow, the calculation cost is higher when the improved
algorithm is used (about 30% depending on the case) because the hydrostatic pressure
must be recalculated at the outlet boundary conditions: see icalhy.
On meshes of insufficient quality, in order to improve the convergence, it may be useful
to increase the number of iterations for the reconstruction of the pressure right-hand
side, i.e. nswrsm(ipr).
If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities.

i Oorl [0 or 1] @) L3
activates the calculation of hydrostatic pressure boundary conditions at outlet bound-
aries

= 0: no calculation of the hydrostatic pressure at the outlet boundary

= 1: calculation of the hydrostatic pressure at the outlet boundary
always useful
This option is automatically specified depending on the choice of iphydr and the
value of gravity (icalhy=1 if iphydr=1 and gravity is different from 0; otherwise
icalhy=0). The activation of this option generates an additional calculation cost

(about 30% depending on the case).

If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities

r real number > 0 [10712] 0] L3
Parameter of diagonal pressure strengthening

i Oorl [0] 0) L2
indicates if the porosity formulation is taken into account

= 0: standard algorithm (without porosity)

= 1: porosity taken into account
useful when head losses are taken into account

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 165/201

9.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each®>. These scalars indicate the areas (cells) in which some error types may be
important. They are stored in the array propce containing the properties at the cells (see iestim).
For each estimator, the code writes the minimum and maximum values in the listing and generates
post-processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates
an additional cost of 15 to 20 % on the CPU time3%; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding @),
the estimator 7?7 (@), local variable calculated at every cell Q;, is created from RP"“(@), which

represents the residual of the equation solved during this step:

r ~ 7 E - Qn ~ n . ~
RPN@) = p"=i Y@ (pw)" —div (4)" Y(@) +¥(P)
rest of the right-hand side(u™, P™, other variables™)

By definition:
TEQ (~ k— red [~
Pt @) = | F2 R @) |2 o

e The first family, & = 1, suppresses the volume |Q;| which intrinsically appears with the norm
L2(9;).

e The second family, k = 2, exactly represents the norm L2(£);). The size of the cell therefore
appears in its calculation and induces a weighting effect.
772 zed (w) is ideally equal to zero when the reconstruction methods are perfect and the associated system
is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator nfj;(g "+1) is based on the following

quantity (intrinsic to the code):

nirwntt)y = | (k=272 giv(corrected mass flow after the pressure step) — Ll 220, ()

|21 (1_k)/2|div(corrected mass flow after the pressure step) — T

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.

iest = iescor: correction (default name: EsCor). The estimator {5 (u"*") comes directly from

the mass flow calculated with the updated velocity field:
nig (W™t = Q] 2 |div(p"u) — T

The velocities u™t! are taken at the cell centers, the divergence is calculated after projection on the
faces.
09, represents the Kronecker symbol.

e The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the
mass source term.

e The second family, k = 2, represents a physical property and allows to evaluate the difference in

35Choice made by the user
36Tndeed, all the first-order in space differential terms have to be recalculated at the time ¢ ?+1

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 166/201
kg.s 1.

Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

iest = jestot: total (default name: EsTot). The estimator 7% (u"*"), local variable calculated at

every cell €;, is based on the quantity R'*(u™*1), which represents the residual of the equation using
the updated values of u and P:

n+1

RYH () = p”% FV (@) - (o)™ = div (e pe) V(@) + V(P

—rest of the right-hand side(u"*!, P"*1 other variables™)

By definition:
k—2)/2
i @) = 19 5 R @ e
The mass flux in the convective term is recalculated from u"*! expressed at the cell centres (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

e The first family, k¥ = 1, suppresses the volume |€;| which intrinsicly appears with the norm
L2(€).

e The second family, k¥ = 2, exactly represents the norm L2(£;). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

iescal ia 0,1or2 [0] 0) L1
iescal(iest) indicates the calculation mode for the error estimator iest (iespre,
iesder, iescor or iestot), for the Navier-Stokes equation:
iescal = 0: estimator not calculated,
iescal = 1: the estimator 7;; is calculated, without contribution of the volume,
iescal = 2: the estimator 7], is calculated, with contribution of the volume ("norm

L?”), except for iescor, for which |Q;] 5™ is calculated.

The names of the estimators appearing in the listing and the post-processing are made up of the default
name (given before), followed by the value of iescal. For instance, EsPre2 is the estimator iespre
calculated with iescal=2.

always useful

9.2.12 Calculation of the distance to the wall

icdpar i -1,1,-20r 2 [-1] @) L2

specifies the method used to calculate the distance to the wall y and the non-dimensional
distance y* for all the cells of the calculation domain (when necessary):

= 1: standard algorithm (based on a Poisson equation for y and convection
equation for y™), with reading of the distance to the wall from the restart file if pos-
sible

=-1: standard algorithm (based on a Poisson equation for y and convection
equation for yT), with systematic recalculation of the distance to the wall in case of
calculation restart

= 2: former algorithm (based on geometrical considerations), with reading of
the distance to the wall from the restart file if possible

=-2: former algorithm (based on geometrical considerations) with systematic

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation
guide Page 167/201

recalculation of the distance to the wall in case of calculation restart

In case of restart calculation, if the position of the walls haven’t changed, reading the
distance to the wall from the restart file can save a fair amount of CPU time.

Useful in R;; — ¢ model with wall echo (iturb=30 and irijec=1), in LES with van
Driest damping (iturb=40 and idries=1) and in k — w SST (iturb=60).

By default, icdpar is initialised to -1, in case there has been a change in the definition
of the boundary conditions between two computations (change in the number or the
positions of the walls). Yet, with the k¥ — w SST model, the distance to the wall is
needed to calculate the turbulent viscosity, which is done before the calculation of the
distance to the wall. Hence, when this model is used (and only in that case), icdpar
is set to 1 by default, to ensure total continuity of the calculation at restart.

As a consequence, with the k — w SST model, if the number and positions
of the walls are changed at a calculation restart, it is mandatory for the
user to set icdpar explicitly to -1, otherwise the distance to the wall used will not
correspond to the actual position of the walls.

The former algorithm is not compatible with parallelism nor periodicity. Also, what-
ever the value chosen for icdpar, the calculation of the distance to the wall is made at
the most once for all a the beginning of the calculation; it is therefore not compatible
with moving walls. Please contact the development team if you need to override this
limitation.

The following options are related to icdpar=1 or -1. The options of level 2 are described first. Some
options are used only in the case of the calculation of the non-dimensional distance to the wall y+ (LES
model with van Driest damping). Most of the following keywords are simple copies of the keywords
for the numerical options of the general equations, with a potentially specific value in the case of the
calculation of the distance to the wall.

iwarny

ntcmxy

nitmay

nswrsy

nswrgy

imligy

i integer [0] @) L2
specifies the level of the output writing concerning the calculation of the distance to
the wall with icdpar=1 or -1. The higher the value, the more detailed the outputs
useful when icdpar=1 or -1

i positive integer [1000] 0) L2
number of pseudo-time iterations for the calculation of the non-dimensional distance
to the wall yT
useful when icdpar=1 or -1 for the calculation of yT

i integer > 0 [10000] 0] L3
maximum number of iterations for the solution of the linear systems
useful when icdpar=1 or -1

i positive integer [1] @) L3
number of iterations for the reconstruction of the right-hand sides: corresponds to
nswrsm

useful when icdpar=1 or -1

i positive integer [100] Q) L3
number of iterations for the gradient reconstruction: corresponds to nswrgr
useful when icdpar=1 or -1

i -1,00r1 [-1 or 1] 0] L3
type of gradient limitation: corresponds to imligr
useful when icdpar=1 or -1

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 168/201

ircfly i Oorl [1] @) L3
indicates the reconstruction of the convective and diffusive fluxes at the faces: corre-
sponds to ircflu
useful when icdpar=1 or -1

ischcey i Oorl [1] 0] L3
indicates type of second-order convective scheme: corresponds to ischcv
useful when icdpar=1 or -1 for the calculation of y™

isstpy i Oorl [0] 0] L3
indicates if a “slope test” should be used for a second-order convective scheme: corre-
sponds to isstpc
useful when icdpar=1 or -1 for the calculation of y™

imgrpy i Oorl [0] 0] L3
indicates whether the algebraic multi-grid method should be used (imgr (ivar)=1) or
not (0): corresponds to imgr
useful when icdpar=1 or -1

blency T 0<real <1 [0] O L3
proportion of second-order convective scheme: corresponds to blencv
useful when icdpar=1 or -1 for the calculation of y*

epsily r real number > 0 [1078] 0] L3
relative precision for the solution of the linear systems: corresponds to epsilo
useful when icdpar=1 or -1

epsrgy r real number > 0 [1079]) L3
relative precision for the iterative gradient reconstruction: corresponds to epsrgr
useful when icdpar=1 or -1

epsrsy r real number > 0 [1075] 0) L3
relative precision for the right-hand side reconstruction: corresponds to epsrsm
useful when icdpar=1 or -1

climgy r real number > 0 [1.5] @) L3
limitation factor of the gradients: corresponds to climgr
useful when icdpar=1 or -1

extray r 0,0.50r1 [0] O L3
extrapolation coefficient of the gradients at the boundaries: corresponds to extrag
useful when icdpar=1 or -1

coumxy r strictly positive real number [5000] 0 L3
Target Courant number for the calculation of the non-dimensional distance to the wall
useful when icdpar=1 or -1 for the calculation of y*

epscvy r strictly positive real number [1078] 0 L3

relative precision for the convergence of the pseudo-transient regime for the calculation

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 169/201
of the non-dimensional distance to the wall
useful when icdpar=1 or -1 for the calculation of y*
yplmxy r real number [200] 0] L3

value of the non-dimensional distance to the wall above which the calculation of the
distance is not necessary (for the damping)
useful when icdpar=1 or -1 for the calculation of y*

9.2.13 Others

iccvfg

ivelco

ipucou

nterup

epsup

isuitl

imvisf

i Oorl [0] @) L1
indicates whether the dynamic field should be frozen (1) or not (0)

in such a case, the values of velocity, pressure and the variables related to the potential
turbulence model (k, R;;, €, ¢, f, w, turbulent viscosity) are kept constant over time
and only the equations for the scalars are solved

also, if iccvfg=1, the physical properties modified in usphyv will keep being updated.
Beware of non-consistencies if these properties would normally affect the dynamic field
(modification of density for instance)

useful if and only if nscal > 0 and the calculation is a restart

i Oorl [1] @) L1
indicates the algorithm for the velocity components coupling

= 0: segregated (deprecated)

= 1: coupled (default)
always useful

i Oorl [0] 0) L1
indicates the algorithm for velocity/pressure coupling

= 0: standard algorithm

= 1: reinforced coupling in case calculation with long time steps
always useful (it is seldom advised, but it can prove very useful, for instance, in case
of flows with weak convection effects and highly variable viscosity)

i real number > 0 1] o) L2
number of iterations on the pressure-velocity coupling in the Navier-Stokes equations
(for the PISO algorithm). useful for unsteady algorithm

r real number > 0 [1075] o) L2
relative precision for the convergence test of the iterative process on pressure-velocity
coupling (PISO). useful for unsteady algorithm

i Oorl [0] 0] L1
for the 1D wall thermal module, activation (1) or not(0) of the reading of the mesh
and of the wall temperature from the ficmt1 restart file

useful if nfpt1d>0.

i Oorl [0] 0] L3
indicates the interpolation method used to project variables from the cell centers to
the faces

= 0: linear

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 170/201

= 1: harmonic
always useful

ircflu ia Oorl [1] 0 L2

for each unknown ivar, ircflu(ivar) indicates whether the convective and diffusive
fluxes at the faces should be reconstructed:

= 0: no reconstruction

= 1: reconstruction
deactivating the reconstruction of the fluxes can have a stabilising effect on the calcula-
tion. It is sometimes useful with the k—e model, if the mesh is strongly non-orthogonal
in the near-wall region, where the gradients of k£ and ¢ are strong. In such a case, set-
ting ircflu(ik) =0 and ircflu(iep)=0 will probably help (switching to a first order
convective scheme, blencv=0, for k and £ might also help in that case)
always useful

nswrsm ia positive integer [1, 2, 5 or 10] 0O L3
for each unknown ivar, nswrsm(ivar) indicates the number of iterations for the
reconstruction of the right-hand sides of the equations
with a first-order scheme in time (standard case), the default values are 2 for pressure
and 1 for the other variables. With a second-order scheme in time (ischtp=2) or
LES, the default values are 5 for pressure and 10 for the other variables.
useful for all the unknowns

epsrsm ra real number > 0 [1078,1079) 0] L3
for each unknown ivar, relative precision on the reconstruction of the right hand-side.
The default value is epsrsm(ivar)=10"8. This value is set low on purpose. When
there are not enough iterations on the reconstruction of the right-hand side of the
equation, the value may be increased (by default, in case of second-order in time, with
nswrsm = 5 or 10, epsrsm is increased to 1077).
always useful

9.3 Numerical, physical and modelling parameters
9.3.1 Numeric parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

zero r 0 [0] 0] L3
Parameter containing the value 0

epzero r 10~12 [10712] @) L3
“Small” real parameter, used for the comparisons of real numbers (absolute value of
the difference lower than epzero)

pi r 3.141592653589793 [3.141592653589793] 0 L3
Parameter containing an approximate value of 7

grand T 1012 [1012] O L3
“Large” real parameter, generally used by default as a non physical value for the
initialisations of variables which have to be modified by the user

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 171/201

rinfin r 1030 [1039]) L3

Real parameter used to represent “infinity”

9.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

tkelvi

tkelvn

rr

trefth

prefth

volmol

stephn

permvi

epszer

T 273.15 [273.15] O L3
Temperature in Kelvin corresponding to 0 degrees Celsius.

T -273.15 [-273.15] Q) L3
Temperature in degrees Celsius corresponding to 0 Kelvin.

r 8.31434 [8.31434] 0 L3
Perfect gas constant in J/mol/K

r 25 + tkelvi [25 4 tkelvi] 0] L3
Reference temperature for the specific physics, in K

r 101325 [101325] Q) L3
Reference pressure for the specific physics, in Pa

T 22.41.1073 [22.41.1073] O L3
Molar volume under normal pressure and temperature conditions (1 atmosphere, 0°C)
in m=3

r 5.6703.10~8 [5.6703.10~8] O L3

Stephan’s constant for the radiative module o in W.m=2.K 4

r 1.2566.10~ [1.2566.10] 0 L3
Vacuum magnetic permeability po (=47.1077) in kg.m.A=2.s72

r 8.854.10~ 12 [8.854.10~12] O L3
Vacuum permittivity o in F.m ™!

9.3.3 Physical variables

gX,8Y,82

irovar

r 3 real numbers [0,0,0] 0] L1
gravity components
always useful

ia Oorl [-1] C L1
irovar=0 indicates that the density is constant. Its value is the reference density ro0.
irovar=1 indicates that the density is variable: its variation law must be given in the
user subroutine usphyv

negative value: not initialised

always useful

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 172/201

ivivar

ro0

visclO

srrom

pO

ia Oorl [-1] C L1
ivivar=0 indicates that the molecular dynamic viscosity is constant. Its value is the
reference molecular dynamic viscosity visclO.

ivivar=1 indicates that the molecular dynamic viscosity is variable: its variation law
must be given in the user subroutine usphyv

negative value: not initialised

always useful

ra real number > 0 [-grand*10] C L1
ro0 is the reference density

negative value: not initialised

its value is not used in gas or coal combustion modelling (it will be calculated fol-
lowing the perfect gas law, with PO and 7°0). With the compressible module, it is
also not used by the code, but it may be (and often is) referenced by the user in user
subroutines; it is therefore better to specify its value.

always useful otherwise, even if a law defining the density is given by the user subrou-
tine usphyv or uselph

indeed, except with the compressible module, Code_Saturne does not use the total pres-
sure P when solving the Navier-Stokes equation, but a reduced pressure

P* =P —pog.(x —z¢) + Py — P

where g is a reference point (see xyzp0) and P; and P, are reference values (see pred0
and p0). Hence, the term —V P + pg in the equation is treated as —VP* + (p — po)g-
The closer ro0 is to the value of p, the more P* will tend to represent only the dynamic
part of the pressure and the faster and more precise its solution will be. Whatever the
value of ro0, both P and P* appear in the listing and the post-processing outputs.
with the compressible module, the calculation is made directly on the total pressure

ra real number > 0 [-grand*10] C L1
visclO is the reference molecular dynamic viscosity

negative value: not initialised

always useful, it is the used value unless the user specifies the viscosity in the usphyv

subroutine

T 0 < real number < 1 [-grand or 0] corO
With gas combustion, pulverised coal or the electric module, srrom is the sub-relaxation
coefficient for the density, following the formula:

p" 1 =srrom p"+(1-srrom) p" 1

hence, with a zero value, there is no sub-relaxation. With combustion and pulverised
coal, srrom is initialised to -grand and the user must specify a proper value through
the Interface or the initialisation subroutines (cs_user_combustion). With the elec-
tric module, srrom is initialised in to 0 and may be modified by the user in uselil.
With gas combustion, pulverised coal or electric arcs, srrom is automatically used
after the second time-step. With the Joule effect module, the user decides whether or
not it will be used in uselph from the coding law giving the density.

always useful with gas combustion, pulverized coal or the electric module.

ra real number [1.013¢ — 5] 0O L1
pO is the reference pressure for the total pressure

except with the compressible module, the total pressure P is evaluated from the re-
duced pressure P* so that P is equal to pO at the reference position z, (given by
xyzpO0)

with the compressible module, the total pressure is solved directly

always useful

L1

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 173/201

pred0

xyzp0

t0

cp0

icp

ra real number [0] @) L3
predoO is the reference value for the reduced pressure P* (see ro0)

it is especially used to initialise the reduced pressure and as a reference value for the
outlet boundary conditions

for an optimised precision in the resolution of P*, it is better to keep pred0 to 0
with the compressible module, the “pressure” variable appearing in the equations
directly represents the total pressure. It is therefore initialised to pO and not pred0
(see ro0)

always useful, except with the compressible module

ra 3 real numbers [0,0,0] 0] L1
xyzp0(ii) is the ii coordinate (1<II<3) of the reference point z, for the total pressure
when there are no Dirichlet conditions for the pressure (closed domain), xyzpO does
not need to be specified (unless the total pressure has a clear physical meaning in the
configuration treated)

when Dirichlet conditions on the pressure are specified but only through standard
outlet conditions (as it is in most configurations), xyzp0 does not need to be specified
by the user, since it will be set to the coordinates of the reference outlet face (i.e. the
code will automatically select a reference outlet boundary face and set xyzpO so that
P equals p0 at this face). Nonetheless, if xyzpO0 is specified by the user, the calculation
will remain correct

when direct Dirichlet conditions are specified by the user (specific value set on specific
boundary faces), it is better to specify the corresponding reference point (i.e. specify
where the total pressure is p0). This way, the boundary conditions for the reduced
pressure will be close to pred0, ensuring an optimal precision in the resolution. If
xyzpO is not specified, the reduced pressure will be shifted, but the calculations will
remain correct.

with the compressible module, the “pressure” variable appearing in the equations
directly represents the total pressure. xyzpO is therefore not used.

always useful, except with the compressible module

ra real number [0] 0] L1
t0 is the reference temperature

useful for the specific physics gas or coal combustion (initialisation of the density), for
the electricity modules to initialise the domain temperature and for the compressible
module (initialisations). It must be given in Kelvin.

ra real number > 0 [-grand*10] @) L1
cpO is the reference specific heat

useful if there is 1<n<nscaus®’ so that iscsth(n)=1 (there is a scalar “temperature”);
unless the user specifies the specific heat in the user subroutine usphyv®® (icp > 0)
with the compressible module or coal combustion, cp0 is also needed even when there
is no user scalar

ia Oorl [0] 0) L1
indicates if the specific heat C), is variable (icp=1) or not (0)

When gas or coal combustion is activated, icp is automatically set to 0 (constant
Cp). With the electric module, it is automatically set to 1. The user is not allowed to
modify these default choices.

When icp=1 is specified, the code automatically modifies this value to make icp

37None of the scalars from the specific physics is a temperature
38When using the Graphical Interface, cp0 is also used to calculate the diffusivity of the thermal scalars, based on
their conductivity; it is therefore needed, unless the diffusivity is also specified in usphyv

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 174/201

designate the effective index-number of the property “specific heat”. For each cell iel,
the value of C}, is then specified by the user in the appropriate subroutine (usphyv for
the standard physics) and stored in the array
propce(iel,ipproc(icp)) (see p. 82 for specific conditions of use) useful if there
is 1<N<nscal so that iscsth(n)=1 (there is a scalar “temperature”) or with the
compressible module for non perfect gases

vislsO ra real number > 0 [-grand*10] C L1
visls0(j): reference molecular diffusivity related to the scalar J (kg.m=t.s~1)
negative value: not initialised
useful if 1<J< nscal, unless the user specifies the molecular diffusivity in the appropri-
ate user subroutine (usphyv for the standard physics) (field get key_id(ivarfl(isca(iscal)),kivis
> -1)
Warning: vislsO corresponds to the diffusivity. For the temperature, it is therefore
defined as A\/C, where A and C,, are the conductivity and specific heat. When using
the Graphical Interface, A and C), are specified separately, and vislsO is calculated
automatically
With the compressible module, visls0 (given in uscfz2) is directly the thermal con-
ductivity Wom=1 K1
With gas or coal combustion, the molecular diffusivity of the enthalpy (kg.m™1.s71)
must be specified by the user in the variable dift1l0 (cs_user_combustion)
With the electric module, for the Joule effect, the diffusivity is specified by the user
in uselph (even if it is constant). For the electric arcs, it is calculated from the
thermochemical data file

dift10 r real number > 0 [-grand] C L1
molecular diffusivity for the enthalpy (kg.m~'.s™1) for gas or coal combustion (the
code then automatically sets vislsO to diftlO for the scalar representing the en-
thalpy)
always useful for gas or coal combustion

min_scalar_clipping real number [grand] O L1
field key work (get the index of the key using call field get key_id("min_scalar_clipping",
kscmin)) which is the lower limit value for the scalar iscal. At each time step, in every
cell where the calculated value for the field ivarfl(isca(iscal)) is less than the set
min value (call field set_key double(ivarfl(isca(iscal)), kscmin, min_value))
the field will be reset to min_value
there is no limitation if min_value>max value
min value shall not be specified for non-user scalars (specific physics) or for scalar
variances

max_scalar_clipping real number [grand] O L1
field key work (get the index of the key using call field get key_id("max_scalar_clipping",
kscmax)) which is the upper limit value for the scalar iscal. At each time step, in
every cell where the calculated value for the field ivarfl (isca(iscal)) is greater than
the set max_value (call field set _key double(ivarfl(isca(iscal)), kscmax, max_value))
the field will be reset to max_value
there is no limitation if max_value>min value
max_value shall not be specified for non-user scalars (specific physics) or for scalar
variances

sigmas ra real number > 0 [1] @) L2

sigmas(iscal): turbulent Prandtl (or Schmidt) number for the scalar iscal
useful if and only if 1<iscal< nscaus

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 175/201
rvarfl ra real number > 0 [0.8] 0] L2

when iscavr(iscal) >0, rvarfl(iscal) is the coefficient [Z; in the dissipation term

€ . . .
fRLE of the equation concerning the scalar iscal, which represents the root mean
f
square of the fluctuations of the scalar iscavr(iscal)

useful if and only if there is 1<iscal< nscal such as iscavr(iscal) >0

9.3.4 Modelling parameters

xlomlg

almax

uref

ra real number > 0 [-grand*10] @) L1
xlomlg is the mixing length
useful if and only if iturb= 10 (mixing length)

ra -grand, real number > 0 [-grand*10] 0] L2
almax is a characteristic macroscopic length of the domain, used for the initialisation
of the turbulence and the potential clipping (with iclkep=1)

negative value: not initialised (the code then uses the cubic root of the domain volume)
useful if and only if turb= 20, 21, 30, 31, 50 or 60 (RANS models)

ra real number > 0 [-grand*10] C L1
uref is the characteristic flow velocity, used for the initialisation of the turbulence
negative value: not initialised

useful if and only if iturb= 20, 21, 30, 31, 50 or 60 (RANS model) and the turbulence
is not initialised somewhere else (restart file or subroutine cs_user_initialization)

BASIC CONSTANTS OF THE k — & AND THE OTHER RANS MODELS

xkappa

cstlog

cmu

cel

ce2

r real number > 0 [0.42] 0] L3
Karmén constant
useful if and only if iturb>10 (mixing length, k — ¢, R;; — ¢, LES, v2f or k — w)

r real number > 0 [5.2] 0] L3
constant of the logarithmic wall function
useful if and only if iturb>10 (mixing length, k — ¢, R;; — ¢, LES, v2f or k — w)

r real number > 0 [0.09] 0] L3
constant C), for all the RANS turbulence models except for the v2f model (see cv2fmu
for the value of C), in case of v2f modelling)
useful if and only if iturb= 20, 21, 30, 31 or 60 (k —¢, R;; —c or k —w)

r real number > 0 [1.44] 0] L3
constant C.1 for all the RANS turbulence models except for the v2f and the k — w
models

useful if and only if iturb= 20, 21, 30 or 31 (k — ¢ or R;; —¢)

r real number > 0 [1.92]) L3
constant C.o for the kK — ¢ and R;; — e LRR models
useful if and only if iturb= 20, 21 or 30 (k — ¢ or R;; —e LRR)

Code_Saturne
documentation

EDF R&D Code_Saturne version 4.0.5 practical user’s
guide Page 176/201

ced r real number > 0 [1.2] 0] L3
constant C¢4 for the interfacial term (Lagrangian module) in case of two-way coupling
useful in case of Lagrangian modelling, in k — ¢ and R;; — € with two-way coupling

sigmak r real number > 0 [1.0] 0] L3
Prandtl number for k with £ — ¢ and v2f models
useful if and only if iturb=20, 21 or 50 (k — € or v2f)

sigmae r real number > 0 [1.3] 0] L3
Prandt]l number for
useful if and only if iturb= 20, 21, 30, 31 or 50 (k — ¢, R;; — ¢ or v2f)

CONSTANTS SPECIFIC TO THE R;; —¢ LRR MODEL (iturb=30)

criji r real number > 0 [1.8] @) L3
constant Cp for the R;; — e LRR model
useful if and only if iturb=30 (R;; — ¢ LRR)

crij2 r real number > 0 [0.6] 0] L3
constant Co for the R;; — & LRR model
useful if and only if iturb=30 (R;; — e LRR)

crij3 r real number > 0 [0.55] 0] L3
constant Cs for the R;; — e LRR model
useful if and only if iturb=30 (R;; — e LRR)

csrij r real number > 0 [0.22] 0) L3
constant C; for the R;; — e LRR model
useful if and only if iturb=30 (R;; — ¢ LRR)

crijpl r real number > 0 [0.5] 0] L3
constant C} for the R;; — ¢ LRR model, corresponding to the wall echo terms
useful if and only if iturb=30 and irijec=1 (R;; — ¢ LRR)

crijp2 r real number > 0 [0.3] o) L3

constant C4 for the R;; — e LRR model, corresponding to the wall echo terms

useful if and only if iturb=30 and irijec=1 (R;; — ¢ LRR)

CONSTANTS SPECIFIC TO THE R;; — e SSG MODEL

cssgsl

cssgs2

r real number > 0 [1.7]
constant Cs; for the R;; —e SSG model
useful if and only if iturb=31 (R;; — e SSG)

r real number > 0 [-1.05]
constant Cso for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 177/201

cssgrl r real number > 0 [0.9] 0] L3
constant C,q for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgr2 r real number > 0 [0.8] Q) L3
constant Cyo for the R;; — e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgr3 r real number > 0 [0.65] 0] L3
constant C,3 for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgrd r real number > 0 [0.625] 0] L3
constant Cy4 for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgrb r real number > 0 [0.2] 0] L3
constant C,q for the R;; — e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssge2 r real number > 0 [1.83] 0) L3
constant C,o for the R;; — e SSG model
useful if and only if iturb=31 (R;; — & SSG)

CONSTANTS SPECIFIC TO THE V2F ©-MODEL

cv2fal r real number > 0 [0.05] 0] L3
constant a; for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

cv2fe2 r real number > 0 [1.85] 0] L3
constant C.o for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

cv2fmu r real number > 0 [0.22] o) L3
constant C), for the v2f p-model
useful if and only if iturb=>50 (v2f ¢-model)

cv2fcl r real number > 0 [1.4] 0) L3
constant C; for the v2f ¢-model
useful if and only if iturb=50 (v2f p-model)

cv2fc2 r real number > 0 [0.3] 0] L3
constant Cy for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

cv2fct r real number > 0 [6] @) L3

constant Cr for the v2f p-model
useful if and only if iturb=>50 (v2f ¢-model)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 178/201
cv2fcl r real number > 0 [0.25] 0] L3
constant Cp, for the v2f ¢-model
useful if and only if iturb=50 (v2f p-model)
cv2fet r real number > 0 [110] 0] L3

constant C,, for the v2f ¢-model
useful if and only if iturb=50 (v2f p-model)

CONSTANTS SPECIFIC TO THE k£ — w SST MODEL

ckwskl

ckwsk2

ckwswl

ckwsw2

ckwbtl

ckwbt2

ckwgml

ckwgm?2

ckwal

r real number > 0 [1/0.85] 0 L3
constant oy for the k — w SST model
useful if and only if iturb=60 (k —w SST)

r real number > 0 [2] 0] L3
constant oo for the £k — w SST model
useful if and only if iturb=60 (k —w SST)

r real number > 0 [2]) L3
constant o, for the K — w SST model
useful if and only if iturb=60 (k —w SST)

r real number > 0 [1/0.856] 0] L3
constant o9 for the £ — w SST model
useful if and only if iturb=60 (k —w SST)

r real number > 0 [0.075] 0] L3
constant 31 for the k — w SST model
useful if and only if iturb=60 (k —w SST)

r real number > 0 [0.0828] 0] L3
constant By for the k — w SST model
useful if and only if iturb=60 (k —w SST)

K2]
" vVCuou1

Q‘;m

r real number > 0 [

constant ~y; for the kK —w SST model

useful if and only if iturb=60 (k —w SST)

Warning: 1 s calculated before the call to usipsu. Hence, if 31, Cyu, Kk or oy is
modified in usipsu, ckwgml must also be modified in accordance

r real number > 0 [g—i -] 0) L3

ClLowa
constant o for the £ —w SST model
useful if and only if iturb=60 (k —w SST)
Warning: 2 s calculated before the call to usipsu. Hence, if B2, Cp, Kk or oug is
modified in usipsu, ckwgm2 must also be modified in accordance

r real number > 0 [0.31] @) L3
constant ay for the £ — w SST model
useful if and only if iturb=60 (k —w SST)

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 179/201
ckwcl r real number > 0 [10] 0] L3

9.4 ALE

iale

nalinf

nbstru

alpnmk

betnmk

gamnmk

nalimx

epalim

iflxmw

constant ¢; for the k — w SST model
useful if and only if iturb=60 (k —w SST)

i Oor1 C] 0 L1
activates (=1) or not (=0) the ALE module

i 0 or positive integer [0] C L2
The number of sub-iterations of initialization of the fluid

i 0 or positive integer [0] C L1
number of structures, automatically computed

T real [0] C L3
alpha Newmark’s method

r real [-grand] C L3
beta Newmark’s method

r real [~grand] C L3
gamma Newmark’s method

i positive integer [15] C L2
maximum number of implicitation iterations for the structure displacement

r positive real [1.1077] C L2
Relative precision of implicitation of the structure displacement

i Oorl [1] @) L2
method to compute interior mass flux due to ALE mesh velocity

= 1: based on cell center mesh velocity

= 0: based on nodes displacement

9.5 Thermal radiative transfers: global settings

All the following keywords may be modified in the user subroutines usray* (or, for some of them,
through the thermochemical data files). It is however not recommended to modify those which do not
belong to level L1.

iirayo

ia 0,1,2 [0] 0 L1
iirayo activates (> 0) or deactivates (=0) the radiation module
The different values correspond to the following modelling methodes:

= 1: discrete ordinates method (DOM standard option for radiation in semi-
transparent media)

= 2: “P-1” methode
Warning: the P-1 methode allows faster computations, but it may only be applied

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 180/201

to media with uniform large optical thickness, such as some cases of pulverised coal
combustion

imodak i Oorl [0] O L3
when gas or coal combustion is activated, imodak indicates whether the absorption
coefficient shall be calculated “automatically” (=1) or read from the data file (=0)
useful if the radiation module is activated

isuird i Oorl [isuite] C L1
indicates whether the radiation variables should be initialised (=0) or read from a
restart file (=1)
useful if and only if the radiation module is activated (in this case, a restart file rayamo
must be available)

nfreqr i strictly positive integer [1] 0] L1
period of the radiation module
the radiation module is called every nfreqr time steps (more precisely, every time
ntcabs is a multiple of nfreqr). Also, in order to have proper initialisation of the
variables, whatever the value of nfreqr, the radiation module is called at the first
time step of a calculation (restart or not)
useful if and only if the radiation module is activated

ndirec i 32 or 128 [32] 0] L1
number of directions for the angular discretisation of the radiation propagation with
the DOM model (iirayo=1)
no other possible value, because of the way the directions are calculated
the calculation with 32 directions may break the symmetry of physically axi-symmetric
cases (but the cost in CPU time is much lower than with 128 directions)
useful if and only if the radiation module is activated with the DOM method

xnplmx T real number [10] O L3
with the P-1 model (iirayo=2), xnpimx is the percentage of cells of the calculation
domain for which it is acceptable that the optical thickness is lower than unity3?,
although it is not to be desired
useful if and only if the radiation module is activated with the P-1 method

idiver i 0,1or2 2] C L1
indicates the method used to calculate the radiative source term:
= 0: semi-analytic calculation (compulsory with transparent media)
= 1: conservative calculation
= 2: semi-analytic calculation corrected in order to be globally conservative
useful if and only if the radiation module is activated
Note: if the medium is transparent, the choice has no effect on the calculation

iimpar i 0,1or2 [1] @) L1
Verbosity level in the listing concerning the calculation of the wall temperatures:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated

39more precisely, where K L is lower than 1, where K is the absorption coefficient of the medium and L is a characteristic
length of the domain

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation

guide Page 181/201

iimlum

nbrvaf

irayvf

tmin

tmax

i 0,1or2 1] O L1
Verbosity level in the listing concerning the solution of the radiative transfer equation:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated

ca string of less than 80 characters [name] 0) L1
name associated for the post-processing to each of the following variables, defined at
the boundary faces (see [6] for more details concerning their definitions):

nbrvaf (itparp): wall temperature at the boundary faces (K)

nbrvaf (igincp): radiative incident flux density (W/m?)

nbrvaf (ixlamp): thermal conductivity of the boundary faces (W/m/K)

nbrvaf (iepap): wall thickness (m)

nbrvaf (iepsp): wall emissivity

nbrvaf (ifnetp): net radiative flux density (W/m?)

nbrvaf (ifconp): convective flux density (W/m?)

nbrvaf (ihconp): convective exchange coefficient (W/m?/K)
The default values are:

nbrvaf (itparp) = Wall_temp

nbrvaf (igincp) = Incident_flux

nbrvaf (ixlamp) = Th_conductivity

nbrvaf (iepap) = Thickness

nbrvaf (iepsp) = Emissivity

nbrvaf (ifnetp) = Net_flux

nbrvaf (ifconp) = Convective flux

nbrvaf (ihconp) = Convective_exch_coef
useful if and only if the radiation module is activated

ia -lorl [-1] O L1
activates (=1) or deactivates (=-1) the post-processing for each of the following vari-
ables defined at the boundary faces:

irayvf (itparp): wall temperature at the boundary faces (K)

irayvf (iqincp): incident radiative flux density (W/m?)

irayvf (ixlamp): thermal conductivity of the boundary faces (W/m/K)

irayvf (iepap): wall thickness (m)

irayvf (iepsp): wall emissivity

irayvf (ifnetp): net radiative flux density (W/m?)

irayvi (ifconp): convective flux density (W/m?)

irayvf (ihconp): convective exchange coefficient (W/m?/K)
useful if and only if the radiation module is activated

r positive real number [0] @) L3
minimum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

r positive real number [grand + 273.15] 0] L3
maximum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 182/201

9.6 Electric module (Joule effect and electric arcs): specificities

The electric module is composed of a Joule effect module (ippmod(ieljou)) and an electric arcs
module (ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impulse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arcs module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The keywords used in the global settings are quite few. They are found in the subroutine uselil (see
the description of this user subroutine §8.8.5).

ielcor

couimp

puisim

dpot

modrec

idreca

i 0,1 [0] O L1
when ielcor=1, the boundary conditions for the potential will be tuned at each time
step in order to reach a user-specified target dissipated power puisim (Joule effect) or
a user-specified target current intensity couimp (electric arcs)
the boundary condition tuning is controlled by subroutines elreca or uselrc
always useful

r real number > 0 [0] @) L1
with the electric arcs module, couimp is the target current intensity (A) for the cal-
culations with boundary condition tuning for the potential
the target intensity will be reached if the boundary conditions are expressed using
the variable dpot or if the initial boundary conditions are multiplied by the variable
coejou
useful with the electric arcs module if ielcor=1

r real number > 0 [0] 0) L1
with the Joule effect module, puisim is the target dissipated power (W) for the cal-
culations with boundary condition tuning for the potential
the target power will be reached if the boundary conditions are expressed using the
variable dpot or if the initial boundary conditions are multiplied by the variable coejou
useful with the Joule effect module if ielcor=1

r real number > 0 [0] Q) L1
dpot is the potential difference (V') which generates the current (and the Joule effect)
for the calculations with boundary conditions tuning for the potential. This value is
initialised set by the user (uselil). It is then automatically tuned depending on the
value of dissipated power (Joule effect module) or the intensity of current (electric
arcs module). In order for the correct power or intensity to be reached, the boundary
conditions for the potential must be expressed with dpot (uselcl). The tuning can
be controlled in uselrc
useful if ielcor=1

i 0,1,2 [1] O L1
when ielcor=0, we use user function uselrc for boundary condition tuning

when ielcor=1, we use standard model for boundary condition tuning

when ielcor=2, we use plane scaling model for boundary condition tuning. In this
case, we need define plane and current density component used to

i 1,2, 3 3] 0 L1

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 183/201

defines current density component used to calculate current in plane
useful if modrec=2

crit_reca r real number > 0 [0] 0) L1

9.7

defines plane coordinates component used to calculate current in plane
useful if modrec=2

Compressible module: specificities

The keywords used in the global settings are quite few. They are found in the subroutines uscfx1 and
uscfx2, in the cs_user_parameters.f90 file (see the description of these user subroutines, §8.7.1).

ieos i 1 [1] C L1
ieos indicates the equation of state. Only perfect gas with a constant adiabatic
coefficient, ieos=1 is available, but the user can complete the subroutine cfther,
which is not a user subroutine, to add new equations of state.
always useful

Xmasmr r 1 [1] C L1
xmasmr is the molar mass of the perfect gas in kg/mol (ieos=1)
always useful

icfgrp ia Oor1 [1] C L1

icfgrp indicates if the boundary conditions should take into account (=1) or not (=0)
the hydrostatic balance.

always useful.

In the cases where gravity is predominant, taking into account the hydrostatic pressure
allows to get rid of the disturbances which may appear near the horizontal walls when
the flow is little convective.

Otherwise, when icfgrp=0, the pressure condition is calculated from the solution of
the one-dimensional Euler equations for a perfect gas near a wall, for the variables
“normal velocity”, “density” and “pressure”:

Case of an expansion (M < 0):

—1
P,=0 if 14+ 15—-M <0
2y

Y1, .\t ,
P,=P(14+—M otherwise

Case of a shock (M > 0):

1 1)2
P, =P <1+7(74+)M2+7M\/1+L—f6) M2>

U
——, internal Mach number calculated with the variables taken in the cell adjacent

with M =
(&
to the wall.

iviscv i Oorl [0] C L1

iviscv=0 indicates that the volume viscosity is constant and equal to the reference

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 184/201
volume viscosity viscvO.
iviscv=1 indicates that the volume viscosity is variable: its variation law must be
specified in the user subroutine usphyv.
always useful
The volume viscosity x is defined by the formula expressing the stress:
2
o =—Pld+p(Vu+ ‘grad u) + (v — Sp) div (u) Id 9)
viscv0 r real number > 0 [0]) L1
viscvO is the reference volume viscosity (noted in the equation expressing ¢ in the
paragraph dedicated to iviscv)
always useful, it is the used value, unless the user specifies the volume viscosity in the
user subroutine usphyv
igrdpp i Oor1l [1] O L3

indicates whether the pressure should be updated (=1) or not (=0) after the solution
of the acoustic equation
always useful

9.8 Lagrangian multiphase flows

Most of these keywords may be modified in the user subroutines uslagl, uslag2, uslaen, uslast and
uslaed. It is however strongly recommended not to modify those belonging to the level L3.

First of all, it should be noted that the Lagrangian module is compliant with almost all the RANS
turbulence models and with laminar flows. However, the standard particle turbulent dispersion model
does not take fully advantage of the second-order R;; — e models. The same isotropic model is used as
in the k£ — ¢ models, with k calculated from the trace of R;;. Also, two-way coupling is not compatible
with the £ —w SST model.

9.8.1 Global settings

iilagr

isuila

I 0,1,2,3 [0] C L1
activates (>0) or deactivates (=0) the Lagrangian module
the different values correspond to the following modellings:

= 1 Lagrangian two-phase flow in one-way coupling (no influence of the par-
ticles on the continuous phase)

= 2 Lagrangian two-phase flow with two-way coupling (influence of the par-
ticles on the dynamics of the continuous phase). Dynamics, temperature and mass
may be coupled independently

= 3 Lagrangian two-phase flow on frozen continuous phase. This option can
only be used in case of a calculation restart. All the Eulerian fields are frozen (includ-
ing the scalar fields). This option automatically implies iccvig = 1
always useful

i 0,1 0] C L1
activation (=1) or not (=0) of a Lagrangian calculation restart. The calculation restart
file read when this option is activated (ficaml) only contains the data related to the
particles (see also isuist)

the global calculation must also be a restart calculation

always useful

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 185/201
isuist i 0,1 [0] C L1
during a Lagrangian calculation restart, indicates whether the particle statistics (vol-
ume and boundary) and two-way coupling terms are to be read from a restart file (=1)
or reinitialised (=0). The file to be read is ficmls
useful if isuila =1
nbpmax i positive or null integer [1000] C L1
maximum number of particles allowed simultaneously in the calculation domain. It
must be reminded that the required memory evolves accordingly
nbpart i positive or null integer [0] @) L3
number of particles treated during one Lagrangian time step
nbpart must always be lower than nbpmax
always useful, but initialised and updated without intervention of the user
nvls i integer between 0 and 10 [0] Q) L2
number of additional variables related to the particles
the additional variables can be accessed in the arrays eptp and eptpa by means of
the pointer jvls: eptp(jvls(ii),nbpt) and eptpa(jvls(ii),nbpt) (nbpt is the
index-number of the treated particle, and ii an integer between 1 and nvls)
isttio i 0,1 [0] C L1
indicates the steady (=1) or unsteady (=0) state of the continuous phase flow
in particular, isttio = 1 is needed in order to:
calculate steady statistics in the volume or at the boundaries (starting respec-
tively from the Lagrangian iterations nstist and nstbor)
calculate time-averaged two-way coupling source terms (from the Lagrangian
iteration nstits)
useful if iilagr=1 or iilagr=2 (if iilagr=3, then isttio=1 is automatically set)
injcon i 0,1 [0] 0] L1
activates (=1) or not (=0) the continuous injection of particles
this option allows to inject particles continuously during the duration of the Lagrangian
time step dtp rather than only once at the beginning of the Lagrangian iteration. It
helps avoiding the fractioning of the particle cloud close to the injection areas
iroule i 0,1 [0] Q) L1
activates (=1) or not (=0) of the particle cloning/fusion technique (option also called
“Russian roulette”)
when iroule = 1, the importance function must be specified via the array croule in
the user subroutine uslaru
ttclag r positive real number [0] 0 L3
physical time of the Lagrangian simulation
always useful
iplas i integer > 0 [1] 0) L3

absolute iteration number (including the restarts) in the Lagrangian module (i.e. La-
grangian time step number)
always useful

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation
guide Page 186/201

9.8.2 Specific physics models associated with the particles

iphyla

idpvar

itpvar

impvar

tpart

cppart

iencra

tprenc

visref

i 0,1,2 [0] C L1
activates (>0) or deactivates (=0) the physical models associated to the particles:

= 1: allows to associate with the particles evolution equations on their tem-
perature (in degrees Celsius), their diameter and their mass

= 2: the particles are pulverised coal particles. Evolution equations on tem-
perature (in degree Celsius), mass of reactive coal, mass of char and diameter of the
shrinking core are associated with the particles. This option is available only if the
continuous phase represents a pulverised coal flame
always useful

i 0,1 0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle diameter
useful if iphyla =1

i 0,1 0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle temperature (in
degrees Celsius)

useful if iphyla = 1 and if there is a thermal scalar associated with the continuous
phase

i 0,1 0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle mass
useful if si iphyla =1

r real number > tkelvn [700] 0] L1
initialisation temperature (in degree Celsius) for the particles already present in the
calculation domain when an evolution equation on the particle temperature is activated
during a calculation (iphyla = 1 and itpvar = 1)

useful if isuila = 1 and itpvar = 0 in the previous calculation

r positive real number [5200] 0] L1
initialisation value for the specific heat (J.kg=1.K ') of the particles already present
in the calculation domain when an evolution equation on the particle temperature is
activated during a calculation (iphyla = 1 and itpvar = 1)

useful if isuila = 1 and itpvar = 0 in the previous calculation

i 0,1 0] 0 L1
activates (=1) or not (=0) the option of coal particle fouling. It then is necessary to
specify the domain boundaries on which fouling may take place.
useful if iphyla = 2

r real number > tkelvn [600] 0] L1
limit temperature (in degree Celsius) below which the coal particles do not cause any
fouling (if the fouling model is activated)
useful if iphyla = 2 and iencra =1

r positive real number [10000] 0] L1
ash critical viscosity in kg.m~'.s7!, in the fouling model *°

useful if iphyla = 2 and iencra =1

403.D. Watt and T. Fereday (J.Inst. Fuel, Vol.42-p99)

EDF R&D

Code_Saturne
Code_Saturne version 4.0.5 practical user’s documentation
guide Page 187/201

9.8.3 Options for two-way coupling

nstits

Itsdyn

Itsmas

Itsthe

i strictly positive integer [1]) L1
number of absolute Lagrangian iterations (including the restarts) after which a time-
average of the two-way coupling source terms is calculated
indeed, if the flow is steady (isttio=1), the average quantities that appear in the
two-way coupling source terms can be calculated over different time steps, in order to
get a better precision
if the number of absolute Lagrangian iterations is strictly inferior to nstits, the code
considers that the flow has not yet reached its steady state (transition period) and the
averages appearing in the source terms are reinitialised at each time step, as it is the
case for unsteady flows (isttio=0)
useful if iilagr = 2 and isttio =1

i 0,1 [0] 0 L1
activates (=1) or not (=0) of the two-way coupling on the dynamics of the continuous
phase

useful if iilagr = 2 and iccvig =0

i 0, 1 [0] 0 L1
activation (=1) or not (=0) of the two-way coupling on the mass
useful if iilagr = 2, iphyla = 1 and impvar = 1

i 0,1 0] 0 L1
if iphyla =1 and itpvar = 1, 1tsthe activates (=1) or not (=0) the two-way coupling
on temperature
if iphyla = 2, 1tsthe activates (=1) or not (=0) the two-way coupling on the Eulerian
variables related to pulverised coal combustion
useful if iilagr = 2

9.8.4 Numerical modelling

nordre

ilapoi

idistu

i 1,2 [2] 0] L2
order of integration for the stochastic differential equations

= 1 integration using a first-order scheme

= 2 integration using a second-order scheme
always useful

i 0,1 [0] O L3
activation (=1) or not (=0) of the solution of a Poisson’s equation for the correction
of the particle instantaneous velocities (in order to obtain a null divergence)
this option is not validated and reserved to the development team. The user must not
change the default value

i 0,1 1] O L3
activation (=1) or not (=0) of the particle turbulent dispersion

the turbulent dispersion is compatible only with the RANS turbulent models (k — &,
Rij —e,v2for k—w)

(iturb=20, 21, 30, 31, 50 or 60)

always useful

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 188/201
idiffl i 0,1 [0]] L3
idiff1=1 suppresses the crossing trajectory effect, making turbulent dispersion for
the particles identical to the turbulent diffusion of fluid particles
useful if idistu=1
modcpl i positive integer [0] 0] L1
activates (>0) or not (=0) the complete turbulent dispersion model
when modcpl is strictly positive, its value is interpreted as the absolute Lagrangian
time step number (including restarts) after which the complete model is applied
since the complete model uses volume statistics, modcpl must either be 0 or be greater
than idstnt
useful if istala =1
idirla i 1,2,3 1] 0 L1

x, y or z direction of the complete model
it corresponds to the main directions of the flow
useful if modcpl > 0

9.8.5 Volume statistics

istala

seuil

idstnt

nstist

i 0,1 [0] C L1
activation (=1) or not (=0) of the calculation of the volume statistics related to the
dispersed phase

if istala = 1, the calculation of the statistics is activated starting from the absolute
iteration (including the restarts) idstnt

by default, the statistics are not steady (reset to zero at every Lagrangian iteration).
But if isttio=1, since the flow is steady, the statistics will be averaged overt he
different time steps

the statistics represent the significant results on the particle cloud

always useful

r positive real number [0] Q) L1
every cell of the calculation domain contains a certain quantity of particles, repre-
senting a certain statistical weight (sum of the statistical weights of all the particles
present in the cell). seuil is the limit statistical weight value, below which the contri-
bution of the cell in term of statistical weight is not taken into account in the volume
statistics (for the complete turbulent dispersion model, in the Poisson’s equation used
to correct the mean velocities or in the listing and post-processing outputs)
useful if istala =1

i strictly positive integer [1] C L1
absolute Lagrangian iteration number (including the restarts) after which the calcu-
lation of the volume statistics is activated
useful if istala =1

i integer > idstnt [idstnt] 0) L1
absolute Lagrangian iteration number (including the restarts) after which the volume
statistics are cumulated over time (they are then said to be steady)
if the absolute Lagrangian iteration number is less than nstist, or if the flow is
unsteady (isttio=0), the statistics are reset to zero at each Lagrangian iteration (the
volume statistics are then said to be unsteady)
useful if istala=1 and isttio=1

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 189/201
nomlag ca string of less than 50 characters [VarLagXXXX] 0O L1

name of the volumetric statistics, displayed in the listing and the post-processing files.
The default value is given above, with “XXXX” representing a four digit number (for
instance 0001, 0011 ...)

useful if istala =1

Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, then it will not be possible
to read its value from the restart file

nvlsts i 0 < integer < nussta=20 [0] O L1
number of additional user volume statistics
the additional statistics (or their cumulated value in the steady case) can be accessed
in the array statis by means of the pointer ilvu: statis(iel,ilvu(ii)) (iel is
the cell index-number and ii an integer between 1 and nvlsts)
useful if istala =1

npst i positive integer [0] 0] L3
number of iterations during which steady volume statistics have been cumulated
useful if istala=1, isttio=1 and if nstist is less than or equal to the current La-
grangian iteration
npst is initialised and updated automatically by the code, its value is not to be mod-
ified by the user

npstt i positive integer [0]) L3
number of iterations during which volume statistics have been calculated (the potential
iterations during which unsteady statistics have been calculated are counted in npstt)
useful if istala=1
npstt is initialised and updated automatically by the code, its value is not to be
modified by the user

tstat r positive real number [dtp] o) L3
if the volume statistics are calculated in a steady way, tstat represents the physical
time during which the statistics have been cumulated
if the volume statistics are calculated in a unsteady way, then tstat=dtp (it is the
Lagrangian time step, because the statistics are reset to zero at every iteration)
useful if istala=1
tstat is initialised and updated automatically by the code, its value is not to be
modified by the user

9.8.6 Display of particles and trajectories

The definition of the particle visualization output meshes itself is done with that of all other postpro-
cessing mesh zones, either using the GUI, or the cs_user_postprocess_meshes function of cs_user_postprocess.c.

The following options determine which variables are output on those particle or particle trajectory
segment output meshes for which the “automatic output” is activated.

ivisvl i 0,1 0] 0 L1
associates (=1) or not (=0) the variable “velocity of the locally undisturbed fluid flow
field” with the output of particles or trajectories
always useful

ivisv2 i 0,1 [0] 0) L1
associates (=1) or not (=0) the variable “particle velocity” with the output of particles

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 190/201

or trajectories
always useful

ivistp i 0,1 [0] 0) L1
associates (=1) or not (=0) the variable “residence time” with the output of particles
or trajectories
always useful

ivisdm i 0,1 [0] 0 L1
associates (=1) or not (=0) the variable “particle diameter” with the output of parti-
cles or trajectories
always useful

iviste i 0,1 [0]) L1
associates (=1) or not (=0) the variable “particle temperature” with the output of
particles or trajectories
always useful

ivismp i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “particle mass” with the output of particles
or trajectories
always useful

ivisdk i 0,1 [0] 0 L1
associates (=1) or not (=0) the variable “shrinking core diameter of the coal particles”
with the output of particles or trajectories
useful only if iphyla = 2

ivisch i 0,1 [0]) L1
associates (=1) or not (=0) the variable “mass of reactive coal of the coal particles”
with the output of particles or trajectories
useful only if iphyla = 2

ivisck i 0,1 [0] 0O L1

associates (=1) or not (=0) the variable “mass of coal of the coal particles” with the
output of particles or trajectories
useful only if iphyla = 2

9.8.7 Display of the particle’/boundary interactions and the statistics at the
boundaries

iensi3

i 0,1 [0] C L1
activates (=1) or not (=0) of the recording of the particle/boundary interactions in
parbor, and of the calculation of the statistics at the corresponding boundaries, for
post-processing (EnSight6 format)

By default, the statistics are unsteady (reset to zero at every Lagrangian iteration).
They may be steady if isttio=1 (i.e. calculation of a cumulated value over time,
and then calculation of an average over time or over the number of interactions with
the boundary)

always useful

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 191/201

nstbor i strictly positive integer [1] @) L1
number of absolute Lagrangian iterations (including the restarts) after which the
statistics at the boundaries are considered steady and are averaged (over time or
over the number of interactions)
If the number of absolute Lagrangian iterations is less than nstbor, or if isttio=0,
the statistics are reset to zero at every Lagrangian iteration (unsteady statistics)
useful if iensi3=1 and isttio=1

seuilf r positive real number [0] 0) L1
every boundary face of the mesh undergoes a certain number of interactions with
particles, expressed in term of statistical weight (sum of the statistical weights of
all the particles which have interacted with the boundary face). seuilf is the limit
statistical weight value, below which the contribution of the face is not taken into
account in the statistics at the boundaries for post-processing
useful if iensi3=1

inbrbd i 0,1 [1] O L1
activates (=1) or not (=0) of the recording of the number of particle/boundary inter-
actions, and of the calculation of the associated boundary statistics.
inbrd = 1 is a compulsory condition to use the particulate average imoybr = 2
useful if iensi3=1

iflmbd i 0,1 [0] Q) L1
activates (=1) or not (=0) of the recording of the particulate mass flow related to
the particle/boundary interactions, and of the calculation of the associated boundary
statistics
inbrd = 1 is a compulsory condition to use iflmbd=1
useful if iensi3=1 and inbrbd=1

iangbd i 0,1 [0]) L1
activates (=1) or not (=0) of the recording of the angle between a particle trajectory
and a boundary face involved in a particle/boundary interaction, and of the calculation
of the associated boundary statistics
useful if iensi3=1

ivitbd i 0,1 [0] 0O L1
activates (=1) or not (=0) of the recording of the velocity of a particle involved in
a particle/boundary interaction, and of the calculation of the associated boundary
statistics
useful if iensi3=1

iencbd i 0,1 [0] @) L1
activates (=1) or not (=0) of the recording of the mass of coal particles stuck to the
wall due to fouling, on the boundary faces of the iencrl interaction type
useful if iensi3=1, iphyla=2, iencra=1, and if there is at least one boundary face
of the iencrl interaction type

nusbor i positive integer [0] 0) L1

number of additional user data to record for the calculation of additional boundary
statistics in parbor
useful if iensi3=1

EDF R&D

Code_Saturne

Code_Saturne version 4.0.5 practical user’s documentation
guide Page 192/201

nombrd

imoybr

npstf

npstft

tstatp

ca string of less than 50 characters [see uslagi] 0] L1
name of the boundary statistics, displayed in the listing and the post-processing files
useful if iensi3=1

Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, it will not be possible to
read its value from the restart file

ia 0,1,2 [0,1or 2] O L1
the recordings in parbor at every particle/boundary interaction are cumulated values
(possibly reset to zero at every iteration in the unsteady case). They must therefore
be divided by a quantity to get boundary statistics. The user can choose between two
average types:

= 0: no average is applied to the recorded cumulated values

= 1: a time-average is calculated. The cumulated value is divided by the
physical duration in the case of steady averages (isttio=1). The cumulated value is
divided by the value of the last time step in the case of unsteady averages (isttio=0),
and also in the case of steady averages while the absolute Lagrangian iteration number
is inferior to nstbor

= 2: a particulate average is calculated. The cumulated value is divided by
the number of particle/boundary interactions (in terms of statistical weight) recorded
in parbor (nfabor,inbr). This average can only be calculated when inbrbd=1. The
average is calculated if the number of interactions (in statistical weight) of the consid-
ered boundary face is strictly higher than seuilf, otherwise the average at the face is
set to zero
only the cumulated value is recorded in the restart file
useful if iensi3=1

i positive integer [0] @) L3
number of iterations during which steady boundary statistics have been cumulated
useful if iensi3=1, isttio=1 and nstbor less than or equal to the current Lagrangian
iteration
npstf is initialised and updated automatically by the code, its value is not to be
modified by the user

i positive integer [0] 0] L3
number of iterations during which boundary statistics have been calculated (the po-
tential iterations during which unsteady statistics have been calculated are counted in
npstft)
useful if iensi3=1
npstft is initialised and updated automatically by the code, its value is not to be
modified by the user

r positive real number [dtp] @) L3
if the recording of the boundary statistics is steady, tstatp contains the cumulated
physical duration of the recording of the boundary statistics
if the recording of the boundary statistics is unsteady, then tstat=dtp (it is the
Lagrangian time step, because the statistics are reset to zero at every time step)
useful if iensi3=1

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 193/201

10 Bibliography

[1]

F. ARCHAMBEAU, N. MECHITOUA, M. SAKIZ,
Code_Saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows,
Industrial Applications, International Journal on Finite Volumes, Vol. 1, 2004.

F. ARCHAMBEAU, et al.,
Note de validation de Code_Saturne version 1.1.0,
EDF Report HI-83/04/003/A, 2004 (in French).

S. BENHAMADOUCHE,
Modélisation de sous-maille pour la LES - Validation avec la Turbulence Homogéne Isotrope (THI)

dans une version de développement de Code_Saturne,
EDF Report HI-83/01/033/A, 2001 (in French).

M. BOUCKER, F. ARCHAMBEAU, N. MECHITOUA,
Quelques éléments concernant la structure informatique du Solveur Commun - Version 1.0_init0,
Compte-rendu express EDF 181-00-8, 2000 (in French).

M. BOUCKER, J.D. MATTEI,
Proposition de modification des conditions auzx limites de paroi turbulente pour le Solveur Commun

dans le cadre du modéle k — ¢ standard,
EDF Report HI-81/00/019/A, 2000 (in French).

A. DoUCE, N. MECHITOUA,
Mise en ceuvre dans Code_Saturne des physiques particuliéres. Tome3 : Transfert thermique radiatif

en milieu gris semi-transparent,
EDF Report HI-81/02/019/A, 2002 (in French).

A. DOUCE,
Physiques particuliéres dans Code_Saturne 1.1, Tome 5 : modélisation stochastique lagrangienne

d’écoulements turbulents diphasiques polydispersés,
EDF Report, HI-81/04/03/A, 2005 (in French).

A. EscaicH, P. PLION, Mise en ceuvre dans Code_Saturne des modélisations physiques particuliéres.
Tome 1 : Combustion en phase gaz,
EDF Report, HI-81/02/03/A, 2002 (in French).

A. EscaIcH, Mise en ceuvre dans Code_Saturne des modélisations physiques particuliéres. Tome 2 :
Combustion du charbon pulvérisé,
EDF Report, HI-81/02/09/A, 2002 (in French).

[10] N. MECHITOUA, F. ARCHAMBEAU,

Prototype de solveur volumes finis co-localisé sur maillage non-structuré pour les équations de
Navier-Stokes 3D incompressibles et dilatables avec turbulence et scalaire passif,

EDF Report HE-41/98/010/B, 1998 (in French).

[11] Code_Saturne DOCUMENTATION,

Code_Saturne 4.0.5 Theory and Programmer’s guide,
on line with the release of Code_Saturne 4.0.5 (code_saturne info --guide theory).

[12] M. SAKIZ, VALIDATION TEAM,

Validation de Code_Saturne version 1.2 : note de synthése,
EDF Report H-183-2006-00818-FR, 2006 (in French).

[13] M. TAGORTI., S. DAL-SECCO, A. DoOUCE, N. MECHITOUA,

Physiques particuliéres dans Code_Saturne, tome 4 : le modéle P-1 pour la modélisation des trans-
ferts thermiques radiatifs en milieu gris semi-transparent,
EDF Report HI-81/03/017/A, 2003 (in French).

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 194/201

[14] Code_Saturne DOCUMENTATION,
Code_Saturne version 4.0.5 tutorial, on line with the release of Code_Saturne 4.0.5 (code_saturne
info --guide tutorial).

Index of the main variables and keywords

— Symbols —

10TtV Lt e 37
ISVRD Lo 37
ISVED oo 38
ttclag ... 185
COCJOU ..ttt 48
dpot ... 48
lcdpar ..o 48
1codCl oo 72
1@D 35
1D 35
AR e 35
iomg .o 35
APRI L 35
IpT 34
Arld e 35
s o 35
T 1 T 35
A2 e 35
1T 35
Ar33 e 35
ISCAPP vvii i 35
18Ca i 35
itypfb ..o 72
L P 34
P 34
AW e 35
rcodCl ... 72

— A —
ales ... 84, 156
almax ... 175
alpnmk ... 179
FE N0 o) 00T b P 162
AraK 163
atgaze ...l 100
AUX] o 47

- B -
betnmk ... 179
blencv ...t 163
blencycooiiiiiii 168
bles ..o 84, 156

_ C _
cdgfac ... 33
cdgfbo ..o 33
CAIIES .\ 155
cdtvar ... 150
cel 175
B 175
Ced 176
cebu ... 110

ckabsg ... 101
ckupde ... 39, 88
ckwal ... 178
ckwbtl .o 178
ckwbt2 ... 178
ckwel oo 179
ckwgml ... 178
ckwgm2 ... 178
ckwskl ..o 178
ckwsk2 ..o 178
ckwswl .. 178
CkWSW2 L 178
climgr ... 162
climgy ... 168
16510011 SN 175
COIMPOZ .« v vttt 100
COUITID + e v vttt 129, 182
COUIMAX + v vvvvtetteeteeeeeeeeeeeeeeaaeannnnn. 150
COUIMXY .+ v vvvvettetteete et 168
CPO oo 173
cepgdl 45
CPEA2 45
cpght <. 45
CPPATt oo 186
crijl oo 176
CIi)2 e 176
Crijd oo 176
crijpl ... 176
CTIJP2 ot 176
critreca 183
croule 47, 185
CSINAZO v vv ettt et e 84, 156
CSTIJ o 176
CSSEE2 it 177
CSSEIL ot 177
CSSET2 oottt 177
CSSEIB ottt 177
CSSEId .o 177
CSSELD ittt e 177
CSSESL 176
CSSES2 vttt 176
cstlog .o 175
ev2fal .o 177
ev2fel 177
ev2fC2 177
ev2fel Lo 178
ev2fet L. 177
ev2fe2 177
ev2fet ..o 178
ev2fmu ... 175, 177
-D-
diftld ... 110, 174

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 196/201
diipb .o 34 -I-
dijpf oo 33 i_convectiveinlet ool 72
diSpar 38 dale ... 179
distb ... 34 daltyb ... 133
distch ... 107 dangbd ... 191
AIiVUKW .o 39 dbfiXe ... 133
dofij ..o 34 dcalhy ... 164
Apot .o 182 dcapt ...oviii 96
At 39 dccoal ... 98
dtmax ... 151 dcevig oo 169
dtmin ... 150 dedpar ... 152, 166
At o 185, 189, 192 dcepde .ovvei it 38
dtptld ..o 117 dcepdp vovve 88
dtref ... 150 dcetSmoii 39, 90
Iefgrp oo 183
-E - icfuel ..o o 98
chgazg ... 101 ekabs v 109
emphis ... 143 HEIKED © oo 153
epalim ... LT9 Helptr .o 154
epptld ... 39, 117 elsyr oo 154
EPSCVY oottt 168 eltld oot 117
EPSAD . 164 Helvfl ..o 148
epsilo ... 163 Helvor oo 78
epsily ... 168 Hcocel oot 44
EPSIEL &\ttt 162 5cod3p wviie 98
EPSTY v 168 5C0EDU vttt 98
EPSISIIL .. L1700 HCOIWE © oot 98
EPSTSY ettt 123 fcompf ... 99
EPSUP .« vvvviii ICOMV w ettt 148
EPSZET .. LTL H00UT oot 37
= 011 R 44,185 dep Lo 36, 173
eptpa ... 45, 185 ICPA « ettt e e et e 36
epfero ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1673(2) ICPEXt v 159
EXULAZ . vvvv e 1T 0] 5 1 98
extray ... 108 CpSYT .ot 148
idebty ..o 77
- F - Idepol .o 121
fiefpp ..o VL 54602~ 121
ficinf UL qeuch . 152
ficush ... U4 Sdiam2 109
ficusr ... VS 149
fment 106 Sqifm 188
foumax ... 150 §Qifft ... 149
f5(1) oo V0L idifre .o 154
idilat ... 149
- G- BAIECL e 149
gamnmk ... 179 ..
idirla ... 188
GradpT .o 45
Gradvl . g5 TSI 154
IdISt e 34
Brand ... L70° S0SE e, 187
BIBYIBE wovvverre LTL S0IVEE e, 180
—H- dpvar ... 186
hbord oo 37 Idreca ...oovi 182
heptld 117 IArIeS e 155

idstnt ... 188

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 197/201
idtvar ... 149 dgrari ... 154
TECAUX vttt 47,145 4grdpp oo 184
felarc ... 99, 182 igrhok i 153
1elCOT v 182 ih2 ..o 103, 109
feljou ..o 99, 182 HhiSVI vttt 143
iencbd ... 191 dhm .o 109
IENCTA « v vttt 186 filagr ... 184
fencrl ... 121 fimlum ..o 181
1eNSI3 .o 190 dimpar ...l 180
fentat ... 106 dindef 72
ientep ... 106 Hrayoo.oiii 179
fentfu ... 106 ikecou ... 153
fentgb ... 105 Hlapoi ..o 187
fentgf ... 105 dleauxc.viiiiiii 47, 146
lentox ... 106 1logpo . 153
ientre ... 72,105 Qv .o 189
fentrl ... 121 ImMEIpy .o 168
T8OS + 183 dmligr ... 162
fescal ... 166 Imligy ... 167
IESCOT t ettt ettt ettt e e e e 36, 165 immel ... 109
iesder ... 36, 1656 imodak 180
IESPTE vttt 36, 165 1moybr ... 192
festim ... 36, 165 ImMPAvO ..o 141
iestot ..o 36, 166 IMPIPP .« . v vt 141
Hlm .o 103, 109 impjnf ... 141
f2m . 103, 109 implal ... 142
f3m .. 103, 109 impla2 ... 142
H3p2m ..o 110 implad ... 142
f4p2m ... 103 implad ... 142
fdpm ... 109 Implad ... 142
ifabor ... 33 IMPIMVO ottt 141
ifacelo 33 dmpush 144
ifapat ... 38 IMPUST « ettt 144
finty ..o TT IMPVAT .ttt 186
flmbd ... 191 IMPVVO e 141
ifluaa ..o 36 IMIZraovti i 161
Hlxmw .. 179 imvisf ... 169
fm o 103, 109 inbrbd 191
ifmeel ... 39 dndep .. 45
ifmfbr ... 38 Andjon ... 99
Hour ... 37 AIJCOM .« 185
P2 et 103, 109 AP «vneee e 103, 109
Hp3m .. 104 inpdt0 ..o 146
Hptld ..o 39 IPATOl .« 72
ifrent ... T2 APATUE oottt 72
ifresf ... 72,133 IPEPA .t 45
frlag .o 121 iphydr ... 164
igfuel ... 100 dphyla ... 186
IGLISS v 133 dplas ..o 185
igmdch ... o 109 dpnfac ... 33
igmdvl .o 109 dpnfbr ... 33
igmdv2 o 109 Iporos ...oo 164
igmhet ... 109 ippmod ... 98
IBOXY ottt 100 IpProC ..ot 36
igrake ... 183 Apreo ... 163

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 198/201
iprfml ..o 38 IEPVAL « o 186
Ipréot ..o 37 dtrifb L. 38, 77
iptlro .o 150 dturb ... 151
IPUCOU v 169 dturt ... 152
IQIMP et 105 dtycel ..o 44
irayvl ..o 181 dtycor ... 154
ITCCOT © ettt e 154 itypfb .. 38
ircflu ... 170 IbypsSm .o 39, 90
irefly oo T L 105
irebol 121 dusclb oo 121
ITEPVO it T8 duslag ..o 123
ITEVINC .« ottt e 163 dusncl ... 121
ITEC «vv v 164 QuSVIS oo 124
U .« 10D AV 105
irijrb . 155 dvelco ... 169
ITOEXE « 1568 dviext ..o 158
ITOML ettt e 36 IVIMPO et 133
Irom2 ... 109 dvisch ... 190
IrOMAa « 36 dvisck ... 190
iroule ... 185 dviscl o 36
F 072 N 171 AVISCE .« v e 36
ISCACD « v vttt 148 IVISCYV .« vii 183
iscalt ... 35,147 dvisdk ... 190
ischev ..o 163 dvisdm ... 190
ISChCY «vvv 168 dvisla ..o 36
ischtp ..o 157 IvISIMA .o 37
ISMAZO .« 37 VISP .. 190
ISNOZ2t .« 157 IVISSE .vvviii 149
iSolib ..o T2 IVISEA oo 36
isortl ... 121 dviste ..o 190
1SS02b oo 158 AVIStD v 190
ISSEPC ettt 163 IviSVL e 189
ISSEPY « oo 168 1vISV2 ... 189
istala ... 188 dvithd ... 191
Istat oo 148 dvivar ... 172
istmpf ..o 157 dvrtex ..o 47, 155
1St02b .. 157 AVSeXt v 159
IStEO .o 18D AW o 105
isuila ... 184 dwarni ... 145
isuird ..o 180 Iwarnyc.oviiiiiiii i 167
ISUiSt oo 185 X2 109
ISUISY woiii 1585 ixch ... 103, 109
ISUitl oo 169 ixck ... 103, 109
ISUite ..ot 146 ixkabe ... 101
ISUIVO vttt 155 dygfm ... 103, 109
ISYIEt « v T2 dym(l) oo 109
ISYIMPA « v vttt 38 Aym(2) i 109
63 .. 109 Gym(3) v 109
IAm ..o 109 GymI(1) «oovini e 110
itbrrb ... 148 Gyml(2) ..oviii 110
itemp ... 109 Gyml(3) «.oviii 110
itempl .. 110 Gyml(4) «oorei e 110
emMpP2 .o 109 Gyml(5) wuvveni e 110
itherm i 147 Gym1(6) ..o 110
itpscl o 148 dyml(7) ooeei 110

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 199/201

TZOMNE vttt 105 nfreqr ... 180
nfrlag ... 121
-J - NEAZE .« ottt ittt ittt 100
JVIS 185 ngazg ..o 100, 101
NILIMAY ..o 167
- K- 100 A1) o 44
kabse ... 100 Lnent . 78
kequg """""""""""""""""""""" M5 nod oo 31
keyVIS 142 nodfac 317 33
nodfbr 31, 33
Indfac L 31 nombrd ... 192
"""""""""""""""""""""" NOMCOE ' vveeenaieeenaneeennnneeee.....100

Indfbr ... 31
nomlag i 189
gin(;d """"""""""""""""""""" 1;3 1070) 14172 P 145
ltsrri]as """"""""""""""""""""" 187 NOTATE .ttt 187
ltsthe 187 TPO et 100, 101
""""""""""""""""""""" npptld ... 039, 117
- M — npriml ... 31
Max_scalar_CHPPINGveveeeeeeeeennn, 174 DPIOCE ... 32
min,scalar,clipping 174 NPTOINX .ttt it et e i et 32
modcpl 188 DpSt .. 189
MOATEC .+ o oo oo 182 npstf .. 192
npstft ... 192
— N — npstt ..o 189
NAliMX ... 179 DIGAZ ..oovniii 100
nalinf ... 179 mscal ... 32
NALO « it e 100 DSCAIMX wvvnnttii 32
nbpart ... 185 MSCAPD vt 32
DDPIMAK .« oot 44,185 MSCAUS «..ovviiiiiiiii 32, 147
NDIVAL o oo 181 nstbor ... 191
nbstru 179 nStiSt 188
ncapt 143 nStitS 187
NCEl 31 MSWIBL .« 161
neelet ... 31 DSWIZY ..ot 167
NCEPAC ..t 39, 88 MSWISILoooiiiiiniiiiiiiii. 170
ncepdp 88 NSWISY .ottt ittt tane e 167
TICESIIID ot vttt et et e e 89 ntCabS 146
NCEESIM ..ttt 39,89 mtemXy ... 167
NCharb .o oo 123 ntersl ... 44
NCNATIN o o oo oo oo 08,123 MbErup ...l 169
nclacp 32 nthist ... 143
nclagm 121 nthSaV 144
NCICPI .« .o 32 mtlist ... 145
NCIPCh o 98 mntmabs 146
LCPCIIX e vv e e et e e e 98 mtpabs ... 146
DA o oo oo e 31 mbtsuit ... 145
NAITEC .+ .ttt 180 MEYPMX ... 74
ndlagm ... 123 musbor ... 44, 191
ndlaim ... 123 mushmx ... 32
NESEINX + v oo oo 32, 165 LVAL . .ooniiiiii 31
nfabor 31 MVED i 44
NfAC . 31 LIVEAUS ..ot 44
nﬂagm]_21 nViSbI” .. 44
NPl o 31 nvisls ... 32
nfptld .o 39,117 nvls oo 44, 185

Code_Saturne
EDF R&D Code_Saturne version 4.0.5 practical user’s documentation
guide Page 200/201
NVISEA .\ttt e 44 thord ... 38
nvlsts ... 44,189 teptld ... 117
NVOTE « ottt T8 th o 101
NIVD oottt e 44 thetav 159
thetep ..o 160
-P - thetfl ... 159
PO e 72 fhetrooooo 160
parbor ... 46, 190, 191 thetsnooviiiiiiiiiiiiiaaaaaaaa., 159
DEPA . A5 HhEtSS .t 160
PEImVI ... L7L 0 hetst v 160
Pl L70° fhetvi ..o 160
pond ... 34 thetvs ..ot 161
POTOSI . ovvviiiiiiiiiii 39 timpat ... 106
pred0 ... LT3 ImpPep o oo 107
prefth ... ITL ginfue . ..oooeee 106
PIOPCE ...ttt 34 HNOXY 106
PUISIM ..o 182 fkelvi ... 171
PUISIID ..o 129 tkelvn .oooii 171
thent ... 106
-Q - BIATUS © vttt e e e e 146
QUIDP ottt 105 tinax 100, 181
qimpat ... 106 T 100, 181
QUIPCP oot 107 part oo 186
R _ tpptld .. 117
reodel ..o 105 EPEEIC v 122, 186
trefth ... 171
reptld oo 117
TElaxV ... 151 BSIABE 46
tStat ... 125, 189
TeIXSt oot 151
FEDELA © oo 117 tstatp ..o 192
ttcabs ..o 147
rinfin ... 171 ttpabs 147
TOO oo 172 5 o
0 P 171 - U-
ruslag ... 123 Letbor oo 38
rvarfl L LT85 ref oo 175
- S - N VA
S2k?v """"""""""""""""""""" 39 VAZAUS « e e v et ettt e e e e e e 47
seuil ... 188 Gorrdt oo 151
seuilf 91 Gisel 172
SIGMAL ... 176 Giaev0 oo 184
sigmak ... 176 GislsO oo 174
SIMAS ... L4 Gisref oo 122, 186
smacel ... 39,90 Gitfu o 45
SIMABIIX. v 156 VIEPAT 45
SITOML wveveeeee e L10, 172 G0hmol oo 171
statis ... 46, 189 0lume v 33
stephn ... 171
stoeg ... 100 — W —
surfac ... 33 WIOLAL oo oo 100
surfan ... 34 wmolg oo 101
surfbn ... 34
surfbo ... 33 - X -
XCOZ ottt 101
-T - Xh20 .+ 101
B0 173 xKkabe ..o 101

Code_Saturne

EDF R&D Code_Saturne version 4.0.5 practical user’s documentation

guide Page 201/201
xkabel 101
XKAPPA et 175
xlesfd ... 156
xlesfl ..o 84, 156
xImtld ..o 117
xlomlg ... 175
b: 00 F: 15310 | N 183
XOPIMX . oovi 180
XYZCAD + e e ettt e et e e e e 143
XYZCCIL «ovtitt ittt ittt 33
XYZNOA .« ettt 33
XYZPO oo 173

- Y —
VPINXY oo 169
YPIPAT o 38
ypluli <. 153
-7 —

	Flyleaf
	Abstract
	Table of contents
	Introduction
	Quick start
	Running a calculation
	Troubleshooting

	Practical information about Code_Saturne
	System Environment for Code_Saturne
	Preliminary settings
	Configuration file
	Standard directory hierarchy
	Code_Saturne Kernel library files

	Setting up and running a calculation
	Step by step calculation
	Temporary execution directory
	Execution modes
	Environment variables
	Interactive modification of selected parameters

	Case preparer
	Supported mesh and post-processing output formats
	Formats supported for input
	Formats supported for input or output
	Formats supported for output only
	Meshing tools and associated formats
	Meshing remarks

	Preprocessor command line options
	Kernel command line options
	Launch scripts
	Graphical User Interface
	User subroutines
	Preliminary comments
	Example routines
	Main variables
	Using selection criteria in user subroutines

	Face and cell mesh-defined properties and selection

	Importing and preprocessing meshes
	Preprocessor options
	Mesh selection
	Post-processing output
	Element orientation correction

	Environment variables
	System environment variables

	Optional functionality
	General remarks
	Files passed to the Kernel
	Mesh preprocessing
	Joining of non-conforming meshes
	Periodicity
	Parameters for conforming or non-conforming mesh joinings
	Parameters for periodicity
	Modification of the mesh geometry

	Mesh smoothing utilities
	Fix by feature
	Warped faces smoother

	Partitioning for parallel runs
	Partitioning stages
	Partitioner choice
	Effect of periodicity

	Basic modelling setup
	Initialisation of the main parameters
	Selection of mesh inputs: cs_user_mesh_input
	Non-default variables initialisation
	Manage boundary conditions
	Coding of standard boundary conditions
	Coding of non-standard boundary conditions
	Checking of the boundary conditions
	Sorting of the boundary faces
	Boundary conditions with LES

	Manage the variable physical properties
	Basic variable physical properties
	Modification of the turbulent viscosity
	Modification of the variable C of the dynamic LES model

	User source terms
	In Navier-Stokes
	For k and
	For Rij and
	For and f
	For k and
	For t
	For user scalars

	Pressure drops (head losses) and porosity
	Head losses
	Porosity

	Management of the mass sources
	User law editor of the GUI

	Results analysis
	Definition of post-processing and mesh zones
	Management of the post-processing intermediate outputs

	Definition of the variables to post-process
	Modification of the variables at the end of a time step
	Non-standard management of the chronological record files

	Advanced modelling setup
	Use of a specific physics
	Pulverised coal and gas combustion module
	Boundary conditions
	Initialisation of the options of the variables

	Heavy fuel oil combustion module
	Initialisation of transported variables
	Boundary conditions

	Radiative thermal transfers in semi-transparent gray media
	Initialisation of the radiation main parameters
	Radiative transfers boundary conditions
	Absorption coefficient of the medium, boundary conditions for the luminance and calculation of the net radiative flux
	Encapsulation of the temperature-enthalpy conversion
	Input of radiative transfer parameters

	Conjugate heat transfer
	Thermal module in a 1D wall
	Fluid-Thermal coupling with SYRTHES

	Particle-tracking (Lagrangian) Module
	General information
	Activating the particle-tracking module
	Basic guidelines for standard simulations
	Prescribing the main modelling parameters (GUI and/or uslag1)
	Prescribing particle boundary conditions (GUI and/or uslag2)
	Advanced particle-tracking set-up

	Compressible module
	 Initialisation of the options of the variables
	Management of the boundary conditions
	Initialisation of the variables
	Management of variable physical properties

	Management of the electric arcs module
	Activating the electric arcs module
	Initialisation of the variables
	Variable physical properties
	Boundary conditions
	Initialisation of the variable options
	EnSight output

	Code_Saturne-Code_Saturne coupling
	Fluid-Structure external coupling
	ALE module
	Initialisation of the options
	Mesh velocity boundary conditions
	Modification of the viscosity
	Fluid - Structure internal coupling

	Management of the structure property
	Management of the Atmospheric module
	Initialisation of the variables
	Management of the boundary conditions

	Cavitation module

	Keyword list
	Input-output
	''Calculation'' files
	Post-processing for EnSight or other tools
	Chronological records of the variables on specific points
	Time averages
	Others

	Numerical options
	Calculation management
	Scalar unknowns
	Definition of the equations
	Definition of the time advancement
	Turbulence
	Time scheme
	Gradient reconstruction
	Solution of the linear systems
	Convective scheme
	Pressure-continuity step
	Error estimators for Navier-Stokes
	Calculation of the distance to the wall
	Others

	Numerical, physical and modelling parameters
	Numeric parameters
	Physical parameters
	Physical variables
	Modelling parameters

	ALE
	Thermal radiative transfers: global settings
	Electric module (Joule effect and electric arcs): specificities
	Compressible module: specificities
	Lagrangian multiphase flows
	Global settings
	Specific physics models associated with the particles
	Options for two-way coupling
	Numerical modelling
	Volume statistics
	Display of particles and trajectories
	Display of the particle/boundary interactions and the statistics at the boundaries

	Bibliography
	Index of the main variables and keywords

