EDF R&D

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER

F-78401 Cuatrou CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16

Code_Saturne documentation

Code_Saturne version 2.3.4 installation guide

contact: saturne-support@edf.fr

JUNE 2013

EDF R&D

Code_Saturne version 2.3.4 installation guide

Code_Saturne
documentation

Page 1/16

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide doliumegt/altéon
age

TABLE OF CONTENTS

1 Installation basics L e e e e e e e e e e 2
2 Third-Party libraries o i i e e 3
2.1 INSTALLING THIRD-PARTY LIBRARIES FOR Code _Saturne 3
2.2 LIST OF THIRD-PARTY LIBRARIES USABLE BY Code_Saturne 4
2.3 NOTES ON SOME THIRD-PARTY TOOLS AND LIBRARIES 5
2.53.1 Python and PyQtsd o o e 5
2.3.2 SCOTCH and PT-SCOTCH i i e it i e s 6
2.3.3 MED . . . 6
3 Preparing for build o o e e e e 6
3.1 SOURCE TREES OBTAINED THROUGH A SOURCE CODE REPOSITORY 7
4 Configuration o 0 i e e e e e e e e e e e 7
4.1 DEBUG BUILDS o o o o0 e e e 8
4.2 SHARED OR STATIC BUILDS . . + « « « v v vt e et e e e e e e e e 8
4.3 COMPILER FLAGS AND ENVIRONMENT VARIABLESo oo ... 8
4.4 MPI COMPILER WRAPPERS . . « « ¢« v v v v vt et i e e e e e e e 9
4.5 ENVIRONMENT MODULES o 0 ittt e e e e e e e e e e 9
4.6 REMARKS FOR VERY LARGE MESHES o v v v v vt et e e e e 10
4.7 EXAMPLE CONFIGURATION COMMANDS v v v v v v et e e i e e e 10
4.8 CROSS-COMPILING . . v v v v v e e e e e e e e e e e e e e e 11
4.8.1 Cross-compiling configuaration for Blue Gene/P 12
4.8.2 Cross-compiling configuration for Blue Gene/Q 13
4.9 TROUBLESHOOTING v v v v v vttt ettt e e e e e e e e e e 14
5 Compile and install 0 L o e e e e 14
6 Post-install e 15
7 Installing for SYRTHES coupling 15
8 Shell completion 0 0 i e e e e e e e e 15
9 CaveatsS . .« v v vt e 16
9.0.1 Mowving an existing installation 16
9.0.2 Known issues with some packages. 16

1 Installation basics

The installation scripts of Code_Saturne are based on the GNU Autotools, (Autoconf, Automake, and
Libtool), so it should be familiar for many administrators. A few remarks are given here:

e As with most software with modern build systems, it is recommended to build the code in a
separate directory from the sources. This allows multiple builds (for example production and
debug), and is considered good practice. Building directly in the source tree is not regularly

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumef;t/itéon
age

tested, and is not guaranteed to work, in addition to “polluting” the source directory with build
files.

e By default, optional libraries which may be used by Code_Saturne are enabled automatically if
detected in default search paths (i.e. /usr/ and /usr/local. To find libraries associated with a
package installed in an alternate path, a ——with-<package>=... option to the configure script
must given. To disable the use of a library which would be detected automatically, a matching
--without-<package> option must be passed to configure instead.

e Most third-party libraries usable by Code_Saturne are considered optional, and are simply not
used if not detected, but the libraries needed by the GUI are considered mandatory, unless the
--disable-gui or —-disable-frontend option is explicitly used.

When the prerequisites are available, and a build directory created, building and installing Code_Saturne
may be as simple as running:

$../../code_saturne-2.3.4/configure
$ make
$ make install

The following chapters give more details on Code_Saturne’s recommended third-party libraries, config-
uration recommendations, troubleshooting, and post-installation options.

2 Third-Party libraries

For a minimal build of Code_Saturne, a Posix system with a C and a Fortran compiler, a Python
interpreter and a make tool should be sufficient. For parallel runs, an MPI library is also necessary. To
build an use the GUI, Libxml2 and PyQt4 (which in turn requires Qt4 and SIP) are required. Other
libraries may be used for additional mesh format options, as well as to improve performance. A list of
those libraries and their role is given in §2.2.

2.1 Installing third-party libraries for Code Saturne

Third-Party libraries usable with Code_Saturne may be installed in several ways:

e On many Linux systems, most of libraries listed in §2.2 are available through the distribution’s
package manager.! This requires administrator privileges, but is by far the easiest way to install
third-party libraries for Code_Saturne.

Note that distributions usually split libraries or tools into runtime and development packages,
and that although some packages are installed by default on many systems, this is generally not
the case for the associated development headers. Development packages usually have the same
name as the matching runtime package, with a -dev postfix added. For example, on a Debian or
Ubuntu system ,1ibxml2 is usually installed by default, but 1ibxml2-dev must also be installed
for the Code_Saturne build to be able to use the former.

e On many large compute clusters, Environment Modules allow the administrators to provide
multiple versions of many scientific libraries, as well us compilers or MPI libraries, using the
module command. More details on Environment Modules may be found at http://modules.
sourceforge.net. When being configured and installed Code_Saturne checks for modules loaded
with the module command, and records the list of loaded modules. Whenever running that
build of Code_Saturne, the modules detected at installation time will be used, rather than those

10n Mac OS X systems, package managers such as Fink or MacPorts also provide package management, even though
the base system does not.

http://modules.sourceforge.net
http://modules.sourceforge.net

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumejt/altéon
age

defined by default in the user’s environment. This allows using versions of Code_Saturne built with
different modules safely and easily, even if the user may be experimenting with other modules
for various purposes.

e If not otherwise available, third-party software may be compiled an installed by an administrator
or a user. An administrator will choose where software may be installed, but for a user without
administrator privileges or write access to usr/local, installation to a user account is often
the only option. None of the third-party libraries usable by Code_Saturne require administrator
privileges, so they may all be installed normally in a user account, provided the user has sufficient
expertise to install them. This is usually not complicated (provided one reads the installation
instructions, and is prepared to read error messages if something goes wrong), but even for an
experienced user or administrator, compiling and installing 5 or 6 libraries as a prerequisite
significantly increases the effort required to install Code_Saturne.

Even though it is more time-consuming, compiling and installing third-party software may be
necessary when no matching packages or Environment Modules are available, or when a more
recent version or a build with different options is desired.

2.2 List of third-party libraries usable by Code Saturne

The list of third-party software usable with Code_Saturne is provided here:

e BLAS (Basic Linear Algebra Subroutines) may be used by the cs_blas_test unit test to compare
the cost of operations such as vector sums and dot products with those provided by the code and
compiler. If no third-party BLAS is provided, Code_Saturne reverts to its own implementation
of BLAS routines, so no functionality is lost here. Optimized BLAS libraries such as Atlas,
MKL, ESSL, or ACML may be very fast for BLAS3 (dense matrix/matrix operations), but
the advantage is usually much less significant for BLAS 1 (vector/vector) operations, which
are almost the only ones Code_Saturne has the opportunity of using. Starting with version 2.3,
Code_Saturne uses its own dot product implementation (using a superblock algorithm, for better
precision), and y < ax +y operations, so external BLAS1 are not used for computation anymore,
but only for unit testing. The Intel MKL BLAS may also be used for matrix-vector products, so
it is linked with the solver when available, but this is also currently only used in unit benchmark
mode. Note that in some cases, threaded BLAS routines might oversubscribe processor cores in
some MPI calculations, depending on the way both Code_Saturne and the BLAS were configured
and interact, and this can actually lead to lower performance. Use of BLAS libraries is thus
useful as a unit benchmarking feature, but has no influence on full calculations.

e PyQt4 is required by the Code_Saturne GUIL PyQt4 in turn requires Qt4, Python,and SIP. With-
out this library, the GUI may not be built, although XML files generated with another install of
Code_Saturne may be used if Libxml2 is available.

e Libxml2 is required to read XML files edited with the GUI. If this library is not available, only
user subroutines may be used to setup data.

e HDF5 is necessary for MED, and may also be used by CGNS.

e CGNSIib is necessary to read or write mesh and visualization files using the CGNS format,
available as an export format with many third-party meshing tools,

e MED is necessary to read or write mesh and visualization files using the MED format, mainly
used by the SALOME platform.

e 1ibCCMIO is necessary to import mesh files generated by STAR-CCM+ using its native format.

e ScoTCH or PT-SCOTCH may be used to optimize mesh partitioning. Depending on the mesh,
parallel computations with meshes partitioned with these libraries may be from 10% to 50%
faster than using the built-in space-filling curve based partitioning.

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumef;t/altéon
age

As ScotcH and PT-SCOTCH use symbols with the same names, only one of the 2 may be used.
If both are detected, PT-SCOTCH is used.

e METIS or PARMETIS are alternative mesh partitioning libraries. These libraries have a separate
source tree, but some of their functions have identical names, so only one of the 2 may be used.
If both are available, PARMETIS will be used. Partitioning quality is usually slightly lower than
that obtained with ScoTcH or PT-ScOTCH, but these libraries are faster.

Though broadly available, the license is quite restrictive, so SCOTCH or PT-SCOTCH may be
preferred (Code_Saturne may be built with both METIS and SCOTCH libraries).

For developers, the GNU Autotools (Autoconf, Automake, Libtool) as well as gettext will be necessary.
To build the documentation, pdfIATEX and fig2dev (part of TransFig) will be necessary.

2.3 Notes on some third-party tools and libraries
2.3.1 Python and PyQt4

Code_Saturne requires a Python interpreter, with Python version 2.4 or above. The base scripts should
work both with Python 2 or Python 3 versions, but have not been tested recently with the latter. The
GUI is Python 2 only, so using Python 3 is not currently recommended.

While Code_Saturne makes heavy use of Python, this is for scripts and for the GUT only; The solver only
uses compiled code, so we may for example use a 32-bit version of Python with 64-bit Code_Saturne
libraries and executables.

The GUI is written in PyQt4 (Python bindings for Qt4), so but Qt4 and the matching Python bindings
must be available. On most modern Linux distributions, this is available through the package manager,
which is by far the preferred solution. When running on a system which does not provide these libraries,
there are several alternatives:

e build Code_Saturne without the GUI. If built with Libxml2, XML files produced with the GUI
are still usable, so if an install of Code_Saturne with the GUI is available on an other machine, the
XML files may be copied on the current machine. This is certainly not an optimal solution, but in
the case where users have a mix of desktop or virtual machines with modern Linux distributions
and PyQt4 installed, and a compute cluster with an older system, this may avoid requiring a
build of Qt4 and PyQt4 on the cluster if users find this too daunting.

e Install a local Python interpreter, and add Qt4 bindings to this interpreter.

Python (http://www.python.org) and Qt4 (http://qt.nokia.com/products) must be down-
loaded and installed first, in any order. The installation instructions of both of these tools
are quite clear, and though the installation of these large packages (especially Qt4) may be a
lengthy process in terms of compilation time, but is well automated and usually devoid of nasty
surprises.2.

Once Python is installed, the SIP bindings generator (http://riverbankcomputing.co.uk/
software/sip/intro) must also be installed. This is a small package, and configuring it simply
requires running python configure.py in its source tree, using the Python interpreter just
installed.

Finally, the PyQt4 bindings (http://riverbankcomputing.co.uk/software/pyqt/intro) may
be installed, in a manner similar to SIP.

When this is finished, the local Python interpreter contains the PyQt4 bindings, and may be
used by Code_Saturne’s configure script by passing PYTHON=<path_to_python_executable.

2The only case in which the Code_Saturne developers have has issues with Qt4 was when trying to force an install into
64-bit mode with the GNU compilers (version 4.1.2) on a PowerPC 64 architecture running SLES 10 Linux, on which
compilers default to building 32 bit code, although 64 bit is available. Using default options on the same machine led to
a perfectly functional 32-bit Qt installation

http://www.python.org
http://qt.nokia.com/products
http://riverbankcomputing.co.uk/software/sip/intro
http://riverbankcomputing.co.uk/software/sip/intro
http://riverbankcomputing.co.uk/software/pyqt/intro

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumefét/itéon
age

e add Python Qt4 bindings as a Python extension module for an existing Python installation. This
is a more elegant solution than the previous one, and avoids requiring rebuilding Python, but if
the user does not have administrator privileges, the extensions will be placed in a directory that
is not on the default Python extension search path, and that must be added to the PYTHONPATH
environment variable. This works fine, but for all users using this build of Code_Saturne, the
PYTHONPATH environment variable will need to be set.?

The process is similar to the previous one, but SIP and PyQt4 installation requires a few addi-
tional configuration options in this case. See the SIP and PyQt4 reference guides for detailed
instructions, especially the Building a Private Copy of the SIP Module section of the SIP guide.

2.3.2 Scotch and PT-Scotch

Note that both SCoOTCH and PT-SCOTCH may be built from the same source tree, and installed together
with no name conflicts.

For better performance, PT-SCOTCH may be built to use threads with concurrent MPI calls. This
requires initializing MPI with MPI_Init_thread with MPI_THREAD _MULTIPLE (instead of the more
restrictive MPI_THREAD _SERTALIZED, MPI_THREAD FUNNELED, or MPI_THREAD SINGLE, or simply using
MPI_Init). As Code_Saturne does not support thread models in which different threads may call MPI
functions simultaneously, and the use of MPI_THREAD MULTIPLE may carry a performance penalty, we
prefer to sacrifice some of PT-SCOTCH’s performance by requiring that it be compiled without the
-DSCOTCH_PTHREAD flag. This is not detected at compilation time, but with recent MPI libraries,
PT-ScorcH will complain at run time if it notices that the MPI thread safety level in insufficient.

Detailed build instructions, including troubleshooting instructions, are given in the source tree’s
INSTALL.txt file. In case of trouble, note especially the explanation relative to the dummysizes
executable, which is run to determine the sizes of structures. On BlueGene/P type machines, it may
be necessary to start the build process, let it fail, run this executable manually using mpirun, then
pursue the build process.

2.3.3 MED

The Autotools installation of MED is simple on most machines, but a few remarks may be useful for
specific cases.

MED has a C API, is written in a mix of C and C++ code, and provides both a C (1ibmedC) and
an Fortran API (1ibmed). Both libraries are always built, so a Fortran compiler is required, but
Code_Saturne only links using the C API, so using a different Fortran compiler to build MED and
Code_Saturne is possible.

MED does require a C++ runtime library, which is usually transparent when shared libraries are used.
When built with static libraries only, this is not sufficient, so when testing for a MED library, the
Code_Saturne configure script also tries linking with a C++ compiler if linking with a C compiler
fails. This must be the same compiler that was used for MED, to ensure the runtime matches. The
choice of this C4++ compiler may be defined passing the standard CXX variable to configure.

Also, when building MED in a cross-compiling situation, ——-med-int=int or --med-int=int64_t (de-
pending on whether 32 or 64 bit ids should be used) should be passed to its configure script to avoid
a run-time test.

3 Preparing for build

If the code was obtained as an archive, it must be unpacked:

3In the future, the Code_Saturne installation scripts could check the PYTHONPATH variable and save its state in the build
so as to ensure all the requisite directories are searched for.

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumef;t/altéon
age

tar xvzf saturne.tar.gz

If for example you unpacked the directory in a directory named /home/user/Code_Saturne, you will
now have a directory named /home/user/Code_Saturne/saturne.

It is recommended to build the code in a separate directory from the source. This also allows multiple
builds, for example, building both an optimized and a debugging version. In this case, choose a
consistent naming scheme, using an additional level of sub-directories, for example:

mkdir saturne_build
cd saturne_build
mkdir prod

cd prod

© hH P P

Some older system’s make command may not support compilation in a directory different from the
source directory (VPATH support). In this case, installing and using the GNU gmake tool instead of the
native make is recommended.

3.1 Source trees obtained through a source code repository

For developers obtaining the code was obtained through a version control system such as Subversion,
an additional step is required:

$ cd saturne
$ autoreconf -vi
$ cd ..

In this case, additional tools need to be available:

e GNU Autotools: Autoconf, Automake, Libtool (2.2 or 2.4), and Gettext.
e Bison (or Yacc) and Flex (or Lex)

e PdfLaTeX and TransFig

These tools are not necessary for builds from tarballs; they are called when building the tarball (using
make dist), so as to reduce the number of prerequisites for regular users, while developpers building
the code from a repository can be expected to need a more complete developpement environment.

Also, to build and install the documentation when building the code from a repository instead of a
tarball, the following stages are required:

$ make pdf
$ make install-pdf

4 Configuration

Code_Saturne uses a build system based on the GNU Autotools, which includes its own documentation.
To obtain the full list of available configuration options, run: configure --help.

Note that for all options starting with --enable-, there is a matching options with --disable-.
Similarly, for every —-with-, ——without- is also possible.

Select configuration options, then run configure, for example:

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumefét/altéon
age

$ /home/user/Code_Saturne/2.3/src/code_saturne-2.3.4/configure \
--prefix=/home/user/Code_Saturne/2.3/arch/prod \
--with-med=/home/user/opt/med-3.0 \
CC=/home/user/opt/mpich2-1.4/bin/mpicc FC=gfortran

In the rest of this section, we will assume that we are in a build directory separate from sources, as
described in §3. In different examples, we assume that third-party libraries used by Code_Saturne are
either available as part of the base system (i.e. as packages in a Linux distribution), as Environment
Modules, or are installed under a separate path.

4.1 Debug builds

It may be useful to install debug builds alongside production builds of Code_Saturne, especially when
user subroutines are used and the risk of crashes due to user programming error is high. Running the
code using a debug build is significantly slower, but more information may be available in the case of
a crash, helping understand and fix the problem faster.

Here, having a consistent and practical naming scheme is useful. For a side-by-side debug build for
the example above, we simply replace prod by dbg in the —-prefix option, and add --enable-debug
to the configure command:

$ cd ..

$ mkdir dbg

$ cd dbg

$../../code_saturne-2.3.4/configure \
--prefix=/home/user/Code_Saturne/2.3/arch/dbg \
--with-med=/home/user/opt/med-3.0 \

--enable-debug \
CC=/home/user/opt/mpich2-1.4/bin/mpicc FC=gfortran

4.2 Shared or static builds

By default, on most architectures, both shared and static libraries for Code_Saturne will be built,
and the executables will be linked with shared libraries. To disable either shared or static libraries,
add either --disable-shared or --disable-static to the options passed to configure. This will
speed-up the build, process as each file will only be built once, and not twice.

In some cases, a shared build may fail due to some dependencies on static-only MPI libraries. In this
case, -—disable-shared will be necessary. Disabling shared libraries has also been seen to avoid issues
with linking on Mac OSX systems.

In any case, be careful if you switch from one option to the other: as linking will be done with shared
libraries by default, a build with static libraries only will not completely overwrite a build using shared
libraries, so uninstalling the previous build first is recommended.

4.3 Compiler flags and environment variables

As usual when using an Autoconf-based configure script, some environment variables may be used.
configure --help will provide the list of recognized variables. CC and FC allow selecting the C and
Fortran compiler respectively (possibly using an MPI compiler wrapper for the C parts of FVM and
the Kernel).

Compiler options are usually defined automatically, based on detection of the compiler (and depend-
ing on whether --enable-debug was used). This is handled in a config/cs_auto_flags.sh and
libple/config/ple_auto_flags.sh scripts. These files are sourced when running configure, so any

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dolcjumegt/altéon
age

modification to it will be effective as soon as configure is run. When installing on an exotic ma-
chine, or with a new compiler, adapting this file is useful (and providing feedback to the Code_Saturne
development team will enable support of a broader range of compilers and systems in the future.

The usual CPPFLAGS, CFLAGS, FCCFLAGS, LDFLAGS, and LIBS environment variables may also be used,
an flags provided by the user are appended to the automatic flags. To completely disable automatic
setting of flags, the ——disable-auto-flags option may be used.

4.4 MPI compiler wrappers

MPI environments generally provide compiler wrappers, usually with names similar to mpicc for C,
mpicxx for C++, and mpif90 for Fortran 90. Wrappers conforming to the MPI standard recommen-
dations should provide a -show option, to show which flags are added to the compiler so as to enable
MPI. Using wrappers is fine as long as several third-party tools do not provide their own wrappers, in
which case either a priority must be established. For example, using HDF5’s h5pcc compiler wrapper
includes the options used by mpicc when building HDF5 with parallel 10, in addition to HDF5’s own
flags, so it could be used instead of mpicc. On the contrary, when using a serial build of HDF5 for
a parallel build of Code_Saturne, the h6cc and mpicc wrappers contain different flags, so they are in
conflict.

Also, some MPI compiler wrappers may include optimization options used to build MPI, which may
be different from those we wish to use that were passed.

To avoid issues with MPI wrappers, it is possible to select an MPI library using the --with-mpi
option to configure. For finer control, —~—with-mpi-include and --with-mpi-1ib may be defined
separately.

Still, this may not work in all cases, as a fixed list of libraries is tested for, so using MPI compiler
wrappers is the simplest and safest solution. Simply use a CC=mpicc or similar option instead of
--with-mpi.

Never use an FC=mpif90 or equivalent option: in Code_Saturne, MPI is never called directly from
Fortran code, so Fortran MPI bindings are not necessary, but they can lead to build failures, especially
in cross-compilation configurations.*

4.5 Environment Modules

As noted in §2.1, on systems providing Environment Modules with the module command, Code_Saturne’s
configure script detects which modules are loaded and saves this list so that future runs of the code
use that same environment, rather than the user’s environment, so as to allows using versions of
Code_Saturne built with different modules safely and easily.

Given this, it is recommended that when configuring and installing Code_Saturne, only the modules
necessary for that build of for profiling or debugging be loaded. Note that as Code_Saturne uses the
module environment detected and runtime instead of the user’s current module settings, debuggers
requiring a specific module may not work under a standard run script if they were not loaded when
installing the code.

The detection of environement modules may be disabled using the —-without-modules option, or the
use of a specified (colon-separated) list of modules may be forced using the -—with-modules= option.

4configure determines which libraries are necessary to link the Fortran runtime using a C or C++ compiler as a

linker. This avoids conflicts between linking with a C++ compiler and linking with a Fortran compiler when both
runtimes are necessary, for example when using the MED library. When using an MPI Fortran wrapper, extra libraries
that are not normally necessary will be added to those we link with, and the Libtool script that is part of the build
system will often try to add further dependencies, mixing-up front-end and compute node compiler options and libraries
(Libtool may be very practical when it works, but in complex situations where is guesses incorrectly at the commands
it should run, it always acts as if it knows best, and is very difficult to work around).

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide df);umefgj‘;?n
age

4.6 Remarks for very large meshes

If Code_Saturne is to be run on large meshes, several precautions regarding its configuration and that
of third-party software must be taken.

in addition to local connectivity arrays, Code_Saturne uses global element ids for some operations, such
as reading and writing meshes and restart files, parallel interface element matching, and post-processing
output. For a hexahedral mesh with N cells, the number of faces is about 3N (6 faces per cell, shared
by 2 cells each). With 4 cells per face, the face — vertices array is of size of the order of 4 x 3N, so
global ids used in that array’s index will reach 23! for a mesh in the range of 231/12 = 178.10%. In
practice, we have encountered a limit with slightly smaller meshes, around 150 million cells.

Above 150 million hexahedral cells or so, it is thus imperative to configure the build to use 64-bit
global element ids, with the --enable-long-gnum option. Local indexes will still use the default int
size, so memory consumption will only be slightly increased.

Recent versions of some third-party libraries may also optionally use 64-bit ids, independently of each
other or of Code_Saturne. This is the case for the ScorcH and METIS, MED and CGNS libraries. In
the case of graph-based partitioning, only global cell ids are used, so 64-bit ids should not in theory
be necessary for meshes under 2 billion cells. In a similar vein, for post-processing output using
nodal connectivity, 64-bit global ids should only be an imperative when the number of cells or vertices
approaches 2 billion. Practical limits may be lower, if some intermediate internal counts reach these
limits earlier.

Note also that METIS 4 is known to crash for meshes in the range of 35 million cells and above, so
METIS 5 or SCOTCH are necessary. Partitoning a 158 million hexahedral mesh using METIS 5 on a
front-end node with 128 Gb memory is possible, but partitioning the same mesh on cluster nodes with
24 Gb each may not, so using parallel partitioning PT-SCOTCH or PARMETIS should be preferred.

4.7 Example configuration commands

Most available prerequisites are auto-detected, so to install the code to the default /usr/local sub-
directory, a command such as:

$../../code_saturne-2.3.4/configure

should be sufficient.

For the following examples, Let us define environment variables repectively reflecting the Code_Saturne
source path, installation path, and a path where optional libraries are installed:

$ SRC_PATH=/home/projects/Code_Saturne/2.3
$ INSTALL PATH=/home/projects/Code_Saturne/2.3
$ CS_OPT=/home/projects/opt

For an install on which multiple versions and architectures of the code should be available, configure
commands with all bells and whistles (except SALOME support) for a build on a cluster named ivanoe,
using the Intel compilers (made available through environment modules) may look like this:

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dogumefltj‘;?n
age

$ module purge

$ module load intel_compilers/12.1.1.256

$ module load openmpi/gcc/1.4.5

$ $SRC_PATH/code_saturne-2.3.4/configure \
--prefix=$INSTALL PATH/arch/ivanoe_ompi \
--with-blas=/opt/intel/composerxe _xe_2011_spl.7.256/mkl \
--with-1ibxm12=$CS_OPT/1libxml2-2.8/arch/ivanoe \
--with-hdf5=$CS_OPT/hdf5-1.8.9/arch/ivanoe \
--with-med=$CS_0PT/med-3.0/arch/ivanoe \
--with-cgns=$CS_OPT/cgns-3.1/arch/ivanoe \
-—with-ccm=$CS_0PT/libccmio-2.6.23/arch/ivanoe \
--with-scotch=$CS_0PT/scotch-5.1.12/arch/ivanoe_ompi \
--with-metis=$CS_OPT/parmetis-4.0/arch/ivanoe_ompi \
CC=mpicc FC=ifort CXX=icpc

In the example above, we have appended the _ompi postfix to the architecture name for libraries
using MPI, in case we intend to install 2 builds, with different MPI libraries (such as Open MPI and
MPICH?2). Note that optional libraries using MPI must also use the same MPI library. This is the
case for PT-ScoTCH or PARMETIS, but also HDF5, CGNS, and MED if they are built with MPI-
IO support. Similarly, C++ and Fortran libraries, and even C libraries built with recent optimizing
C compilers, may require runtime libraries associated to that compiler, so if versions using different
compilers are to be installed, it is recommended to use a naming scheme which reflects this. In this
example, HDF5, CGNS and MED were built without MPI-IO support, as Code_Saturne does not yet
exploit MPI-IO for these libraries.

4.8 Cross-compiling

On machines with different front-end and compute node architectures, such as IBM Blue Gene/P,
cross-compiling is necessary. To install and run Code_Saturne, 2 builds are required:

e a “front-end” build, based on front-end node’s architecture. This is the build whose code_saturne
command, GUI, and documentation will be used, and with which meshes may be imported (i.e.
whose Preprocessor will be used). This build is not intended for calculations, though it could be
used for mesh quality criteria checks. This build will thus usually not need MPI.

e a “compute” build, cross-compiled to run on the compute nodes. This build does not need to
include the GUI, documentation, or the Preprocessor.

A debug variant of the compute build is also recommended, as always. Providing a debug variant of
the front-end build is not generally useful.

A post-install step (see §6) will allow the scripts of the front-end build to access the compute build in
a transparent manner, so it will appear to the users that they are simply working with that build.

Depending on their role, optional third-party libraries should be installed either for the front-end, for
the compute nodes, or both:

e BLAS will be useful only for the compute nodes, and are generally always available on large
compute facilities.

e Python and PyQt4 will run on the front-end node only.

e Libxml2 must be available for the compute nodes if the GUI is used.

e HDF5, MED and CGNSIlib may be used by the Preprocessor on the front-end node to import
meshes, and by the main solver on the compute nodes to output visualization meshes and fields.

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide dogumefztj‘;?n
age

e 1ibCCMIO is used by the Preprocessor exclusively, so it may be needed on the front-end node
only.

e SCOTCH or METIS may be used by a front-end node build of the partitioner, as serial partitioning
of large meshes requires a lot of memory.

e PT-SCOTCH or PARMETIS may be used by a compute node build of the partitioner.

4.8.1 Cross-compiling configuaration for Blue Gene/P

For an example, let us start with the front-end build:

$ $SRC_PATH/code_saturne-2.3.4/configure \
--prefix=$INSTALL PATH/arch/frontend \
--with-hdf5=$CS_OPT/hdf5-1.8.6/arch/frontend \
--with-med=$CS_OPT/med-3.0/arch/frontend \
--with-cgns=$CS_O0PT/cgns-3.1/arch/frontend \
--with-scotch=$CS_0PT/scotch-5.1.11/arch/frontend \
PYTHON=$CS_OPT/python/arch/frontend/bin/python \
CFLAGS="-m64" FCFLAGS="-m64" CXXFLAGS="-m64"

In this example, the front-end node is based on an IBM Power architecture, on which the GCC compiler
is available, but produces 32-bit code by default. Adding the "-m64" flags force the compiler into 64-bit
mode, allowing the Preprocessor to import meshes up into the 100-million cell range.

For the compute node, we use the same version of Python (which is used only for the GUT and scripts,
which only run on the front-end or service nodes), but the compilers are cross-compilers for the compute
nodes:

$ $SRC_PATH/code_saturne-2.3.4/configure \
--prefix=$INSTALL PATH/arch/bgp \
--with-blas=/opt/ibmmath/essl/4.4 \
--with-1ibxm12=$CS_OPT/1libxml12-2.3.32/arch/bgp \
--with-hdf5=$CS_OPT/hdf5-1.8.6/arch/bgp \
--with-med=$CS_0PT/med-3.0/arch/bgp \
--with-cgns=$CS_0PT/cgns-3.1/arch/bgp \
--with-scotch=$CS_0PT/scotch-5.1.11/arch/bgp \
--disable-sockets --disable-dlloader -disable-nls \
--disable-frontend --enable-long-gnum \
--build=ppc64 --host=bluegenep \

CC=mpixlc_r FC=bgxl1f90_r CXX=mpixlcxx.r \
PYTHON=$CS_OPT/python/arch/bgp/bin/python

Here, the --build=ppc64 --host=bluegenep options ensure the configure script into cross-compilation
mode. With a front-end base on an Intel or AMD, architecture, ——build=x86_64 or —--build=amd64
should be used instead of --build=ppc64. For the host (target) architecture, -~host=bluegenep is
recognized by current GNU Autoconf versions, so it is preferred, but --host=ppc also works well.
Actually, any choice of build and host architectures recognized by Autoconf would probably work, as
long as build and host are different.

The C++ compiler is also specified, as it will be needed for the link stage due to C++ dependencies
in the MED library, which is a static library in this example (see §2.3.3).

The thread-safe compiler wrappers used here should not be necessary for Code_Saturne, but in our
experience, the ESSL. BLAS are correctly detected only with those wrappers, not with the single-
threaded versions.®

5This might be due to a bug in the ESSL BLAS detection of Code_Saturne, although the code has been checked.

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide df);umeg?;iém
age

Note that in the above examples, we specified an install of the SCOTCH partitioning library both for
the front-end and for the compute nodes. The implies a serial build of SCOTCH on the front-end node,
and a parallel build (PT-ScOTCH) on the compute nodes. Both are optional. Similarly, METIS could
be used on the front-end node, and PARMETIS on the compute nodes.

4.8.2 Cross-compiling configuration for Blue Gene/Q

In our example, the front-end node is based on an IBM Power architecture, runnning under Red Hat
Enterprise Linux 6, on which the Python/Qt4 environment should be available as an RPM package,
and installed by the administrators. If this is not possible, the Python/Qt4 aspects of the Blue Gene/P
example may be adapted here.

On the compute nodes, the IBM XL compilers produce static object files by default, so the --~disable-shared
option is not necessary for libraries using Autotools-based installs when using those compilers, though
using --build=ppc64 --host=bluegeneq in this case ensures the cross-compiling environment is de-
tected.

As the front-end nodes of Blue Gene/Q machines may be expected to run Red Hat EL 6.x linux
variants, instead of 5.x for blue Gene/P, more up-to date compilers and libraries (such as Python/Qt4)
should be available as packages, easily installable by the system administrators.

For the compute nodes, the following remarks may be mode for prerequisites:

e LibXml: to reduce the size and simmplify the installation of this library, the —-with-ftp=no,
--with-http=no, and --without-modules options may be used with configure.

e HDF5: building this library with its configure script is a pain®, but installing HDF5 1.8.9 using
CMake is as simple as on a workstation, and simply requires choosing the correct compilers and
possibly a few other options (in the EDF Code_Saturne build, the GCC compilers were chosen to
reduce risks, and the Fortran wrappers were not needed, so not built).

e CGNS: building CGNS 3.1 is based on CMake, and no specific problems have been observed.

e MED: building MED 3.0.5 for Code_Saturne is easier than previous versions, as a new
--disable-fortan option is available for the configure script. Both the C and C++ compiler
wrappers must be specified, and the link may fail with the GNU compilers, due to some shared
library issue (trying to force --disable-shared). With the IBM XL compilers, the same build
works fine, as long as the CXXFLAGS=-qlanglvl=redefmac) option is passed. Adding the HDF5
tools path to the $PATH environment variable for the configuration stage may also be required.

For an example, let us start with the front-end build:

$ $SRC_PATH/code_saturne-2.3.4/configure \
--prefix=$INSTALL PATH/arch/frontend \
--with-hdf5=$CS_OPT/hdf5-1.8.9/arch/frontend \
--with-med=$CS_0PT/med-3.0/arch/frontend \
--with-cgns=$CS_0PT/cgns-3.1/arch/frontend \
——with-scotch=$CS_0PT/scotch-5.1.12/arch/frontend

For the compute node, we use the same version of Python (which is used only for the GUT and scripts,
which only run on the front-end or service nodes), but the compilers are cross-compilers for the compute
nodes:

61t requires running a yodconfigure script and adapting other scripts (see documentation), then running this as a
submitted job (or under a SLURM allocation if you are lucky enough to use this resource manager).

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide d(}fumefﬁiign
age

$ $SRC_PATH/code_saturne-2.3.4/configure \
--prefix=$INSTALL PATH/arch/bgq \
--with-blas=/opt/ibmmath/essl/5.1 \
--with-blas-type=ESSL \
--with-1ibxm12=$CS_OPT/1libxml2-2.8/arch/bgq \
--with-hdf5=$CS_0PT/hdf5-1.8.9/arch/bgq \
--with-med=$CS_OPT/med-3.0/arch/bgq \
--with-cgns=$CS_O0PT/cgns-3.1/arch/bgq \
--with-scotch=$CS_0PT/scotch-5.1.12/arch/bgq \
--disable-sockets --disable-dlloader -disable-nls \
--disable-frontend --enable-long-gnum \
--build=ppc64 --host=bluegeneq \
CC=/bgsys/drivers/ppcfloor/comm/x1/bin/mpixlc.r \
CXX=/bgsys/drivers/ppcfloor/comm/x1/bin/mpixlcxx r \
FC=bgx1f95_r

The C++ compiler is specified, as it will be needed for the link stage due to C++ dependencies in the
MED library, which is a static library in this example (see §2.3.3).

Note that in the above examples, we specified an install of the SCOTCH partitioning library both for the
front-end and for the compute nodes. The implies a serial build of SCOTCH on the front-end node, and
a parallel build (PT-SCOTCH) on the compute nodes. Both are optional, and the serial partitioning
on the front-end nodes should only be used as a backup or as a reference for parallel partitioning.
Unless robustness or quality issues are encountered with parallel partitioning, it should supercede
serial partitioning, as it allows for a simpler toolchain even for large meshes. Similarly, METIS could
be used on the front-end node, and PARMETIS on the compute nodes.

4.9 Troubleshooting

If configure fails and reports an error, the message should be sufficiently clear in most case to
understand the cause of the error and fix it. Do not forget that for libraries installed using packages,
the development versions of those packages are also necessary, so if configure fails to detect a package
which you believe is installed, check the matching development package.

Also, whether it succeeds or fails, configure generates a file named config.log, which contains
details on tests run by the script, and is very useful to troubleshoot configuration problems. When
configure fails due to a given third-party library, details on tests relative to that library are found in
the config.log file. The interesting information is usually in the middle of the file, so you will need to
search for strings related to the library to find the test that failed and detailed reasons for its failure.

5 Compile and install

Once the code is configured, it may be compiled and installed; for example, to compile the code (using
4 parallel threads), then install it:

$ make -j 4 && make install

To compile the documentation, add:

$ make pdf && make install-pdf

To clean the build directory, keeping the configuration, use make clean; To uninstall an installed build,
use make uninstall. To clear all configuration info, use make distclean (make uninstall will not
work after this).

Code_Saturne

EDF R&D Code_Saturne version 2.3.4 installation guide df);umefgj‘;?n
age

6 Post-install

Once the code is installed, a post-install step may be necessary for computing environments using a
batch system, for separate front-end and compute systems (such as Blue Gene systems), or for coupling
with SYRTHES 4 or Code_Aster.

Copy or rename the <install-prefix>/etc/code_saturne.cfg.template to
<install-prefix>/etc/code_saturne.cfg, and uncomment and define the applicable sections.

If used, the name of the batch system should match one of the templates

in <install-prefix>/share/code_saturne/batch, and those may also be edited if necessary to match
the local batch configuration”ome batch systems allow a wide range of alternate and sometimes incom-
patible options or keywords, and it is for all practical purposes impossible to determine which options
are allowed for a given setup, so editing the batch template to match the local setup may be necessary.

Also, the compute_versions section allows the administrator to define one or several alternate builds
which will be used for compute stages. This is especially useful for installation on BlueGene type
machines, where 2 separate builds are required (one for the front-end nodes and one for the compute
nodes). The compute-node build may be configured using the --disable-frontend option so as only
to build and install the components required to run on compute-nodes, while the front-end build may
be configured without MPI support. The front-end build’s post-install step allows definition of the
associated compute build.

7 Installing for SYRTHES coupling

Coupling with SYRTHES 4 requires defining the path to SYRTHES 4 at the post-install stage.

When coupling with SYRTHES 4, both Code_Saturne and SYRTHES must use the same MPI library,
and must use the same version of the PLE (Parallel Location and Exchange) library from Code_Saturne.
By default, PLE is built as a sub-library of Code_Saturne, but a standalone version may be configured
and built, using the 1libple/configure script from the Code_Saturne source tree, instead of the top-
level configure script. Code_Saturne may then be configured to use the existing install of PLE using
the ——with-ple option. Similarly, SYRTHES must also be configured to use PLE.

Alternatively, SYRTHES 4 may simply be configured to use the PLE library from an existing Code_Saturne
install.

8 Shell completion

If using the bash shell, you may source a bash completion file, so as to benefit from shell completion

for Code_Saturne commands and options, either using
<install-prefix>/etc/bash_completion.d/code_saturne

or

source <install-prefix>/etc/bash_completion.d/code_saturne

On some systems, only the latter syntax is effective. For greater comfort, you should save this setting
in your .bashrc or .bash_profile file.

S

Code_Saturne
EDF R&D Code_Saturne version 2.3.4 installation guide documentation

Page 16/16
9 Caveats

9.0.1 Moving an existing installation

Never move an installed build of Code_Saturne. As the build system is basd on the GNU Autotools, not
only are library paths hard-coded using rpath type info, but the code’s scripts also contain absolute
paths. Using LD_LIBRARY _PATH or LD_PRELOAD may allow the executable to run despite rpath info not
being up-to-date, but in environments where different library, versions are available, there is a strong
risk of not using the correct library. In addition, the scripts will not work unless paths in the installed
scripts are updated. If you are not able to update those paths without further explanation, you should
not even think about moving the build.

The mistake of moving an installed build is most often done not by beginners, but by more exerienced
users or administrators who believe they know enough to force a behavior against the logic of the build
system. FExcept for those experienced not only in installing codes but also in maintaining advanced
Autotool scripts for at least one software package, this is usually presumptuous.

If you need to test an installation in a test directory before installing it in a production directory,
use the make install DESTDIR=<test_prefix> provided by the Autotools mechanism rather than
configuring an install for a test directory and then moving it to a production directory. Another less
elegant but safe solution is to configure the build for installation to a test directory, and once it is
tested, re-configure the build for installation to the final production directory, and rebuild and install.

9.0.2 Known issues with some packages

On quite a few clusters, some issues have been encountered when using versions of Open MPI built
with the Intel compiler suite. Typically, crashes in the MPI-1O layers are almost guaranteed, but issues
may also arise later, apparently with some collectives, so disabling MPI-10 is not enough.

Using Intel compilers for Code_Saturne itself and a build of Open MPI using the GNU compilers
usually works fine, and the performance difference should be minimal (it can be higher using the GNU
compilers also for Code_Saturne itself), so the issue is not in Code_Saturne itself, but it requires further
investigation. In any case, avoiding this buggy combination may avoid you many wasted hours.

	Flyleaf
	Table of contents
	Installation basics
	Third-Party libraries
	Installing third-party libraries for Code_Saturne
	List of third-party libraries usable by Code_Saturne
	Notes on some third-party tools and libraries
	Python and PyQt4
	Scotch and PT-Scotch
	MED

	Preparing for build
	Source trees obtained through a source code repository

	Configuration
	Debug builds
	Shared or static builds
	Compiler flags and environment variables
	MPI compiler wrappers
	Environment Modules
	Remarks for very large meshes
	Example configuration commands
	Cross-compiling
	Cross-compiling configuaration for Blue Gene/P
	Cross-compiling configuration for Blue Gene/Q

	Troubleshooting

	Compile and install
	Post-install
	Installing for SYRTHES coupling
	Shell completion
	Caveats
	Moving an existing installation
	Known issues with some packages

