
EDF R&D

Fluid Dynamics, Power Generation and Environment Department
Single Phase Thermal-Hydraulics Group

6, quai Watier
F-78401 Chatou Cedex

Tel: 33 1 30 87 75 40
Fax: 33 1 30 87 79 16 JULY 2012

Code Saturne documentation

Code Saturne version 2.3.1 developper’s guide

contact: saturne-support@edf.fr

http://www.code-saturne.org/ c© EDF 2012

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 1/13

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 2/13

TABLE OF CONTENTS

1 Coding style guidelines . 3

1.1 Master rule . 3

1.2 General rules . 3

1.3 C coding style . 3

1.3.1 Punctuation . 3

1.3.2 General rules . 3

1.3.3 Language . 4

1.3.4 Assertions . 4

1.4 Naming conventions . 5

1.4.1 Naming of enumerations . 5

1.4.2 Naming of structures and associated functions . 5

1.4.3 Integer types . 5

1.5 Base functions and types . 6

1.6 Internationalization . 6

1.7 Fortran coding style . 7

1.7.1 Conventions inherited from Fortran 77 . 7

2 Common construct types . 8

2.1 Indexed arrays . 8

2.1.1 similar popular data structures . 8

2.1.2 Indexed Array Example . 9

3 Write a part of the theory guide . 11

3.1 General rules . 11

3.2 Macros and typos . 11

3.2.1 Macros . 11

3.2.2 Typography . 11

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 3/13

1 Coding style guidelines

1.1 Master rule

Keep the style consistent !

This rule should be observed above all others. The coding style in Code Saturne has evolved over the
years, but unless you are ready to update a whole file to a more current style (in which case the other
guidelines should be followed), try to remain consistent with the style in the current file.

1.2 General rules

The following general rules are strongly recommended:

• Except for files in which they have a special meaning (such as Makefiles), use spaces, not tabs.
Absolutely avoid this in Python code 1. Most importantly, use a decent text editor that does
not randomly mix spaces and tabs. Code Saturne has a sbin/rmb script which removes trailing
white-space and replaces tabs with spaces, but this may appear to damage indentation when it
was defined with an odd mix of spaces and tabs.

• 80 characters maximum line length; split lines longer than this to ensure readability on small
screens, or when viewing code side-by-side on wider screens. This rule is less important for
LATEXdocumentation sources (one could argue that using one line per paragraph and relying on
line wrapping would actually make revision merging simpler).

1.3 C coding style

1.3.1 Punctuation

Except when adding additional white space to align similar definitions or arguments on several lines,
standard English punctuation rules should be followed:

• no white space before a punctuation mark (, ; .), one white space after a punctuation mark.

• white space before an opening parenthesis, no white space after an opening parenthesis.

• no white space before a closing parenthesis, white-space after a closing parenthesis.

1.3.2 General rules

The following presentation rules are strongly recommended:

• indentation step: 2 characters (4 characters in cs gui * files).

• always use lowercase characters for instructions and identifiers, except for enumerations and
macros which should be in uppercase.

The following coding rules are strongly recommended:

• header (.h) files should have a mechanism to prevent multiple inclusions;

• all macro parameters must be enclosed inside parentheses;

1Keeping to Python’s humoristic example style, anybody doing this should learn “how not to be seen”

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 4/13

• a function’s return type must always be defined.

• variables should be initialized before use (pointers are set to NULL). A good compiler should
issue warnings when this is not the case, and those warnings must be acted upon;

• when a structure definition is only needed in a single file, it is preferred to define it directly in the
C source file, so as to make as little visible as possible in the matching header file. structures only
used through pointers may be made opaque in this manner, which ensures that their possible
future modification should not have unexpected side-effects.

• When a public function is defined in a C source file, a matching header file containing its prototype
must be included.

• usage of global variables must be kept to a minimum, though such variables may be useful to
maintain state or references to mesh or variable structures in C code callable by Fortran code. If
a global variable is only needed inside a single file, it should be declared “static”. It it is needed
in other files, then it must instead be declared “extern” in the matching header file.

• a const type must not be cast into a non-const type;

• every switch construct should have a default clause (which may reduce to assert(0) to check

code paths in debug mode, but at least this much must be ensured);

• a const attribute should be used when an array or structure is not modified. Recall that for
example const cs mesh t *m means that the contents of mesh structure m are not modified by
the function, while cs mesh t *const m only means that the pointer to m is not modified; const
cs mesh t *const m means both, but its usage in a function prototype gives no additional useful
information on the function’s side effects than the first form (const cs mesh t *m), so that form
is preferred, as it does not clutter the code;

• when an array is passed to a function, describing it as array[] is preferred to *array, as the
array nature of the argument is better conveyed.

• where both a macro or an enumerated constant could be used, an enumeration is preferred, as
values will appear with the enumerated value’s name under a debugger, while only a macro’s
expanded value will appear. An additional advantage of enumerated values is that a compiler
may issue a warning when a switch construct has no case for a given enumeration value.

1.3.3 Language

ANSI C 1999 or above is required, so C99-specific constructs are allowed, though C++ style comments
should be avoided, so as to maintain a consistent style. C99 variable-length arrays should be avoided,
as it is not always clear whether they are allocated on the stack or heap, and are an optional feature
only in the C newer 2011 standard (though we could expect that support for those constructs will
remain available on general-purpose architectures, and removed only in the embedded space).

1.3.4 Assertions

Assertions are conditions which must always be verified. Several expanded macro libraries may be
available, but a standard C language assertion has the following properties:

• it is only compiled in debug mode (and so incur no run-time performance penalty in production
code, where the NDEBUG macro is defined);

• when its predicate are not verified, it causes a core dump; when running under a debugger, the
code is stopped inside the assertion, but does not exit, which simplifies debugging.

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 5/13

Assertions are thus very useful to ensure that conditions which are always expected (and not dependent
on program input) are met. They also make code more readable, in the sense that it is made clear
that conditions checked by an assertion are always expected, and that not handling other cases is not
an programming error or omission.

If a condition may not be met for some program inputs, and not just in case of programmer error, a
more complete test and call to an error handler (such as bft error) is preferred.

1.4 Naming conventions

The following rules should be followed:

• identifier lengths should not exceed 31 characters if avoidable; this was a portability requirement
using C89, and is now more a readability recommendation;

• identifier names are in lowercase, except for macro or enumeration definitions, which are in upper-
case; words in an identifier are separated by an underscore character (for example, n_elt_groups_).

• global identifier names are prefixed by the matching library prefix, such as cs_ or BFT_;

• local identifiers should be prefixed by an underscore character.

• Index arrays used with 0 to n− 1 numbering should be named using a idx_ or index_ prefix or
suffix, while similar arrays using a 0 to n− 1 numbering (usually those that may be also used in
Fortran code) should be named using a pos_ prefix or suffix.

1.4.1 Naming of enumerations

The following form is preferred for enumerations:

typedef myclass { CS_MYCLASS_ENUM1,

CS_MYCLASS_ENUM2,

/ ∗ etc. ∗ /
} cs_myclass_t;

1.4.2 Naming of structures and associated functions

Macros and enumerations related to myclass structures are prefixed by CS_MYCLASS_.

Public functions implementing methods are named cs class method , while private functions are sim-
ply named: class method and are declared static.

Files containing these functions are named class.c.

1.4.3 Integer types

Several integer types are found in Code Saturne:

• cs lnum t should be used for local entity (i.e. vertex, face, cell) numbers or connectivity. It is a
signed integer, normally identical to int, but a larger size could be used in the future for very
large meshes on shared memory machines.

• cs gnum t should be used for global entity numbers, usually necessary only for I/O aspects. It
is an unsigned 32 or 64-bit integer, depending on whether the code was configured with the
--enable-long-gnum option. Global numbers should always use this type, as for very large

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 6/13

meshes, they may exceed the maximum size of a 32-bit integer (2 147 483 648). The choice of
unsigned integers is two-fold: it doubles the range of available values, and good compilers will
issue warnings when this type is mixed without precaution with the usual integer types. These
warnings should be heeded, as they may avoid many hours of debugging.

• cs int t should be used for integer variables or arrays passed between C and Fortran, though
using integer(kind) statements in Fortran should be a better future solution. In practice,
cs int t and cs lnum t are identical. The former is more commonly found in older code, but
the latter should be used where applicable for better clarity.

• in all other cases, the standard C types int and size t should be preferred (for example for
loops over variables, probes, or any entity independent of mesh size.

1.5 Base functions and types

In the Code Saturne kernel, it is preferable to use base functions provided by the BFT subsystem to the
usual C functions, as those logging, exit and error-handling functions will work correctly when running
in parallel, and the memory management macros ensure return value checking and allow additional
logging.

The array below summarizes the replacements for usual functions:

C function Code Saturne macro or function Header
exit() cs_exit() cs_base.h

bft_error() bft_error.h

printf() bft_printf() bft_printf.h

malloc(BFT_MALLOC() bft_mem.h

realloc() BFT_REALLOC() bft_mem.h

free() BFT_FREE() bft_mem.h

1.6 Internationalization

Internationalization of messages uses the gettext() mechanism. Messages should always be defined
in US English in the source code (which avoids using extended characters and the accompanying text
encoding issues in source code), and a French translation is defined and maintained using a translation
file po/fr.po. Translations to other languages are of course possible, and only require a volunteer.

Using the gettext() mechanism has several advantages:

• accented or otherwise extended characters appear normally whether using a Latin-1 (or Latin-
9 or Latin-15) environment or whether using a “Unicode” (or generally UTF-8) environment
(assuming that a terminal’s encoding matches that of the LANG environment variable, usually
LANG=fr FR or LANG=fr FR.UTF-8 for French;

• if a message is not translated, it simply appears in its untranslated version;

• maintenance of the translations only requires editing a single file, gettext related tools also make
it easy to check that translations are consistent (i.e. matching format descriptors or line returns)
without requiring complete code coverage tests. In fact, translations could be maintained by a
non-programmer.

• internationalization may be disabled using the --disable-nls configure option, so possible com-
fort vs. speed trade-offs may be decided by the user;

To make internationalization possible, translatable strings should be encased in a () macro (actually
an abbreviation for a call to gettext() if available, which reverts to an empty (identity) macro is

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 7/13

internationalization is unavailable or disabled). Strings assigned to variables must be encased in a N (

) macro (which is an “empty” macro, used by the gettext toolchain to determine that those strings
should appear in the translation dictionary), and the variable to which such a string is assigned should
be encased in the () macro where used.

Note that with UTF-8 type character strings, accented or otherwise extended characters are represented
on multiple bytes. The strlen() C function will return the string’s real size, which may be greater
than the number of output columns it uses. In the preprocessor, the ecs print padded str() may
be used to print such a string and padding it with the correct number of white spaces so as to meet a
given format width. No such function is used or currently needed in the main code, though it could
be added if needed.

1.7 Fortran coding style

1.7.1 Conventions inherited from Fortran 77

The following coding conventions were applied when the code used Fortran 77, prior to conversion to
Fortran 95. Some of them should be updated, as long as we maintain consistency within a given file.

• one routine per file (except if all routines except the first are “private”). This rule has a few
exceptions, such as the cs user parameters.f90 user file which contains several subroutines
(it initially followed the rule, but subroutines were split, while the file was not), and Fortran
wrappers for several C functions defined in a single C file are also usually defined in a single
source, as they are a consistent whole.

• exactly 6 characters per routine name, with no underscores. As Fortran 95 allows longer identi-
fiers, the 6 character limit is obsolete, buy avoiding characters is still recommendend, as most
compilers add an underscore character to the routine name, and often add a second underscore if
no special options are given, while the C CS PROCF macro does not handle this situation, possibly
leading to link issues.

• at least 2 characters per variable names (banish variables i, j, or k, preferring ii, jj, or kk, as
this makes searching under a text editor easier).

• avoid commented example lines in user subroutines; otherwise, the code is never compiled and
thus probably incorrect. Using a if (iuse) ... endif construct with iuse = 0 instead is
recommended.

• assign integer variable names starting with i, j, k, l, m, and n.

• use do / enddo constructs instead of do / continue.

• avoid goto constructs where select / case would be more appropriate.

• avoid print statements using write(format, *), or print constructs, or use #ifdef debug

around debugging code using them, to ensure that output is redirected correctly in parallel
mode.

• use d and not e to define double-precision floating-point constant definitions. Especially avoid
constants with exponents such as e50, which are impossible in single precision (the limit is e38),
and may thus not be accepted by “strict” compilers, or worst, lead to run-time exceptions.

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 8/13

2 Common construct types
In this chapter, commonly-used construct types whose use may require specific explainations or rec-
ommendations are described.

2.1 Indexed arrays

In many instance data such as mesh connectivity requires managing a variable number of entries per
data element. This is for example the case of faces → vertices connectivity. The average number of
vertices per face is usually quite low, but the maximum number may be significantly higher, so using
an array with regular stride would be very inefficient for some data sets.

A common solution to this problem is to use indexed arrays, in which an array containing data is
supplemented by a second array containing the start indexes of entries in the data array for each
element.

These arrays are mainly used in the C parts of the Code Saturne source, though the interior and
boundary faces→ vertices connectivity is also visible in the Fortran code. Remember that in Fortran
code, arrays are always one-based (i.e. the first element of an array has index 1), while in C code,
the natural indexing is zero-based, but one-based indexing may also be used for arrays visible from
Fortran code, or for arrays using global numbers. In Code Saturne, zero-based indexes are often used
with one-based data, for example when defining element connectivities, where element ids are usually
one-based2. For C code, when there are no mapping constraints due to Fortran, the recommendations
are the following:

• local index arrays should be zero-based.

• global index arrays should be one-based. This should only concern indexes read from or written
to file.

• when containing cell, face, or vertex connectivity information, data arrays may be either zero or
one-based: zero based arrays are less error-prone so they should be preferred, but where element
ids may be signed (so as to convey orientation information), one-based arrays are necessary. In
a given structure, consistency is recommended, so if a cells → faces connectivity requires one-
based face numbers, an associated faces→ vertices connectivity may also use one-based vertex
numbers, even though vertices have no orientation.

Let us consider an array array data indexed by a zero-based array index array. The values of
array data associated with element ie, are the values ranging from indexes istart = ie included to
iend = ie + 1 excluded (past-the-end index).

The number of values associated with ie is determined by: par array index[ie + 1]− array index[ie],
whether the index is zero-based or one-based.

For an indexed array of n elements, the size the index array should thus be equal to n + 1 (and not
n as would be the case for regular 1-d or strided arrays), and the total size of array data is equal to
array index[n] for a zero-based index, or array index[n] - array index[0] in general.

2.1.1 similar popular data structures

Readers familiar with Compressed Sparse Row or similar matrix or graph representations may already
have noted the similarity with the indexed arrays described here. In the case of CSR matrix structures,
2 data arrays are often associated with 1 row index: one array definining the column indices, and a
second one defining the associated values.

2both as a convention to simplify mapping to Fortran, and in the case of cells → faces connectivities, so as to use
the sign to determine face orientation

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 9/13

This is in reality no different than using an indexed array as described here to define a faces→ vertices
connectivity, and also associating data (for example coordinates) to vertices.

In Code Saturne, matrix non-diagonal terms usually correspond to cell faces, and the CSR matrix
representation is very similar to that of a cells → faces connectivity, except for the fact that a
standard CSR representation uses only “unsigned” column ids, whereas face numbers may be signed
in the matching mesh representation so as to convey orientation (an alternative solution would be to
use a separate array for orientation, in which case the similarity to CSR would be complete).

2.1.2 Indexed Array Example

We illustrate the use of an indexed array to define a faces→ vertices connectivity for a simple surface
mesh:

�
��

�
��

�
��
HH

HH
H

HH
HH

1 2

3 4

5 6

7

1 2

3 4

The matching arrays are:

Vertex numbers
array

Faces index
array

1 2 4 3 2 7 4 3 4 6 5 4 7 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 4 7 11 14

0 1 2 3 4

Let us now assume that we need to keep track of the association between faces and some specific areas
of the mesh. Continuing on the same example, consider a single group of interest, with id 1, with which
the left part of the mesh (i.e. on the quadrangles), is associated. The faces → zones connectivity is
the defined as follows:

Vertex numbers
array

Faces index
array

1 1

0 1 2

0 1 1 2 2

0 1 2 3 4

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 10/13

This example, in which the right-side elements (i.e. the triangles) belong to no specified group illus-
trates how elements with no associated data are handled: their index and that of the following element
is simply the same.

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 11/13

3 Write a part of the theory guide

3.1 General rules

Theses general rules should be seen as basic golden rules helping the whole documentation to be
consistent. They are strongly recommended:

• Respect a plan where you first present a general overview of the theory (what is it about, what
is the main goal), then you present the equations in general, and finally the specific choices you
have made.

• Use the macros described in § 3.2 (i.e \usepackage{csmacros}).

• Use the notations defined in the nomenclature of the theory guide as much as possible.

• Focus on your specificities and cite the generalities (external to EDF!), which you should add to
the biblio.bib file located in the /doc/style/ directory.

• Write in English (UK).

• Use the existing style of Code Saturne, that is to say use the class csdoc.csl (for long documents
as a report) or the class csshortdoc.cls (for short documents as an article).

• Respect LATEX philosophy, as it is designed to make sensible spacing decisions by itself, do not use
explicit horizontal or vertical spacing commands, except in a few accepted (mostly mathematical)
situation.

• keep your own macros to an absolute minimum.

3.2 Macros and typos

This section does not pretend to discibe how to write a LATEXdocument, but is to present the macros
defined in csmacro.sty and give some typographic pieces of advice.

3.2.1 Macros

The available macros located in the csmacros and csvers.tex package are displayed in Table 1 and
Table 2.

3.2.2 Typography

Here are some usefull tricks:

• If you want to make a description many topics, use the \begin{itemize} \item \end{itemize}

environment.

• You can use blue and orange EDF colours with the blue \textcolor{blueedf}{text}, its the
darkened version \textcolor{bluededf}{text}, or the orange \textcolor{orangeedf}{text}
and its the darkened version \textcolor{orangededf}{text}.

• Use label and references, and dissociate equations with sections and appendices and figures and
tables using \label{eq:label}, \label{sec:label}, \label{ap:label}, \label{fig:label}
and \label{tab:label} prefixes.

• Use the \emph{} mode for acronyms (e.g. EDF).

• Use the \emph{} mode for Latin words(e.g., i.e, a priori, etc.).

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 12/13

LATEXcode preview
\CS Code Saturne
\ensight EnSight
\ensightg EnSight Gold
\fluent FLUENT
\bft BFT
\fvm FVM
\gambit GAMBIT
\gmsh Gmsh
\harpoon Harpoon
\hexpress HexPress
\icemcfd ICEM CFD
\ideas I-deas
\med MED
\metis Metis
\parmetis ParMetis
\nopo nopo
\paraview ParaView
\pcs Preprocessor
\salome SALOME
\scotch Scotch
\ptscotch PT-Scotch
\simail SIMAIL
\starcd STAR-CD
\starccmp STAR-CCM+
\syrthes SYRTHES
\vtk VTK

Table 1: Macros of softwares defined in csmacros.sty.

LATEXcode preview
\divs div
\divv div
\divt div
\grad ∇
\gradv ∇
\gradt ∇
\rot rot
\vect{V} V
\tens{T} T
\degresC ◦C
\Max Max
\Min Min
\trace tr
\transpose{M} MT

\deviator{M} MD

\symmetric{M} MS

\dd d

Table 2: Macros of some mathematical symbols defined in csmacros.sty.

EDF R&D Code Saturne version 2.3.1 developper’s guide
Code Saturne

documentation
Page 13/13

LATEXcode preview
$\Facei{\celli}$ F int

i

$\Faceb{\cellj}$ Fext
j

$\Face{\celli}$ Fi

\fij fij
\fib fb
\ij ij
\ib ib
\celli i
\cellj j
\ipf I ′

\jpf J ′

\centi I
\centj J
\centip I ′

\centjp J ′

\cento O
\centf F

Table 3: Macros of discretized quantities defined in csmacros.sty.

• Use \left(instead of (and \right) instead of) in math mode.

• DO NOT put a space before the symbol “:”. In English the rule is no space, never.

• DO NOT use \newline or \\ except in a tabular environment or an array.

• Write “Equation” with a first upper case letter. Use \figurename~ and to \tablename~ write
Figure and Table.

• Use the enumerate environment:

\begin{enumerate}[label=\roman{*}/, ref=(\roman{*})]

\item 1^{st} item

\item 2^{nd} item

\end{enumerate}

i/ 1st item

ii/ 2nd item

• Use the remarks \begin{remark} \end{remark} and example \begin{example} \end{example}

environments defined in csdoc.csl:

Remark 3.1 A remark

Example 3.1 An example

	Flyleaf
	Table of contents
	Coding style guidelines
	Master rule
	General rules
	C coding style
	Punctuation
	General rules
	Language
	Assertions

	Naming conventions
	Naming of enumerations
	Naming of structures and associated functions
	Integer types

	Base functions and types
	Internationalization
	Fortran coding style
	Conventions inherited from Fortran 77

	Common construct types
	Indexed arrays
	similar popular data structures
	Indexed Array Example

	Write a part of the theory guide
	General rules
	Macros and typos
	Macros
	Typography

