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ABSTRACT

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D ax-
isymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady
or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars
and turbulent fluctuations of scalars can be taken into account. The code includes specific modules,
referred to as “specific physics”, for the treatment of lagrangian particle tracking, semi-transparent
radiative transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and elec-
tric arcs) and compressible flows. Code_Saturne relies on a finite volume discretisation and allows the
use of various mesh types which may be hybrid (containing several kinds of elements) and may have
structural non-conformities (hanging nodes).

The present document is a practical user’s guide for Code_Saturne version 2.2.3. It is the result of the
joint effort of all the members in the development team. It presents all the necessary elements to run
a calculation with Code_Saturne version 2.2.3. It then lists all the variables of the code which may be
useful for more advanced utilisation. The user subroutines of all the modules within the code are then
documented. Eventually, for each key word and user-modifiable parameter in the code, their definition,
allowed values, default values and conditions for use are given. These key words and parameters are
grouped under headings based on their function. An alphabetical index list is also given at the end of
the document for easier consultation.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
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1 Introduction

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym-
metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and
turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred
to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent radiative
transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs)
and compressible flows.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.!

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

Code_Saturne is composed of three main elements and an optional GUI, as shown on figure 1:

e the Kernel module is the numerical solver
e the Preprocessor module is in charge of mesh import

e the Partitioner is in charge of optimizing domain decomposition for parallel computing (optional,
but highly recommended for parallel performance)

Configure run script Simulation
options
(XML)
iti ernel v
Preprocessor Partitioner Kernel D
- ]
[ N W Rcad and append meshes Rshipattiontng Mesh modification Checkpoint
Mesh and data setup and restart
Meshes
Descending connectivity _ ~
~_ Verification output - W =S e o
v User—defined functions —
D Intermediate Ccell Turbulence ~——
N Mesh domain Specific physics Post
Verification structure number processing
Visualization ‘ Post—processing output )
S~ MPI communication

Figure 1: Code_Saturne elements

Code_Saturne also relies on one library (by the same team, under LGPL licence), which can also be
used independently:

e PLE (Parallel Location and Exchange) for the management of code coupling

The present document is a practical user’s guide for Code_Saturne version 2.2.3. It is the result of the
joint effort of all the members in the development team.

The aim of this document is to give practical information to the users of Code_Saturne. 1t is therefore
strictly oriented towards the usage of the code. For more details about the algorithms and their

You should have received a copy of the GNU General Public License along with Code_Saturne; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
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numerical implementation, please refer to the reports [10] and [4], and to the theoretical documentation
[11], which is newer and more detailed (the latest updated version of this document is available on-line
with the version of Code_Saturne and accessible through the command cs_info --guide theory).

The present document first presents all the necessary elements to run a calculation with Code_Saturne
version 2.2.3. It then lists all the variables of the code which may be useful for more advanced
utilisation. The user subroutines of all the modules within the code are then documented. Eventually,
for each key word and user-modifiable parameter in the code, their definition, allowed values, default
values and conditions for use are given. These key words and parameters are grouped under headings
based on their function. An alphabetical index list is also given at the end of the document for easier
consultation.

2 Quick start
2.1 Running a calculation

We assume in this section that the user has at his disposal the calculation data file (calculation set
up) or already prepared it following for instance the step-by-step guidance provided in Code_Saturne
tutorial. The steps described below are intended to provide the user a way to run quickly on a
workstation a calculation through the Graphical User Interface (GUI).

The first thing to do before running Code_Saturne is to add in the user ~/.profile, ~/.bashrc or
similar file the path leading to the chosen Code_Saturne version, or define an alias to the code_saturne
script. For example:

export PATH=${prefix}/bin:$PATH.

The second thing is to prepare the computation directories. For instance, the study directory T_JUNCTION,
containing a single calculation directory CASE1, will be created by typing the command:

code_saturne create -s T_JUNCTION

The mesh files should be copied in the directory MESH, and the Fortran user files necessary for the
calculation in the directory CASE1/SRC. Finally, the calculation data file case name.xml read by the
GUI should be copied to the directory CASE1/DATA. Once these steps completed, the user should
go in the directory CASE1/DATA and type de command line ./SaturneGUI case name.xml to load
the calculation file into the interface. A window similar to fig.2 will appear. Click on the heading
“Calculation management”, select the heading “Prepare batch calculation”, see fig.3. After having
chosen the number of processors, press “start calculation” to run the calculation.

~Directory of the case

[graphics/KSNAPS/FULL_DOM/FULL_DOMAIN/CASE2 |

&

B

g5 Thermophysical models
Additional scalars

£5 Physical properties ~Associated sub-directories of the case

=]
- s Volume conditions
B
B
=
B

- - -

B Boundary conditions HaiE IDATA ]
Numerical parameters Results IRESU ]

- Calculation control
- Calculation management User subroutines ISRC ]
Running scripts [scripTs |

4 |<|D

Figure 2: Identity and paths

If no problem arises, the simulation results can be found in the directory CASE1/RESU and be read
directly by ParaView or EnSight in CASE1/RESU/<YYYYMMDD-hhmm>/postprocessing. Calculation
history can be found in the file <YYYYMMDD-hhmm>/1listing.



Code_Saturne
. . ’ ;
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 11/205
~Seript fil
| g Turbulence models B criee e
i Thermal model | h Fil
’ 3 R G Select the script file L, runcase
. Conjugate heat transfer
5 Additional sealars | | ~Calculation script parameters
-5 Physical properties
-4 Volume conditions Run type [Standard \']
&-88 Doundary condltions Number of processes [l }%]

[#- T Mumerical parameters

El E| Calculation contral e Gl

& | Time averages

Output control =

i | valume solution control Advanced options a{;

Surface solution control

|} profiles

E-E5 Calculation management (Caleulation start
| Start/Restart
B ‘Prepare batch calculation

Figure 3: Prepare execution

2.2 Troubleshooting

If the calculation does not run properly, the user is advised to check the following points in
CASE1/RESU/<YYYYMMDD-hhmm>:

e if the calculation stops in the pre-processor, the user should check for error messages in the file
preprocessor*.log.

e if the problem is related to boundary conditions, the user should visualise the file error.ensight
with EnSight or Paraview,

e if the calculation stops in the Code_Saturne core, the user should look for messages at the end
of the files 1isting and error*. In addition, the user can track the following keywords in the
listing. They are specific error signals:

- SIGFPE: a floating point exception occurred. It happens when there is a division by 0,
when the calculation did not converge, or when a real number reached a value over 1030,
Depending on the architecture Code_Saturne is running on, this type of execption may be
caught or ignored.

- SIGSEGV: a memory error such as a segmentation violation occurred. An array may have
exceeded its allocated memory size and a memory location in use was overwritten.

3 Practical information about Code_Saturne
3.1 System Environment for Code_Saturne
3.1.1 Preliminary settings

In order to use Code_Saturne, every user must add the following line (in their .profile, .bashrc, or
equivalent, depending on the environment):

export PATH=${prefix}/bin:$PATH

or define the following alias (in their .bashrc, or equivalent, or .alias file, depending on the environ-
ment):

alias cs=’${prefix}/bin/cs’
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where prefix is the base directory where Code_Saturne and its components have been installed?.

3.1.2 Standard directory hierarchy

The standard architecture for the simulation studies is:

An optional study directory containing:

e A directory MESH containing the mesh(es) necessary for the study
e A directory POST for the potential post-processing routines (not used directly by the code)

e One or several calculation directories
Every calculation directory contains:

e A directory SRC for the potential user subroutines necessary for the calculation

e A directory DATA for the calculation data (data file from the interface, input profiles, thermo-
chemical data, ...)

e A directory SCRIPTS for the launch script

e A directory RESU for the results
To improve the calculation traceability, the files and directories sent to RESU after a calculation
are placed in a subdirectory named after that run’s “id”, which is by default based on the run
date and time, using the format: YYYYMMDD-hhmm. It is also possible to force a specific run id,
using the --id option to code_saturne run.

In the standard cases, RESU/<run_id> contains a postprocessing directory with the post-processing
(visualization) files, a restart directory for the calculation restart files, a monitoring directory for
the files of chronological record of the results at specific locations (probes),

preprocessor.log and listing files reporting the Preprocessor and the Kernel execution. For an
tracing of the modifications in prior calculations, the user-subroutines used in a calculation are stored
in a src_saturne subdirectory. The Xml Interface data file, thermo-chemical data files and launch
script are also copied into the results directory. compil.log and summary are respectively reports of

the compilation stage and general information on the calculation (type of machine, user, version of the
code, ...).

Note that the code may be run directly in the final RESU/<run_id> directory, or in a scratch directory
(which may be recommended if the compute environment includes different filesystems, some better
suited to data storage, others to intensive I/0). When running, the code may use additional files or
directories inside its execution directory, set by the execution script, which include a mesh_input file
or directory, as well as a restart directory (which is a link or copy of a previous run’s checkpoint
directory), as well as a run_solver.sh script.

For coupled calculations, whether with Code_Saturne or SYRTHES, each coupled calculation domain
is defined by its own directory (bearing the same name as the domain), but results are placed in
a RESU_COUPLING directory, with a subdirectory for each run, itself containing one subdirectory per
coupled domain. Coupled cases are not run through the standard STUDY/CASE1/SCRIPTS/runcase
script or through the code_saturne run command, but through a STUDY/runcase_coupling script.

So in the coupled case, calculation results would not be placed in STUDY/CASE1/RESU/20110509-1920,
but in STUDY/RESU_COUPLING/20110509-1920/CASE1, with the summary file being directly placed in
STUDY/RESU_COUPLING/20110509-1920 (as it references all coupled domains).

2At EDF R&D, /home/saturne/Code_Saturne/2.2.3 is used
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Below are typical contents of a case directory CASE] in a study STUDY

STUDY/CASE1/DATA:
SaturneGUI
study.xml
REFERENCE

STUDY/CASE1/SRC:
REFERENCE
cs_user_boundary_conditions.f90
cs_user_parameters.f90
STUDY/CASE1/RESU/20110509-1920:
postprocessing

src_saturne
monitoring
checkpoint
compile.log
study.xml

runcase

preprocessor.log

listing

summary
STUDY/CASE1/SCRIPTS:

runcase

Code_Saturne data

Graphical User Interface launch script
Graphical User Interface parameter file
Example of user scripts and meteorological

or thermochemical date files (used with the
specific physics modules)

Code_Saturne user subroutines

Examples of a user subroutines

user subroutines used for the present calculation

results for the calculation 20110509-1920

directory containing the Code_Saturne post-processing output
in the EnSight format (both volume and boundary);

copy of the Code_Saturne user subroutines used for the calculation
directory containing the chronological records for Code_Saturne
directory containing the Code_Saturne restart files

compilation log

Graphical User Interface parameter file used for the
calculation

copy of the launch script used for the calculation

execution report for the Code_Saturne Preprocessor

execution report for the Kernel module of Code_Saturne
general information (machine, user, version, ...)

launch script

launch script (which may contain batch system keywords)

Below are typical additional contents with a coupled SYRTHES case SOLID1 in a study STUDY

STUDY/runcase_coupling

STUDY/SOLID1/DATA:
syrthes.data
syrthes.env

coupled launch script
SYRTHES data
SYRTHES data file
SYRTHES configuration file

STUDY/RESU_COUPLING/20110509-1920/S0LID1: results (file names defined in syrthes.env)

src
compile.log.08211921
listsyr

geoms

histos1

resusl

resuscl

SYRTHES user subroutines used in the calculation
SYRTHES compilation report

execution log

SYRTHES solid geometry file

SYRTHES chronological records at specified probes
SYRTHES calculation restart file (1 time step)
SYRTHES chronological solid post-processing file
(may be transformed into the EnSight format

with the syrthes2ensight utility)

3.1.3 Code_Saturne Kernel library files

Information about the content of the Code_Saturne base directories is given below. It is not of vital
interest for the user, but given only as general information. Indeed, the case preparer command
code_saturne create automatically extracts the necessary files and prepares the launch script without
the user having to go directly into the Code_Saturne base directories (see §3.3). The code_saturne info
command gives direct access to the most needed information (especially the user and programmer’s
guides and the tutorial) without the user having to look for them in the Code_Saturne directories.

The subdirectories {prefix}/1ib and {prefix}/bin contain the libraries and compiled executables

respectively.
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The data files (for instance thermochemical data) are located in the directory data.

The user subroutines are available in the directory users, under subdirectories corresponding to each
module: base (general routines), cfbl (compressible flows), cogz (gas combustion), cplv (pulverised
coal combustion), ctwr (cooling towers modelling), elec (electric module), fuel (heavy fuel oil combus-
tion module), lagr (Lagrangian module, pprt (general specific physics routines) and rayt (radiative
heat transfer). The case preparer command code_saturne create copies all these files in the user
directory SRC/REFERENCE during the case preparation.

The directory bin contains an example of the launch script, the compilation parameter files and various
utility programs.

3.2 Setting up and running a calculation
3.2.1 Step by step calculation

This paragraph summarises the different steps which are necessary to prepare and run a standard case:

e Check the version of Code_Saturne set for use in the environment variables (code_saturne info
--version). If it does not correspond to the desired version, update the .profile file to set the
environment variables correctly. Log out of the session and log in again to take the modifications
into account properly (cf. §3.1.1).

e Prepare the different directories using the code_saturne create command (see §3.3).

e It is recommendned to place the mesh(es) in the directory MESH, but they may be selected from
other directories. Make sure they are in a format compliant with Code_Saturne (see §3.4.4). There
can be several meshes in case of mesh joining or coupling with SYRTHES?3.

e Go to the directory DATA and launch the Graphical User Interface using the command . /SaturneGUI.

e If not using the GUI, copy the DATA/REFERENCE/cs_user_scripts.py file to DATA and edit it,
so that the correct run options and paths may be set. For advanced uses, this file may also be
used in conjunction with the GUI. Jus as with user Fortran subroutines below, settings defined
in this file have priority over those defined in the GUI.

e Place the necessary user subroutines in the directory SRC (see §3.9). When not using the Interface,
some subroutines are compulsory.

For the standard physics:

compulsory without Graphical User Interface:
- cs_user_parameters.f90 to specify the calculation parameters
- cs_user_boundary_conditions to manage the boundary conditions
very useful:
- usphyv to manage the variable physical properties (fluid density, viscosity ...)
- cs_user_initialization to manage the non-standard initialisations

For the “gas combustion” specific physics:
(not accessible through the Graphical User Interface in version 2.2.3)
compulsory:

- cs_user_parameters.f90 to specify the calculation parameters

- usppmo to select a specific physics module and combustion model

3SYRTHES 3 uses meshes composed of 10-node tetrahedra (vertices and centers of edges, SYRTHES 4 uses meshes
composed of 4-node tetrahedra
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- usebuc, usd3pc or uslwcc (depending on the selected combustion model) to manage
the boundary conditions of all variables (i.e. not only the ones related to the
combustion model)

very useful:

- usebul, usd3pl or uslwcl (depending on the selected combustion model) to specify
the calculation options for the variables corresponding to combustion model

- usebui, usd3pi or uslwci (depending on the selected combustion model) to manage
the initialisation of the variables corresponding to the combustion model
For the “coal combustion” specific physics:

compulsory without Graphical User Interface:
- cs_user_parameters.f90 to specify the calculation parameters
- usppmo to select the specific physics module
- uscpcl or uscplc (depending on the specific physics module) to manage the bound-
ary conditions of all variables (i.e. not only the ones related to the specific physics
module)

very useful:

- uscpil to specify the calculation options for the variables corresponding to the
specific physics module

- uscpiv to manage the initialisation of the variables corresponding to the specific
physics module
For the “electric module” specific physics (Joule effect and electric arcs):
(not accessible through the Graphical User Interface in version 2.2.3)
compulsory:
- cs_user_parameters.f90 to specify the calculation parameters
- usppmo to select the specific physics module

- uselcl to manage the boundary conditions of all variables (i.e. not only the ones
related to the electric module)

- useliv to initialise the enthalpy in case of Joule effect
- uselph to define the physical properties in case of Joule effect
very useful:

- uselil to manage the options related to the variables corresponding to the electric
module

- useliv to manage the initialisation of the variables corresponding to the electric
module
For the “heavy fuel oil combustion module” specific physics:
(not accessible through the Graphical User Interface in version 2.2.3)
compulsory:
- cs_user_parameters.f90 to specify the calculation parameters
- usppmo to select the specific physics module
- usfucl to manage the boundary conditions of all variables (i.e. not only the ones
related to the specific physics module)
very useful:
- usfuil to specify the calculation options for the variables corresponding to the
specific physics module
- usfuiv to manage the initialisation of the variables corresponding to the specific
physics module
For the Lagrangian module (dispersed phase):
(the continuous phase is managed in the same way as for a case of standard physics)

(the Lagrangian module is not accessible through the Graphical User Interface in version
2.2.3)
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compulsory:

- uslagl to manage the calculation conditions
- uslag?2 to manage the boundary conditions for the dispersed phase
very useful:
- uslabo to manage potential specific treatments at the boundaries (rebound condi-
tions, specific statistics, ...)
For the compressible module:
(not accessible through the Graphical User Interface in version 2.2.3)

compulsory:
- uscfxl and uscfx2 to manage the calculation parameters
- uscfcl to manage the boundary conditions
- uscfth to define the thermodynamics.
very useful:
- uscfxi to manage non-standard initialisations of the variables

The comprehensive list of the user subroutines and their instructions for use are given in §3.9.

e If necessary, place in the directory DATA the different external data (input profiles, thermochemical
data files, ...)

e Prepare the launch script runcase, directly or through the Graphical Interface (see §3.7), or
prepare the DATA/cs_user_scripts.py file.

e Run the calculation and analyse the results

e Purge the temporary files (in RESU/<run_id> or <scratch>/<run_id> directory).

3.2.2 Temporary execution directory

During a calculation, Code_Saturne may use a temporary directory for the compilation and the execution
if such a “scratch” directory is defined. In that case, the result files are only copied at the end in the
directory RESU. This is recommended if the compute environment includes different filesystems, some
better suited to data storage, others to intensive I/O. If this is not the case, there is no point in running
in a scratch directory rather than the results directory, as this incurs additional file copies.

WARNING: in case of an error, the temporary directories are not deleted after a calculation, so that
they may be used for debugging. They may then accumulate and may hinder the correct operation of
the machine.

It is therefore essential to remove them regularly.

3.2.3 Execution modes

As explained before, Code_Saturne is composed of two main modules, the Preprocessor and the Kernel,
and an optional Partitioner. The Preprocessor reads the meshes. The Partitioner optimizes domain
decomposition for parallel runs. The resulting data is transfered to the Kernel through specific files,
named mesh_input and domain number_*, where * is the number of processors used. In a standard
calculation, the files are not copied from the temporary execution directory to the results directory, as
they have no interest for data analysis, and are considered “internal” files, whose format or contents
is not guaranteed not to change between Code_Saturne versions.

Yet, the Preprocessor does not run in parallel and may require a large amount of memory. Similarly,
the Partitioner may be run on a reduced number of processors to obtain a better partition quality, so
it is sometimes useful to run the Preprocessor and Partitioner separately, on a machine or in batch
queues with extended memory, and to run the proper parallel calculation on another machine or in
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another batch queue. The launch scripts therefore allows specifically choosing which modules to run,
either through the GUI or through cs_user_scripts.py:

If a mesh_input file or directory is defined (which may be either a mesh_input from a previous
Preprocessor run or a mesh_output from a previous solver run), the script will copy or link it to the
execution directory, and the Preprocessor will not be run again.

If domain.exec_partition = False, the Partitioner will not be run. A previous partitioning may
be used by defining the domain.partition_input path.

If domain.exec kernel = False, the Kernel will not be run. This is useful when only the mesh
import and optionnaly partitioning stages are required.

It is encouraged to separate the mesh import and calculation runs, as this speeds up calculations by
not re-importing meshes for each run. For some configurations, such as IBM Blue Gene machines with
different front-end an compute nodes, mesh import may be impossible on the compute nodes (as the
Preprocessor does not run in parallel, and may require too much memory), so mesh import (and serial
partitioning) should be run separately on the front-end nodes, while later calculation stages should be
run on compute nodes.

Note also that depending on its configuration, the Partitioner may be run either or both in serial or
parallel mode. By default, serial mode is currently chosen (due to limited feedback on partitioning
quality in parallel mode), but setting domain.partition n_procs to a value greater than 1 in the user
scripts allows running the Partitioner in parallel.

3.2.4 Interactive modification of the target time step

During a calculation, it is possible to change the limit time step number (ntmabs) specified through
the Interface or in cs_user_parameters.f90. To do so, a file named ficstp must be placed in the
temporary execution directory (see §3.2.2). This file must contain a blank first line and the second
line indicating the value of the new limit number of time steps.

If this new limit has already been passed in the calculation, Code_Saturne will stop properly at the end
of the current time step (the results and restart files will be written correctly).

This procedure allows the user to stop a calculation in a clean and interactive way whenever they wish.

3.3 Case preparer

The case preparer command code_saturne create automatically creates a study directory according
to the typical architecture and copies and pre-fills an example of calculation launch script.

The syntax of code_saturne create is as follows:

code_saturne create --study STUDY CASE_NAME1 CASE_NAME2...
creates a study directory STUDY with case subdirectories CASE_NAME1 and CASE_NAME2... If no case
name is given, a default case directory called CASE1 is created.

code_saturne create --case DEBIT3 --case DEBIT4
executed in the directory STUDY adds the case directories DEBIT3 and DEBIT4.

An option --nogui is available for the use of Code_Saturne without Graphic Interface. This option
must be either the first or the last argument and appear only once.

In the directory DATA, the code_saturne create command places a subdirectory THCH containing ex-
amples of thermochemical data files used for pulverised coal combustion, gas combustion or electric
arc. The file to be used for the calculation must be copied directly in the DATA directory and its name
must be referenced in the launch script in the variable THERMOCHEMISTRY _DATA. All other files
in the DATA or in the THCH will be ignored.

The code_saturne create command also places in the directory DATA the launch script for the Graph-
ical User Interface: SaturneGUI.
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In the directory SRC, the code_saturne create command creates a subdirectory REFERENCE containing
all the user subroutines, classified by module type: base, cfbl, cogz, cplv, elec, fuel, lagr, pprt
and rayt. Only the user subroutines placed directly under the directory SRC will be considered. The
others will be ignored.

In the directory SCRIPTS, the code_saturne create command copies and pre-fills an example of the
launch script: runcase. The study, case and user name are filled automatically in the launch script,
as are the paths leading to the different directories. Other parameters must be specified in the script
(see §3.7), especially the mesh file(s) to use, but everything can be specified through the Graphical
Interface.

3.4 Supported mesh and post-processing output formats

Code_Saturne supports multiple mesh formats, all of these having been requested at some time by users
or projects based on their meshing or post-processing tools. All of these formats have advantages and
disadvantages (in terms of simplicity, functionality, longevity, and popularity) when compared to each
other. The following formats are currently supported by Code_Saturne:

- SIMAIL (NOPO)

- I-deas universal

- MED

- CGNS

- EnSight 6

- EnSight Gold

- GAMBIT neutral

- Gmsh

- pro-STAR/STAR4

- STAR-CCM+
These formats are described in greater detail in the following sections. Unless a specific option is used,
the Preprocessor determines the mesh format directly from the file suffix: “. case” for EnSight (6 or

Gold), “. cem” for STAR-CCM+, “.cgns” for CGNS, “.des” for SIMAIL, “.med” for MED, “.msh”
for Gmsh, “.neu” for GAMBIT neutral, “.ngeom” for pro-STAR/STAR4, “.unv” for I-deas universal.

Note that the preprocessor can read gzipped mesh files directly (for Formats other than MED or
CGNS, which use specific external libraries) on most machines.

3.4.1 Formats supported for input
3.4.1.1 NOPO/SIMAIL (INRIA/SIMULOG)

This format output by SIMAIL is still heavily used at EDF. We do not currently handle cylindrical
or spherical coordinates, but it seems that SIMAIL always outputs meshes in Cartesian coordinates,
even if points have been defined in another system. Most “classical” element types are usable, except
for pyramids.

Note that depending on the architecture on which a file was produced by SIMAIL,*, it may not be
directly readable by SIMAIL on a different machine, while this is not a problem for the Preprocessor,
which automatically detects the byte ordering and the 32/64 bit variant and adjusts accordingly.

44ittle endian” on Intel or AMD processors, or “big endian” on most others, and starting with SIMAIL 7, 32-bit or
64-bit integer and floating-point numbers depending on architecture
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Default extension: .des
File type: semi-portable “Fortran” binary (IEEE integer and floating-point
numbers on 4 or 8 bytes, depending on 32 or 64 bit SIMAIL
version, bytes also ordered based on the architecture)
Surface elements: triangles, quadrangles (+ volume element face references)
Volume elements: tetrahedra, prisms, hexahedra
Zone selection: element face references and volume sub-domains
(interpreted as numbered groups)
Compatibility: all files of this type as long as the coordinate system used is
Cartesian and not cylindrical or spherical
Documentation: Simail user documentation and release notes or MODULEF
documentation: http://www-rocq.inria.fr/modulef
Especially:
http:
//www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

3.4.1.2 I-deas universal file

This format was very popular in the 1990’s and early 2000’s, and though the I-deas tool has not focused
on the CFD (or even meshing) market since many years, it is handled (at least in part) by many tools,
and may be considered as a major “legacy” format. It may contain many different datasets, relative
to CAD, meshing, materials, calculation results, or part representation. Most of these datasets are
ignored by Code_Saturne, and only those relative to vertex, element, group, and coordinate system
definitions are handled.

This format’s definition evolves with I-deas versions, albeit in a limited manner: some datasets are
declared obsolete, and are replaced by others, but the definition of a given dataset type is never
modified. Element and Vertex definitions have not changed for many years, but group definitions have
gone through several dataset variants through the same period, usually adding minor additional group
types not relevant to meshing. If one were to read a file generated with a more recent version of I-deas
for which this definitions would have changed with no update in the Preprocessor, as the new dataset
would be unknown, it would simply be ignored.

Note that this is a text format. Most element types are handled, except for pyramids.

Default extension: .unv

File type: text

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, prisms, hexahedra

Zone selection: colors (always) and named groups

Compatibility: I-deas (Master Series 5 to 9, NX Series 10 to 12) at least
Documentation: Online I-deas NX Series documentation

3.4.1.3 GAMBIT neutral

This format may be produced by Ansys FLUENT’s GAMBIT meshing tool. As this tool does not
export meshes to other formats directly handled by the Preprocessor (though FLUENT itself may
export files to the CGNS or I-deas universal formats), it was deemed useful to enable the Preprocessor
to directly read files in GAMBIT neutral format.

Note that this is a text format. “Classical” element types are usable.
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Default extension: .neu
File type: text

Surface elements:

triangles, quadrangles

Volume elements:

tetrahedra, pyramids, prisms, hexahedra

Zone selection:

boundary conditions for faces, element groups for cells
(interpreted as named groups)

Documentation:

GAMBIT on-line documentation

3.4.1.4 pro-STAR

This polyhedral format from CD-Adapco seems to be usable both with the STAR-CD and STAR-
CCM+ tools, and the pro-STAR tool should be able to generate it. The test meshes we have
were generated by the Comet-Design tool, which has since been replaced by other CD-Adapco tools,
especially STAR-CD V4 and STAR-CCM-+. The available test cases are thus not extensive in terms
of functionality (especially when considering definition of descriptions), so support for this format is
lightly tested.

Currently, geometric entity numbers are converted to group numbers. This tends to lead to a large
number of groups.

Default extension: .ngeom

File type: binary file using portable XDR encoding.
Surface elements: polygons

Volume elements: polyhedra

face and cell sets

(interpreted as numbered groups)

all files of this type ? (tested on purely polyhedral meshes)
documentation accompanying and source code provided by
CD-adapco in the context of a collaboration with UMIST (now
University of Manchester) and EDF R&D/MFEE

Zone selection:

Compatibility:
Documentation:

3.4.1.5 STAR-CCM+

This polyhedral format is the current CD-Adapco format, and is based on CD-Adapco’s libecemio,
which is based on ADF (the low-level file format used by CGNS prior to the shift to HDF-5). libccmio
comes with a version of ADF modified for performance, but also works with a standard version from
CGNS.

Currently, geometric entity numbers are converted to numbered groups, with the corresponding names
printed to the Preprocessor log. Depending on whether the names were generated automatically or set
by the user, it would be preferable to use the original group names rather than base their names on
their numbers.

The CCMIO library is distributed freely by CD-Adapco upon demand.

Default extension: .ccm

File type: binary file using modified ADF library.
Surface elements: polygons

Volume elements: polyhedra

named face and cell sets

(interpreted as numbered groups, with names appearing in log)
all files of this type ? (tested on purely polyhedral meshes)
documentation and source code provided by CD-adapco

Zone selection:

Compatibility:
Documentation:
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3.4.1.6 EnSight 6

This format is used for output by the Harpoon meshing tool, developed by Sharc Ltd (also the distrib-
utor of EnSight for the United Kingdom). This format may represent all “classical” element types.

Designed for post processing, it does not explicitely handle the definition of surface patches or volume
zones, but allows the use of many parts (i.e. groups of elements) which use a common vertex list.
A possible convention (used at least by Harpoon) is to add surface elements to the volume mesh,
using one part per group. The volume mesh may also be separated into several parts so as to identify
different zones. As part names may contain up to 80 characters, we do not transform them into groups
(whose names could be unwieldy), so we simply convert their numbers to group names.

Also note that files produced by Harpoon may contain badly oriented prisms, so the Preprocessor
orientation correction option (--reorient)may need to be used. Meshes built by this tool also contain
hanging nodes, with non-conforming elements sharing some vertices. Mesh joining must thus also be
used, and is not activated automatically, as the user may prefer to specify which surfaces should be
joined, and which ones should not (i.e. to conserve thin walls).

Default extension: .case

File type: text file (extension .case), and text, binary, or Fortran binary file
with (.geo extension), describing the integers describing integers
and floats in the IEEE format, using 32 bits

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: part numbers interpreted as numbered groups
Compatibility: All files of this type

Documentation: online documentation, also available at:

http://www.ensight.com/downloads/cat_view-5.html

3.4.1.7 Gmsh

This format is used by the free Gmsh tool. This tool has both meshing and post-processing function-
ality, but Code_Saturne only imports meshes.

Note that some meshes produced byGmsh man contain some badly oriented elements, so the Prepro-
cessor’s —reorient option may be necessary.

The Preprocessor handles versions 1 and 2 of this array. In version 1, two labels are associated with
each element: the first defines the element’s physical entity number, the second defines it’ elementary
entity number. Using version 2, it is possible to associate an arbitrary number of labels with each
element, but files produced by Gmsh use 2 labels, with the same meanings as with version 1.

We chose to convert physical entity numbers to groups. It is possible to build a mesh using Gmsh
without defining any physical entities (in which case all elements will belong to the same group, but
the Gmsh documentation clearly says that geometric entities are to be used so as to group elementary
entities having similar “physical” meanings.

So as to obtain distinct groups with a mesh generated by Gmsh, it is thus necessary for the user to
define physical entities. This requires an extra step, but allows for fine-grained control over the groups
associated with the mesh, while using only elementary entities could lead to a high number of groups.
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Default extension: .msh
File type: text or binary file
Surface elements: triangles, quadrangles
Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: physical entity numbers interpreted as numbered groups
Compatibility: all files of this type
Documentation: included documentation, also available at:

http://www.geuz.org/gmsh

3.4.2 Formats supported for input or output

3.4.2.1 EnSight Gold

This format may represent all “classical” element types, as well as arbitrary polygons and convex
polyhedra.

This format evolves slightly from one EnSight version to another, keeping backwards compatibility.
For example, polygons could not be used in the same part as other element types prior to version
7.4, which removed this restriction and added support for polyhedra. Version 7.6 added support for
material type definitions.

This format offers many possibilities not used by Code_Saturne, such as defining values on part of
a mesh only (using “undefined” marker values or partial values), assigning materials to elements,
defining rigid motion, or defining per-processor mesh parts with ghost cells for parallel runs. Note
that some libraries allowing direct EnSight Gold support do not necessarily support the whole format
specification. Especially, VTK does not support material types, and has only recently added support
for polyhedral elements in EnSight Gold files (interpreted as convex point sets in ParaView versions
2.4 to 2.8, and as true polyhedra starting with ParaView versions 2.10). Also, both EnSight Gold
(8.2 and above) and VTK allow for automatic distribution, reducing the usefulness of pre-distributed
meshes with per-processor files.

This format may be used as an input format, similar to EnSight 6. Compared to the latter, each
part has its own coordinates and vertex connectivity, so as a convention, we consider that surface or
volume zones may only be considered to be part of the same mesh if the file defines vertex IDs (which
we consider to be unique vertex labels). In this case, part numbers are interpreted as group names.
Without vertex IDs, only one part is read, and no groups are assigned.

Default extension: directory {case_name}.ensight, containing a file with the .case
extension

File type: multiple binary or text files

Surface elements: triangles, quadrangles, polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra

Zone selection: possibility of defining element materials (not used), or interpret part
number as group name if vertex IDs are given

Compatibility: files readable by EnSight 7.4 to 9.0, as well as tools based on the
VTK library, especially ParaView (http://www.paraview.org)

Documentation: online documentation, also available at:
http://www.ensight.com/downloads/cat_view-5.html

3.4.2.2 MED 2.3 or MED 3.0

Initially defined by EDF R&D, this format (Modéle d’échanges de Données, or Model for Exchange
of Data) has been defined and maintained through a MED working group comprising members of
EDF R&D and CEA (the Code_Saturne team being represented). This is the reference format for the
SALOME environment. This format is quite complete, allowing the definition of all “classical” element
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types, in nodal or descending connectivity. Since MED 2.2 in 2003, this format may handle polygonal
faces and polyhedral cells, as well as the definition of structured meshes.

This format, which requires a library also depending on the free HDF5 library, allows both for reading
and writing meshes with their attributes (“families” of color/attribute and group combinations), as
well as handling calculation data, with the possibility (unused by Code_Saturne) of defining variables
only on a subset (“profile”) of a mesh.

The MED library is available under a LGPL licence, and is even packaged in some Linux distributions
(at least Debian and Ubuntu). Versions 2.3.5 and older require HDF5 1.6, version 2.3.6 may compile
with either HDF5 1.6 or HDF5 1.8 (if the latter has HDF5 1.6 compatibility enabled).

Default extension: .med

File type: portable binary, based on the HDF5 library
(http://www.hdfgroup.org/HDF5/index.html)

Surface elements: triangles, quadrangles, simple polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, simple polyhedra

Zone selection: element families (i.e. colors and groups)

Compatibility: MED 2.3.5, MED 2.3.6, or MED 3.0.2 and above (only unstructured
nodal connectivity is supported)

Documentation: online documentation. Download link at http://files.
salome-platform.org/Salome/other/med-3.0.3.tar.gz

3.4.2.3 CGNS 2.5 or CGNS 3.1

Promoted especially by NASA, Boeing, and ICEM CFD (as well as ONERA in France), this for-
mat(CFD General Notation System) is quite well established in the world of CFD. The concept is
similar to that of MED, with a bigger emphasis on normalization of variable names or calculation
information, and even richer possibilities. The opposite of MED, the first version of this format was
limited to multibloc structured meshes, unstructured meshes having been added in CGNS 2.

Slightly older than MED, this library was free from the start, with a good English documentation,
and is thus much better known. It is more focused on CFD, where MED is more generic. A certain
number of tools accompany the CGNS distribution, including a mesh visualizer (which does not handle
polygonale faces although the format defines them), and an interpolation tool.

We should be able to read almost any mesh written in this format, though meshes with overset interfaces
may not be usable for a calculation. Other (abutting) interfaces are not handled automatically (as
there are at least 3 or 4 ways of defining them, and some mesh tools do not export them®), so the user is
simply informed of their existence in the Preprocessor’s log file, with a suggestion to use an appropriate
conformal joining option. Structured zones are converted to unstructured zones immediately after being
read.

Boundary condition information is interpreted as groups with the same name. The format does not yet
provide for selection of volume elements, as only boundary conditions defined in the model (and can
be assigned to faces in the case of unstructured meshes, or vertices in any case). Note that boundary
conditions defined at vertices are not ignored by the Preprocessor, but are assigned to the faces of
which all vertices bear the same condition.®

The Preprocessor also has the capability of building additional volume or surface groups, based on the
mesh sections to which cells or faces belong. This may be activated using a sub-option of the mesh
selection, and allows obtaining zone selection information from meshes that do not have explicit bound-
ary condition information but that are subdivided in appropriate zones or sections (which depends on
the tool used to build the mesh).

5For example, ICEM CFD can join non-conforming meshes, but it exports joining surfaces as simple boundary faces
with user-defined boundary conditions.
SIf one of a face’s vertices does not bear a boundary condition, that condition is not transferred to the face.
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When outputting to CGNS, an unstructured connectivity is used for the calculation domain, with no
face joining information or face boundary condition information.”

Though many tools support CGNS, that support is often quite dissapointing, at least for unstructured
meshes. Thus, some editors seem to use different means to mark zones to associate with boundary
conditions than the ones recommended in the CGNS documentation, and some behaviors are worse.
Also, many readers do not allow the user to choose between multiple CGNS bases (meshes in the
Code_Saturne sense), so when outputting to CGNS, it may be necessary to output each postprocessing
mesh using a separate writer. Vislt 2.4.2 fails to read a volume mesh output by Code_Saturne, but
reads a surface mesh correctly, while the same volume mesh may be read with no problems by EnSight
10. The support of polygons (ngons in the CGNS standard), is even worse, and even the verification
tools published alongside the CGNS library were recently unable to handle them, and reported errors
in valid files containing such elements. For mesh input, some ICEM CFD versions used a CGNS 3
beta library, which led to some issues. CGNS 3 output from ICEM CFD 13 is known to work well
with Code_Saturne, but that same version is unable to read files generated by Code_Saturne, as it seems
to “cheat” with CGNS version numbers and confuses CGNS 3 and 3.1 specs (ICEM 14 seems to have
fixed that bug).

Default extension: .cgns

File type: portable binary (uses the ADF library specific to CGNS, or HDF5)
Surface elements: triangles, quadrangles, simple polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra

Zone selection: Surface zone selection using boundary conditions, no volume zone

selection, but the Preprocessor allows creation of groups associated
to zones or sections in the mesh using mesh selection sub-options
Compatibility: CGNS 2.5 or CGNS 3.1

Documentation: See CGNS site: http://www.cgns.org

3.4.3 Meshing tools and associated formats

Most often, the choice of a mesh format is linked to the choice of a meshing tool. Still, some tools allow
exporting a mesh under several formats handled by Code_Saturne. This is the case of FLUENT and
ICEM CFD, which can export meshes to both the I-deas universal and CGNS formats (FLUENT’s
GAMBIT is also able to export to I-deas universal format).

Traditionally, users exported files to the I-deas universal format, but it does not handle pyramid
elements, which are often used by these tools to transition from hexahedral to tetrahedral cells in the
case of hybrid meshes. The user is encouraged to export to CGNS, which does not have this limitation.

Tools related to the SALOME platform should preferably use SALOME’s native MED format (export
to I-deas universal is also possible, but has some limitations).

The use of files of the “Common Solver” type® is still in part possible but is deprecated. Such files are
read directly from the Kernel, and this format is not handled by the launch scripts anymore. Many
potentialities of Code_Saturne are not usable with this file format (mesh joining with hanging nodes,
periodicity, parallel computing, ...).

3.4.4 Meshing remarks

WARNING: Some turbulence models (k—¢, R;;—¢ SSG, ...) used in Code_Saturne are “High-Reynolds”
models. Therefore the size of the cells neighboring the wall needs to be greater than the thickness

7Older versions of the documentation specified that a field must be defined on all elements of a zone, so that adding
faces on which to base boundary conditions to a volume mesh would have required also defining volume fields on these
faces. More recent versions of the documentation make it clear that a field must be defined on all elements of maximum
dimension in a zone, not on all elements.

8File type specifically developed for the early prototype versions of Code_Saturne (tlc) extension
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of the viscous sublayer (at the wall, y= > 2.5 is required, and 30 < y* < 100 is preferable). If the
mesh does not match this constraint, the results may be false (particularly if thermal phenomena are

involved). For more details on these constraints, see the keyword ITURB.

3.5 Preprocessor command line options

The main options are:

—--help: gives a summary of the different command line options

<mesh>: the last argumen is used to specify the name of the mesh file. The launch script
automatically calls the Preprocessor for every mesh in the MESHES[] list specified by th user.

--reorient: try to re-orient badly-oriented cells if it is necessary to compensate for mesh-
generation software whose output does not conform to the format specifications.

3.6 Kernel command line options

In the standard cases, the compilation of Code_Saturne and its execution are entirely controlled by the
launch script. The potential command line options are passed through user modifiable variables at
the beginning of the script. This way, the user only has to fill these variables and doesn’t need to
search deep in the script for the Kernel command line. For more advanced usage, the main options
are described below:

--solcom: this option indicates that the Kernel will read the mesh directly, not using the Pre-
processor output files. This is only possible with “Common Solver” type of mesh files (see §3.4.4
for restrictions).

This option is obsolete, and is not handled by the launch script anymore.

—-—app-name: specifies the application name. This is useful only in the case of code coupling,
where the application name is used to distinguish between different code instances launched
together.

—--mpi: specifies that the calculation is running with MPI communications. The number of
processors used will be determined automatically by the Kernel. With most MPI implementa-
tions, the code will detect the presence of an MPI environment automatically, and this option is
redundant. It is only kept for the rare case in which the MPI environment might not be detected.

--mpi-io: specifies that if MPI-IO should be used where available, and which mode should be
used (off to disable, eo for explicit offsets, and ip for individual file pointers). MPI-IO is only
available when running with MPI, and may improve performance only on parallel file systems.
In other cases, it will incurr additional overhead.

—--preprocess: triggers the preprocessing-only mode. The code may run without any Interface
parameter file nor any user subroutine. Only the initial operations such as mesh joining and
modification are executed.

-q or ——quality: triggers the verification mode. The code may run without any Interface pa-
rameter file nor any user subroutine. This mode includes the preprocessing stages, and adds
elementary tests:

- the quality criteria of the mesh are calculated (non-orthogonality angles, internal faces off-
set, ...) and corresponding EnSight post-processing parts are created.
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- test calculation of the gradient of sin(z + 2y + 3z). The calculated value is compared to
the exact value, and an EnSight part for the corresponding error is created. The gradient
is calculated with each option imrgra from 0 to 4.

e ——benchmark: triggers the benchmark mode, for a timing of elementary operations on the ma-
chine. A secondary option --mpitrace can be added. It is to be activated when the benchmark
mode is used in association with a MPI trace utility. It restricts the elementary operations to
those implying MPI communications and does only one of each elementary operation, to avoid
overfilling the MPT trace report.

This command is to be placed in the ARG_.CS_VERIF variable in the launch script to be added
automatically to the Kernel command line.

e —-log n: specifies the destination of the output for a single-processor calculation or for the
processor of rank 0 in a parallel calculation.
n=0: output directed towards the standard output
n=1: output redirected towards a file 1isting (default behaviour)
This option can be specified in the domain.logging args field of the user script.

e —-logp n: specifies the destination of the output for the processors of rank 1 to N — 1 in a

calculation in parallel on N processors (i.e. the redirection of all but the first processor).

n=-1: no output for the processors of rank 1 to N — 1 (default behaviour).

n=0: no redirection. Every processor will write to the standard output. This might be useful
in case a debugger is used, with separate terminals for each processor.

n=1: one file for the output of each processor. The output of the processors of rank 1 to
N — 1 are directed to the files 1isting n0002 to listing n/N. This option can be specified in
the domain.logging args field of the user script.

e -p xxx or ——param xxx: specifies the name of the GUI parameter file to use for the calculation.
The value of xxx is to be defined by the —-param option of code_saturne run, either directly
or in the standard runcase script (the file will be searched for in the data directory, though an
absolute path name may also be defined).

e -h or —-help: to display a summary of the different command line options.

3.7 Launch scripts

The case preparer command code_saturne create places an example of launch script, runcase, in
the SCRIPTS directory. This script is quite minimalist and is known to work on every architecture
Code_Saturne has been tested on. If a batch system is available, this script will contain options for
batch submission. The script will then contain a line setting the proper PYTHONPATH variable for
Code_Saturne to run. Finally, it simply contains the code_saturne run command, possible with a
—--param option when a parameters file defined by the GUI is used. Other options recognized by
code_saturne run may be added.

In the case of a coupled calculation, this script also exists, and may be used for preprocessing stages,
but an additional runcase_coupling is added in the directory above the coupled case directories, and
may be used to define the list of coupled cases, as well as global options, such as MPI options ot
the temporary execution directory. An additional runcase batch file will contain batch submission
options when a batch system is available (and is the file that should be submitted when using a batch
system).

When not using the GUI, or if additional options need to be accessed, the cs_user_scripts.py file
may be copied from the DATA/REFERENCE to the DATA and edited. This file contains several Python
functions:

e define domain parameter_file allows defining the choice of a parameters file produced by the
GUI. This is generally not useful, as the parameters file may be directly defined in runcase
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or runcase_coupling, or passed as an option to code_saturne run, but could be useful when
running more complex parametric scripts, and is provided for the sake of completeness.

e define domain _parameters allows defining most paramters relative to case execution for the
current domain, including advanced options not accessible through the GUI. This function is
the most important one in the user scripts file, and contains descriptions of the various options.
Note that in most examples, setting of options is preceded by a if domain.param == None: line,
ensuring the settings are only active if no GUI-defined parameters file is present. This is used to
prevent accidental override of parameters defined by the GUI: parameters defined through the
user script have priority over the GUI parameters file, so if both are used, these tests may be
removed for parameters which should be defined through user scripts.

e define_case_parameters allows defining most paramters relative to the global calculation, such
as the number of processors or the execution directory. To avoid potentially conflicting definitions,
this function is ignored for coupled calculations, where the corresponding parameters may be
defined in the runcase_coupling script.

e define mpi_environment allows defining advanced MPI parameters or redefining MPI options
if the automatic settings are incorrect, and ts use should only rarely be necessary. To avoid
potentially conflicting definitions, this function is ignored for coupled calculations, where the
corresponding parameters may be defined in the runcase_coupling script.

3.8 Graphical User Interface

A Graphical User Interface is available with Code_Saturne. This Interface creates or reads an XML file
according to a specific Code_Saturne syntax which is then interpreted by the code.

In version 2.2.3, the Graphical Interface manages calculation parameters, standard initialisation values
and boundary conditions for standard physics, pulverised coal combustion and radiative transfers. The
other specific physics are not yet managed by the Graphical Interface. In these particular cases, user
subroutines have to be completed.

The Interface is optional. Every data that can be specified through the Interface can also still be
specified in the user subroutines. In case of conflict, all calculation parameters, initialisation value
or boundary condition set directly in the user subroutines will prevail over what is defined by the
Interface. However, it is no longer necessary to redefine everything in the user subroutines. Only what
was not set or could not be set using the Graphical Interface should be specified.

WARNING: There are some limitations to the changes that can be made between the Interface and
the user routines. In particular, it is not possible to specify a certain number of solved variables in
the Interface and change it in the user routines (for example, it is not possible to specify the use of
a k — e model in the Interface and change it to R;; — ¢ in cs_user_parameters.f90, or to define
additional scalars in cs_user_parameters.f90 with respect to the Interface). Also, all boundaries
should be referenced in the Interface, even if the associated conditions are intended to be modified
in cs_user boundary conditions, and their nature (entry, outlet, wall’, symmetry) should not be
changed.

For example, in order to set the boundary conditions of a calculation corresponding to a channel flow
with a given inlet velocity profile, one should:

- set the boundary conditions corresponding to the wall and the output using the Graphical Interface
- set a dummy boundary condition for the inlet (uniform velocity for instance) - set the proper velocity
profile at inlet in cs_user_boundary_conditions. The wall and output areas do not need to appear in
cs_user_boundary_conditions. The dummy velocity entered in the Interface will not be taken into
account.

The Graphical User Interface is launched with the ./SaturneGUI command in the directory DATA. The
first step is then to load an existing parameter file (in order to modify it) or to open a new one. The

9smooth and rough walls are considered of the same nature
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headings to be filled for a standard calculation are the followings:

- Identity and paths: definition of the calculation directories (STUDY, CASE, DATA, SRC,
SCRIPTS, MESH).

- Calculation environment: definition of the mesh file(s), stand-alone execution of the Preprocessor
module (used by the Interface to get the groups of the boundary faces).

- Thermophysical models: physical model, ALE mobile mesh features, turbulence model, thermal
model, coupling with SYRTHES.

- Additional scalars: definition, initialisation of the scalars, and physical characteristics.

- Physical properties: reference pressure, fluid characteristics, gravity. It is also possible to write
user laws for the density, the viscosity, the specific heat and the thermal conductivity in the
interface through the use of a formulae interpreter.

- Volume conditions: initialization of the variables, and definition of the zones where to apply head
loss.

- Boundary conditions: definition of the boundary conditions for each variable. The colors of the
boundary faces may be read directly from a “listing” file created by the Preprocessor.

- Numerical parameters: number and type of time step, advanced parameters for the numerical
solution of the equations.

- Calculation control: parameters concerning the time averages, time step, location of the probes
where some variables will be monitored over time, definition of the frequency of the outputs in
the calculation listing and in the chronological records and of the EnSight outputs. The item
Profiles allows to save, with a given frequency, 1D profiles on an axis defined from two points
provided by the user.

- Calculation management: management of the calculation restarts, updating of the launch script
(temporary execution directory, parallel computing, user data or result files, ...) and interactive
launch of the calculation.

The Code_Saturne tutorial [14] offers a step-by-step guidance to the setting up of some simple calcula-
tions with the Code_Saturne Interface.

To launch Code_Saturne using an XML parameter file, the name of the file must be given to the variable
PARAM in the launch script (see §3.7). When the launch script is edited from the Interface (Calculation
management — Prepare batch analysis), the PARAM section is filled automatically as are the other
parameters specified through the Interface.

NOTE: OPTION --NOGUI OF THE CODE_SATURNE CREATE COMMAND

When a calculation is using the Interface but, for some reason, some extra parameters need to be
specified in the subroutine cs_user_parameters.f90, the latter must be placed in the directory SRC.
But, while doing this, all the parameters appearing in cs_user_parameters.f90 will also be taken
into account. In order to prevent the user from having to respecify in cs_user_parameters.f90
all that he has already specified through the Interface, code_saturne create automatically com-
ments out the examples in cs_user_parameters.f90 (Cex at the beginning of each line) while copying
it in the directory REFERENCE. Therefore, the user only needs to uncomment the specific parts of
cs_user_parameters.f90 he wants to modify, and the rest of the examples will be ignored.

On the contrary, if the Interface will not be used, then all the parameters in cs_user_parameters.f90
have to be specified. In that case, using the ——nogui option of code_saturne create will prevent it
from commenting cs_user_parameters.f90 out, thus saving the user the tedious task of uncomment-
ing all the lines (and the risk of skipping some of them).
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3.9 User subroutines
3.9.1 Preliminary comments

The user can run the calculations with or without an interface, with or without the user subroutines.
Without interface, some user subroutines are needed. With interface, all the user subroutines are
optional.

The parameters can be read in the interface and then in the user subroutines. In the case that a
parameter is specified in the interface and in a user subroutine, it is the value in the user subroutine
that is taken into acount. For this reason, all the examples of user subroutines are placed in the
REFERENCE directory by the case setup code_saturne create.

3.9.2 Main variables

This section presents a non-exhaustive list of the main variables which may be encountered by the
user. Most of them should not be modified by the user. They are calculated automatically from the
data. However it may be useful to know what they represent. Developpers can also refer to [4] and
[11].

These variables are listed in the alphabetical index at the end of this document.

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

3.9.2.1 Array sizes

ndim: Space dimension (ndim=3).

ncel: Number of real cells in the mesh.

ncelet:  Number of cells in the mesh, including the ghost cells of the “halos” (see note 1).
nfac: Number of internal faces (see note 2).

nfabor:  Number of boundary faces (see note 2).

ncelbr:  Number of cells with at least one boundary face (see note 2).

1ndfac:  Size of the array nodfac of internal faces - nodes connectivity (see note 3).
lndfbr:  Size of the array nodfbr of boundary faces - nodes connectivity (see note 3).
nnod: Number of vertices in the mesh.

nfml: Number of referenced families of entities (boundary faces, elements, ...).

nprfml: Number of properties per referenced entity family.

nvar: Number of solved variables (must be lower than nvrmax).

nscamx: Maximum number of scalars solutions of an advection equation, apart from the variables

of the turbulence model (k, €, R;;, w, ¢, f). That is to say the temperature and other
scalars (passive or not, user-defined or not).

nscal: Effective number of scalars solutions of an advection equation, apart from the variables
of the turbulence model (k, e, R;;, w, ¢, ?) That is to say the temperature and other
scalars (passive or not, user-defined or not). These scalars can be divided into two distinct
groups: nscaus user-defined scalars and nscapp scalars related to a “specific physics”.

nscal=nscaus+nscapp, and nscal must be inferior or equal to nscamx.
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nscapp: Effective number of scalars related to a “specific physics”. These scalars are solutions of

an advection equation and distinct from the scalars of the turbulence model (&, ¢, R;j,
w, ¢, f). They are automatically defined by the choice of the selected specific physics
model (gas combustion with Eddy Break-Up model, pulverised coal combustion, ...). For

example: mass fractions, enthalpy, ....

nscaus: Effective number of user-defined scalars. These scalars are solutions of an advection equa-
tion and distinct from the scalars of the turbulence model (k, €, R;;, w, ¢, f) and from the
nscapp scalars related to the “specific physics”. For example: passive tracers, temperature

(when no specific physics model is selected), ...

nestmx: Maximum number of error estimators for Navier-Stokes.

Npromx : Maximum number of physical properties. They will be stored in the arrays propce, propfa
or propfb.

nproce: Number of properties defined at the cells. They will be stored in the array propce.

nprofa: Number of properties defined at the internal faces. They will be stored in the array propfa.

nprofb: Number of properties defined at the boundary faces. They will be stored in the array

propfb.

nvisls: Number of scalars with variable diffusivity.

nushmx:  Maximum number of user chronological files (in the case where ushist is used).

nbmomt : Effective number of calculated time-averages. NBMOMT must be inferior or equal to
nbmomx.

nbmomx:  Maximum number of calculated time-averages (default value: 50).

ndgmox:  Maximum degree of the time-averages (default value: 5).

nclacp:  Number of coal classes for the pulverised coal combustion module. It is the total number

of classes, i.e. the sum of the number of classes for every represented coal. nclacp must
be inferior or equal to nclcpm.

nclcpm:  Maximum number of coal classes for the pulverised coal combustion module.

NOTE 1: GHOST CELLS - “HALOS”

A cell (real cell) is an elementary mesh element of the spatial discretisation of the calculation domain.
The mesh is made of NCEL cells.

When using periodicity and parallelism, extra “ghost” cells ( called “halo” cells) are defined for tem-
porary storage of some information (on a given processor). The total number of real and ghost cells is
ncelet.

Indeed, when periodicity is enabled, the cells with periodic faces do not have any real neigh-
boring cell across these particular faces. Their neighboring cell is elsewhere in the calculation domain
(its position is determined by the periodicity). In order to temporarily store the information coming
from this “distant” neighboring cell, a ghost cell (“halo”) is created.

The same kind of problem exists in the case of a calculation on parallel machines: due to the
decomposition of the calculation domain, some cells no longer have access to all their neighboring cells,
some of them being treated by another processor. The creation of ghost cells allows to temporarily
store the information coming from real neighboring cells treated by other processors.

The variables are generally arrays of size ncelet (number of real and fictitious cells). The calculations
(loops) are made on ncel cells (only the real cells, the fictitious cells are only used to store information).

NOTE 2: INTERNAL FACES
An internal face is an inferface shared by two cells (real or ghost ones) of the mesh. A boundary face
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is a face which has only one real neighboring cell. In the case of periodic calculations, a periodic face
is an internal face. In the case of parallel running calculations, the faces situated at the boundary of
a partition may be internal faces or boundary faces (of the whole mesh);

NOTE 3: FACES-NODES CONNECTIVITY

The faces - nodes connectivity is stored by means of four integer arrays: ipnfac and nodfac for the
internal faces, ipnfbr and nodfbr for the boundary faces. nodfac (size 1ndfac) contains the list of
all the nodes of all the internal faces; first the nodes of the first face, then the nodes of the second
face, and so on. ipnfac (size: nfac+1) gives the position ipnfac(ifac) in nodfac of the first node
of each internal face ifac. Therefore, the reference numbers of all the nodes of the internal face ifac
are: nodfac(ipnfac(ifac)), nodfac(ipnfac(ifac)+1), ..., nodfac(ipnfac(ifac+1)-1). In order
for this last formula to be valid even for ifac=nfac, ipnfac is of size nfac+1 and ipnfac(nfac+1) is
equal to lndfac+1.

The composition of the arrays nodfbr and ipnfbr is similar.

NOTE 4: COMMONS
The user will not modify the existing “commons”. This would require the recompilation of the
complete version, operation which is not allowed in standard use.

3.9.2.2 Geometric variables

The main geometric variables are available in most of the subroutines and directly accessible through
the following arrays, defined in the mesh module (i.e. use mesh).

cdgfac(ndim,nfac) [ra]: Coordinates of the centers of the internal faces.

cdgfbo(ndim,nfabor) [ra]: Coordinates of the centers of the boundary face.

ifacel(2,nfac) [ia]: Index-numbers of the two (only) neighboring cells for each internal face.
ifabor(nfabor) [ia]: Index-number of the (unique) neighboring cell for each boundary face.

ipnfac(nfac+1) [ia]: Position of the first node of the each internal face in the array nodfac (see note
3 in paragraph 3.9.2.1)..

ipnfbr(nfabor+1) [ia]: Position of the first node of the each boundary face in the array nodfbr (see
note 3 in paragraph 3.9.2.1)..

nodfac(lndfac) [ia]: Index-numbers of the nodes of each internal face (see note 3 in paragraph
3.9.2.1)..

nodfbr(1ndfbr) [ia: Index-numbers of the nodes of each boundary face (see note 3 in paragraph
3.9.2.1)..

surfac(ndim,nfac) [ra]: Surface vector of the internal faces. Its norm is the surface of the face and
it is oriented from ifacel(1,.) to ifacel(2,.)..

surfbo(ndim,nfabor) [ral: Surface vector of the boundary faces. Its norm is the surface of the face
and it is oriented outwards.

volume(ncelet) [ra]: Volume of each cell.
xyzcen(ndim,ncelet) [ra]: Coordinates of the cell centers.
xyznod (ndim,nnod) [ra]: Coordinates of the mesh vertices.

In addition, other geometric variables are useful for gradients reconstruction. The main variables of
this type are the following:

dijpf (ndim,nfac) [ral: For every internal face, the three components of the vector I'J’, where I’
and J’ are respectively the orthogonal projections of the neighboring cell centers I and J on
a straight line orthogonal to the face and passing through its center..
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diipb(ndim,nfabor) [ra]: For every boundary face, the three components of the vector II'. T’ is the
orthogonal projection of I, center of the neighboring cell, on the straight line perpendicular
to the face and passign through its center.

dist(nfac) [ra]: For every internal face, dot product of the vectors I.J and n. I and J are respectively
the centers of the first and the second neighboring cell. The vector n is the unit vector normal
to the face and oriented from the first to the second cell.

distbr(nfabor) [ra]: For every boundary face, dot product between the vectors IF and n. I is the
center of the neighboring cell. F is the face center. The vector n is the unit vector normal
to the face and oriented to the exterior of the domain.

dofij(ndim,nfac) [ra]: For every internal face, the three components of the vector OF. O is the
intersection point between the face and the straight line joining the centers of the two neigh-
boring cells. F is the face center.

icelbr(ncelbr) [ia]: List of cells having at least one boundary face.

FJn

IJ.n

ipond(nfac) [ra]: For every internal face, . With regard to the mesh quality, its ideal value is

0.5.
surfan(nfac) [ral: Norm of the surface vector of the internal faces.

surfbn(nfabor) [ra]: Norm of the surface of the boundary faces.

3.9.2.3 Physical variables

The main physical variables are available in the majority of the subroutines and brought together
according to their type in the multidimensional arrays listed below. In some paricular subroutines,
some variables may be given a more explicit name, in order to ease the comprehension.

propce(ncelet,nproce) [ral: Properties defined at the cell centers. For instance: density, viscosity,

propfa(nfac,nprofa) [ra]: Properties defined at the internal faces. For instance: mass flow across
internal faces.

propfb(nfabor,nprofb) [ra]: Properties defined at the boundary faces. For instance: mass flow
across boundary faces, density at boundary faces, ....

rtp(ncelet,nvar) [ra]: Array storing the values of the solved variables at the current time step.

rtpa(ncelet,nvar) [ra]: Array storing the values of the solved variables at the previous time step.

About rtp and rtpa

The indexes allowing to mark out the different variables (from 1 to nvar) are integers available in a
“module” called numvar.

For example, ipr refers to the variable “pressure”: the pressure in the cell iel at the current time
step is therefore rtp(iel,ipr).

The list of integers referring to solved variables is given below. These variable index-numbers are not
only used for the rtp and rtpa arrays, but also for some arrays of variable associated options (for
instance, blencv(ik) is the percentage of second-order convective scheme for the turbulent energy
when a corresponding turbulent model is used).

e ipr: pressure 10,

10ipr corresponds to a reduced pressure, from which the standard hydrostatic pressure has be deduced. The total
pressure is stored in the PROPCE array
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e iu: velocity along the X axis.

e iv: velocity along the Y axis.

e iw: velocity along the Z axis.

e ik: turbulent energy, in k — €, kK — w modeling or v2f (¢-model) modeling.
e ir11: Reynolds stress R11, in R;; — ¢ or SSG modeling.

e ir22: Reynolds stress R22, in R;; — € or SSG modeling.

e ir33: Reynolds stress R33, in R;; — € modeling.

e ir12: Reynolds stress R12, in R;; — € modeling.

e ir13: Reynolds stress R13, in R;; — € modeling.

e ir23: Reynolds stress R23, in R;; — € modeling.

e iep: turbulent dissipation in k — ¢, R;; — € or v2f (p-model) modeling.
e iomg: Specific dissipation rate w, in k — w SST modeling.

e iphi: variable ¢ = v2/k in v2f (p-model).

e ifb: variable f in v2f ((-model).

e isca(j): scalar j(1<j<nscal).

Concerning the solved scalar variables (apart from the variables pressure, k, €, R;j, w, ¢, f), the
following are highly important:

- The designation “scalar” refers to scalar variables which are solution of an advection equation,
apart from the variables of the turbulence model (k, ¢, R;;, w, ¢, f): for instance the tempera-
ture, scalars which may be passive or not, “user” or not. The mean value of the square of the
fluctuations of a “scalar” is a “scalar”, too. The scalars may be divided into two groups: nscaus
“user” scalars and nscapp “specific physics” scalars, with nscal=nscaus+nscapp. nscal must

be inferior or equal to nscamx.

- The j* user scalar is, in the whole list of the nscal scalars, the scalar number j. In the list of
the nvar solved variables, it corresponds to the variable number isca(j), its value in the cell
iel at the current time step is given by rtp(iel,isca(j)).

- The j*" scalar related to a specific physics is, in the whole list of the nscal scalars, the
scalar number iscapp(j). In the list of the nvar solved variables, it corresponds to the vari-
able number isca(iscapp(j)), its value in the cell iel at the current time step is given by
rtp(iel,isca(iscapp(j))).

- The temperature (or the enthalpy) is the scalar number iscalt in the list of the nscal scalars. It
corresponds to the variable number isca(iscalt) and its value in the cell iel isrtp(iel,isca(iscalt)).
if there is no thermal scalar, iscalt is equal to -1.

- A “user” scalar number j may represent the average of the square of the fluctuations of a scalar
k (i.e. the average ¢'¢’ for a fluctuating scalar ¢ ). This can be made either via the interface or
by indicating iscavr(j)=k in cs_user _parameters.f90 (if the scalar in question is not a “user”
scalar, the selection is made automatically). For instance, if j and k are “user” scalars, the
variable ¢ corresponding to k is the variable number isca(k)=isca(iscavr(j)), and its value
in the cell iel is
rtp(iel,isca(k))=rtp(iel,isca(iscavr(j))).
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The variable corresponding to the mean value of the square of the fluctuations!'! is the variable
number isca(j) and its value in the cell iel is rtp(iel,isca(j)).

About propce, propfa and propfb In Code_Saturne, the physical properties'? are stored in the propce,
propfa and propfb arrays. Some properties, like the density, are only stored for cells and boundary
faces. Some, like the mass flux, are only stored at the interior and boundary faces. To avoid having
different index numbers for a physical property, depending on the array it is used in, the following
structure is used in Code_Saturne:

- All the properties (used or not) have a unique and distinct index-number, given automatically
by the code and stored in an integer or an integer array (its size may be the maximum number
of scalars or the maximum number of variables).

- The indexes referring to the different properties stored in the propxx arrays are given respectively
by the following integer arrays:

ipproc(npromx) [ia]: Rank i in propce(.,i) of the properties defined at the cell centers.
ipprof (npromx) [ia]: Rank i in propfa(.,i) of the properties defined at the internal faces.
ipprob(npromx) [ia]: Rank i in propfb(.,i) of the properties defined at the boundary faces.

For instance, the index number corresponding to the density is irom.

In the list of the properties defined at the cell center, the density is therefore the ipproc(irom)*®
property: its value at the center of the cell iel is given by

propce(iel,ipproc(irom)).

In the same way, in the list of the properties defined at the boundary faces, the density is the
ipprob(irom))*" property: its value at the boundary face is given by

propfb(iel,ipprob(irom))

The list of properties accessible in the PROPxx arrays is given below (this does not include the
properties linked to the specific physics modules):

irom [ia]: Property number corresponding to the density (i.e. p in kg.m=3)
stored at the cells and the boundary faces.

iroma [ia]: Property number corresponding to the density (i.e. p in kg.m~3) at the previous time
step, in the case of a second-order extrapolation in time
stored at the cells and the boundary faces.

iviscl [ia]: Property number corresponding to the fluid molecular dynamic viscosity (i.e. p in
kg.m~1.s71)
stored at the cells.

ivisla [ia]: Property number corresponding to the fluid molecular dynamic viscosity (i.e. p in
kg.m~1.s71) at the previous time step, in the case of a second-order extrapolation in time
stored at the cells.

ivisct [ia]: Property number corresponding to the fluid turbulent dynamic viscosity (i.e. p; in
kgm~t.s71)
stored at the cells.

ivista [ia]: Property number corresponding to the fluid turbulent dynamic viscosity (i.e. p; in
kg.m~1.s7!) at the previous time step, in the case of a second-order extrapolation in time
stored at the cells.

it is really ¢’¢’, and not /o'’
2other variables are stored in the arrays propce, propfa and propfb. They are not “physical properties” strictly
speaking, but it is convenient to have them in the same array as the proper physical properties
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icp [ia]: Property number corresponding to the specific heat, in case where it is variable (i.e. C) in
m?2.s72.K~1). See note below
stored at the cells.

icpa [ia]: Property number corresponding to the specific heat, in case where it is variable (i.e. C) in
m?2.s72. K1), at the previous time step, in the case of a second-order extrapolation in time.
See note below
stored at the cells.

itsnsa [ia]: In the case of a calculation run with a second-order discretisation in time with extrapola-
tion of the source terms, property number corresponding to the source term of Navier-Stokes
at the previous time step (kg.m~1.s72)
stored at the cells.

itstua [ia]: In the case of a calculation run with a second-order discretisation in time with ex-
trapolation of the source terms, property number corresponding to the source terms of the
turbulence at the previous time step
stored at the cells.

itssca [ia]: In the case of a calculation run with a second-order discretisation in time with extrapola-
tion of the source terms, property number corresponding to the source terms of the equations
solved for the scalars at the previous time step (kg.m='.s72)
stored at the cells.

iestim(nestmx) [ia]: Property number for the nestmx error estimators for Navier-Stokes. The esti-
mators currently available are iestim(iespre),
iestim(iesder), iestim(iescor), iestim(iestot) stored at the cells.

ifluma(nvarmx) [ia]: Property number corresponding to the mass flow associated with each variable
(i.e. for each face of surface S, pu.S in kg.s‘l). It must be noticed that the mass flows are
associated with the variables, which allows to have a distinct convective flow for each scalar.
stored at the internal faces and boundary faces.

ifluaa(nvarmx) [ia]: Property number corresponding to the mass flow associated with each variable
at the previous time step, in the case of a second-order extrapolation in time
stored at the internal faces and boundary faces.

ivisls(nscamx) [ia]: Property number corresponding to the diffusivity of scalars for which it is

variable (i.e.c— for the temperature, in kg.m~1.s71). It must be noticed that the diffusivity
P

is associated with the scalars rather than with the variables. See note below

stored at the cells.

ivissa(nscamx) [ia]: Property number corresponding to the diffusivity of scalars for which it is

A
variable (i.e.— for the temperature, in kg.m~1.s71) at the previous time step, in the case

Cp
of a second-order extrapolation in time
stored at the cells.

ismago [i]: Property number corresponding to the variable C of the dynamic model, i.e so that

pe = pC’Z2 25,7S;; (with the notations of [3]). C corresponds to C? in the classical model
of Smagorinsky
stored at the cells.

icour [i]: CFL number in each cell at the present time step
stored at the cells.

ifour [i|: Fourier number in each cell at the present time step
stored at the cells.

iprtot [i]: Total pressure in each cell
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stored at the cells.

ivisma(l or 3) [ia]: When the ALE method for deformable meshes is activated, ivisma corresponds
to the “mesh viscosity”, allowing to limit the deformation in certain areas. This mesh
viscosity can be isotropic or be taken as a diagonal tensor (depending on the value of the
parameter iortvm.
stored at the cells.

icmome (nbmomx) [ia]: Property number corresponding to the time averages defined by the user. More
precisely, it is not the time average that is stored, but a summation over time (the division
by the cumulated duration is done just before the results are written)
stored at the cells.

icdtmo (nbmomx) [ia]: Property number corresponding to the cumulated duration associated with
each time average defined by the user, when this duration is not spatially uniform (see note
below)
stored at the cells.

NOTE: VARIABLE PHYSICAL PROPERTIES

Some physical properties such as specific heat or diffusivity are often constant (choice made by the
user). In that case, in order to limit the necessary memory, these properties are stored as a simple real
number rather than in a domain-sized array of reals.

o It is the case for the specific heat Cp.

- If C}, is constant, it can be specified in the interface or by indicating icp=0 in cs_user_parameters.£f90,

and the property will be stored in the real number cpO.

- If C, is variable, it can be specified in the interface or by indicating icp=1in cs_user_parameters.f90.

The code will then modify this value to make icp refer to the effective property number cor-
responding to the specific heat, in a way which is transparent for the user. For each cell iel,
the value of C), is then given in usphyv and stored in the array propce(iel,ipproc(icp)).

e It is the same for the diffusivity K of each scalar iscal.

- If k£ is constant, it can be specified in the interface or by indicating ivisls(iscal)=0 in
cs_user_parameters.f90, and the property will be stored in the real number visls0(iscal).

- If k is variable, it can be specified in the interface or by indicating ivisls(iscal)=1 in
cs_user_parameters.f90. The code will then modify this value to make ivisls(iscal)
refer to the effective property number corresponding to the diffusivity of the scalar iscal,
in a way which is transparent for the user. For each cell iel, the value of k is then given in
usphyv and stored in the propce(iel,ipproc(ivisls(iscal))) array.

NOTE: CUMULATED DURATION ASSOCIATED WITH THE AVERAGES DEFINED BY THE USER

The cumulated duration associated with the calculation of a time averages defined by the user is often
a spatially uniform value. In this case, it is stored in a simple real number: for the mean value imom,
it is the real number dtcmom(-idtmom(imom)) (idtmom(imom) is negative in this case).

When this cumulated duration is not spatially uniform (for instance in the case of a spatially variable
time step), it is stored in propce. It must be noted that the cumulated duration associated with the
calculation of the average imom is variable in space if idtmom(imom) is strictly positive. The number
of the associated property in propce is then icdtmo(idtmom(imom)). For instance, for the average
imom, the cumulated duration in the cell iel will be propce(iel,icdtmo(idtmom(imom))).

The user may have a look to the example given in usproj to know how to calculate a time averages
in a particular cases (printing of extreme values, writing of results, ...).

Two other variables, hbord and tbord, should be noted here, although they are relatively local (they
appear only in the treatment of the boundary conditions) and are used only by developers.
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hbord(nfabor) [ral]: Array of the exchange coefficient for temperature (or enthalpy) at the boundary
faces. The table is allocated only if isvhb is set to 1 in tridim, which is done automatically,
but only if the coupling with SYRTHES or the 1D thermal wall module are activated..

tbord(nfabor) [ra]: Temperature (or enthalpy) at the boundary faces'®. The table is allocated only
if isvtb is set to 1 in tridim, which is done automatically but only if the coupling with
SYRTHES or the 1D thermal wall module are activated..

Tables hbord and tbord are of size nfabor, although they concern only the wall boundary faces.

3.9.2.4 Variables related to the numerical methods

» 14

The main numerical variables and “pointers”* are displayed below.

BOUNDARY CONDITIONS

coefa(nfabor,*) [ra]: Boundary conditions: see note 2.
coefb(nfabor,*) [ra: Boundary conditions: see note 2.

iclrtp(nvarmx,?2) [ia]: For each variable ivar (1<ivar<nvar<nvarmx), rank in coefa and coefb of
the boundary conditions. See note 2.

icoef [i]: Rank in iclrtp of the rank in coefa and coefb of the “standard” boundary conditions.
See note 2.

icoeff [i]: Rank in iclrtp of the rank in coefa and coefb of the “flow” type boundary conditions,
reserved for developers. See note 2.

ifmfbr (nfabor) [ia]: Family number of the boundary faces. See note 1.
iprfml(nfml,nprfml) [ia]: Properties of the families of referenced entities. See note 1.

iisymp [i]: Integer giving the rank in ia of the first element of the section allowing to mark out
the “wall” (itypfb=iparoi or iparug) or “symmetry” (itypfb=isymet) boundary faces in
order to prevent the mass flow (these faces are impermeable). For instance, if the face ifac
is a wall or symmetry face, ia(iismph+ifac-1)=0 (with iismph=iisymp+nfabor).
Otherwise ia(iisymp+ifac-1)=1.
In some subroutines, an array called isympa(nfabor) allows to simplify the coding with
isympa(ifac)=ia(iismph+ifac-1).

itrifb(nfabor) [ia]: Indirection array allowing to sort the boundary faces according to their bound-
ary condition type itypfb.

itypfb(nfabor) [ia]: Boundary condition type at the boundary face ifac (see user subroutine
cs_user_boundary_conditions).

uetbor (nfabor) [ra]: Friction velocity at the wall, in the case of a LES calculation with van Driest-
wall damping.

DISTANCE TO THE WALL

ifapat(ncelet) [ra]: Number of the wall face(type itypfb=iparoi or iparug) which is closest to
the center of a given volume when necessary (R;; —e with wall echo, LES with van Driest-wall

131t is the physical temeprature at the boundary faces, not the boundary condition for temperature. See [11] for more
details on boundary conditions

14 As for the geometrical variables, some variables may be accessed to directly in sections of the unidimensional macro-
array ra (for the real numbers) which is present as an argument to many subroutines. The number of the first position
of these sections in ra is indicated by an integer stored in a the pointe Fortran module. These integers are referred to
as “pointers”
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damping, or SST k — w turbulence model) and when icdpar=2. The number of the wall face
which is the closest to the center of the cell iel is ifapat(iell). This calculation method
is not compatible with parallelism and periodicity.

dispar (ncelet) [ra]: Distance between the center of a given volume and the closest wall, when it is
necessary (R;; —e with wall echo, LES with van Driest-wall damping, or SST k—w turbulence
model) and when icdpar=1. The distance between the center of the cell iel and the closest
wall is dispar(iel).

yplpar [ra]: Adimensional distance y between a given volume and the closest wall, when it is nec-
essary (LES with van Driest-wall damping) and when icdpar=1. The adimensional distance
yT between the center of the cell iel and the closest wall is therefore yplpar(iell).

PRESSURE DROPS

icepdc(ncepdc) [ia]: Number of the ncepdc cells in which a pressure drop is imposed. See iicepd
and the user subroutine uskpdc.

ckupdc(ncepdc,6) [ra]: Value of the coefficients of the pressure drop tensor of the ncepdc cells in
which a pressure drop is imposed. See ickpdc and the user subroutine uskpdc.

ncepdc [ia]: Number of cells in which a pressure drop is imposed. See the user subroutine uskpdc.
MASS SOURCES

icetsm(ncetsm) [ia]: Number of the ncetsm cells in which a mass source term is imposed. See
iicesm and the user subroutine ustsma.

itypsm(ncetsm,nvar) [ia]: Type of mass source term for each variable (0 for an injection at ambient
value, 1 for an injection at imposed value). See the user subroutine ustsma.

ncetsm [i]: Number of cells with mass sources. See the user subroutine ustsma.

smacel (ncetsm,nvar) [ra]: Value of the mass source term for pressure. For the other variables,
eventual imposed injection value. See the user subroutine ustsma.

WALL 1D THERMAL MODULE

nfptid [i]: Number of boundary faces which are coupled with a wall 1D thermal module. See the
user subroutine usptid.

ifptid [ia]: Array allowing to mark out the numbers of the nfptid boundary faces which are cou-
pled with a wall 1D thermal module. The numbers of these boundary faces are given by
ifpt1d(ii), with 1<ii<nfptld. See the user subroutine usptid.

npptid [ia]: Number of discretisation cells in the 1D wall for the nfptid boundary faces which are
coupled with a wall 1D thermal module. The number of cells for these boundary faces is
given by nppt1d(ii), with 1<ii<nfptld. See the user subroutine usptid.

epptid [ia]: Thickness of the 1D wall for the nfptid boundary faces which are coupled with a
wall 1D thermal module. The wall thickness for these boundary faces is therefore given by
eppt1d(ii), with 1<ii<nfptid. See the user subroutine usptid.

OTHERS

dt(ncelet) [ral: Value of the time step.
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ifmcel(ncelet) [ia]: Family number of the elements. See note 1.

s2kw(ncelet) [ra]: Square of the norm of the deformation rate tensor. In the cell iel, S$? = 25;;5,;
is given by ra(is2kw+iel-1). This array is defined only with the SST k — w turbulence
model.

divukw [ia]: Divergence of the velocity. In the cell iel, div(u) is given by divukw(iell). This array
is defined only with the SST k—w turbulence model (because in this case it may be calculated
at the same time as S?).

ngrmmx [i]: upper limit of the number of grid levels when using the multigrid solver (see ngrmax).

ra(ifinra) [ra]: Real work array.

NOTE: BOUNDARY CONDITIONS

The boundary conditions in Code_Saturne boil down to determine a value for the current variable ¢ at
the boundary faces, that is to say ¢y, value expressed as a function of ¢/, value of ¢ in I, projection
of the center of the adjacent cell on the straight line perpendicular to the boundary face and crossing
its center: ¢y = Ay 5+ By sér .

For a face ifac, the pair of coefficients Ay ¢, By r is stored in coefa(ifac,iclvar) and coefb(ifac,iclvar),
where the integer iclvar=iclrtp(ivar,ijcl) determines the rank in coefa and coefb of the set of
boundary conditions of the variable ivar.

The second index of the array iclrtp allows to have several sets of boundary conditions for each
variable. The “standard” boundary conditions are determined by ijcl=icoef, where icoef is a pa-
rameter which is fixed automatically by the code, and can be accessed to in the “module” numvar.
More specificic or advanced boundary conditions can be accessed to with ijcl=icoeff.

In practice, for a variable ivar whose value ¢/ in a boundary cell is known, the value at the corre-
sponding boundary face ifac is:

¢pr=coefa(ifac,iclvar)+coefb(ifac,iclvar) ¢, with iclvar=iclrtp(ivar,icoef)

3.9.2.5 User arrays

Modules containing user arrays accessible from all user subroutines may be defined in the user modules.f90
file. This file is compiled before any other Fortran user file, to ensure modules may be acessed in other
user subroutines using the use <module> construct.

3.9.2.6 Parallelism and periodicity

Parallelism is based on domain partitioning: each processor is assigned a part of the domain, and
data for cells on parallel boundaries is duplicated on neigboring processors in corresponding “ghost”,
or “halo” cells (both terms are used interchangeably). Values in these cells may be accessed just the
same as values in regular cells. Communication is only required when cell values are modified using
values from neighboring cells, as the values in the “halo” can not be computed correctly (since the
halo does not have access to all its neighbors), so halo values must be updated by copying values from
the corresponding cells on the neighboring processor.

Compared to other tools using a similar system, a specificity of Code_Saturne is the separation of the
halo in two parts: a standard part, containing cells shared through faces on parallel boundaries, and an
extended part, containing cells shared through vertices, which is used mainly for least squares gradient
reconstruction using an extended neighborhood. Most updates need only operate on the standard
halo, requiring less data communication than those on the extended halos.

Periodicity is handled using the same halo structures as parallelism, with an additional treatment for
vector and coordinate values: updating coordinates requires applying the periodic transformation to
the copied values, and in the case of rotation, updating vector and tensor values also requires appying
the rotation transformation. Ghost cells may be parallel, periodic, or both. The example of a pump
combining parallelism and periodicity is given figure 5. In this example, all periodic boundaries match
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Domain A ! E Domain B Domain A Domain B

Figure 4: Parallel domain partitioning: halos

with boundaries on the same domain, so halos are either parallel or periodic.

o
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Figure 5: Combined parallelism and periodicity

Activation

Parallism is activated by means GUI or of the launch scripts in the standard cases:

e On clusters with batch systems, the launching of a parallel run requires to complete the batch
cards located in the beginning of runcase or runcase_batch script, and set the number of MPI
processes, or the numbers of physical nodes and processors per node (ppn) wanted. This can be
done through the Graphical Interface or by editing the runcase or runcase_batch file directly.
The number of processors defined here will override the number defined through the GUI in a
non-batch environment (so that studies defined on one environment may be migrated to larger
compute resources easily), but it may be overriden by the

e define_case_parameters function from the cs_user_scripts.py file, or by setting the n_procs_weight,
n_procs_min, and n_procs_max parameters for the different domains defined in runcase_coupling.

e On clusters with unsupported batch systems, runcase file may have to be modified manually.
Please do not hesitate to contact the Code_Saturne support (saturne-support@edf.fr) so that these
modifications can be added to the standard launch script to make it more general.

e A parallel calculation may be stopped in the same manner as a sequential one using a ficstp
file (see praragraph 3.2.4).

e The standard pieces of information displayed in the listing (marked out with *v * for the min/-
max values of the variables), >c ’ for the data concerning the convergence and ’a ’ for the
values before clipping) are global values for the whole domain and not related to each processor.

User subroutines

The user can check in a subroutine

- that the presence of periodicity is tested with the variable iperio (=1 if periodicity is activated);
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- that the presence of rotation periodicities is tested with the variable iperot (number of rotation
periodicities);

- that running of a calculation in parallel is tested for with the variable irangp (irangp is worth
-1 in the case of a non-parallel calculation and p — 1 in the case of a parallel calculation, p being
the number of the current processor)

Attention must be paid to the coding of the user subroutines. If conventionnal subroutines like
cs_user_parameters.f90 or cs_user_boundary_conditions usually do not cause any problem, some
kind of developments are more complicated. The most usual cases are dealt with below.

Examples are given in the subroutine usproj.

e Access to information related to neighboring cells in parallel and periodic cases.
When periodicity or parallelism are brought into use, some cells of the mesh become physically
distant from their neighbors. Concerning parallelism, the calculation domain is split and dis-
tributed between the processors: a cell located at the “boundary” of a given processor may have
neighbors on different processors.

In the same way, in case of periodicity, the neighboring cells of cells adjacent to a periodic face
are generally distant.

When data concerning neighboring cells are required for the calculation, they must first be
searched on the other processors or on the other edge of periodic frontiers. In order to ease the
manipulation of these data, they are stored temporarily in virtual cells called “halo” cells, as
can be seen in figure 4. It is in particular the case when the following operations are made on a
variable A:

- calculation of the gradient of A (use of grdcel);

- calculation of an internal face value from the values of A in the neighboring cells (use of
ifacel).

The variable A needs to be exchanged before these operations can be made: to allow it, the
subroutines parcom and percom need to be called in this order.

e Global operations in parallel mode.
In parallel mode, the user must pay attention during the realisation of global operations. The
following list is not exhaustive:

- calculation of extreme values on the domain (for instance, minimum and maximum of some
calculation values);

- test of the existence of a certain value (for instance, do faces of a certain color exist ?);

- verification of a condition on the domain (for instance, is a given flow value reached some-
where 7);

- counting out of entities (for instance, how many cells have pressure drops ?);

- global sum (for instance, calculation of a mass flow or the total mass of a pollutant).

The user may refer to the different examples present in the user subroutine usproj.

Care should be taken with the fact that the boundaries between subdomains consist of internal
faces shared between two processors (these are indeed internal faces, even if they are located
at a “processor boundary”). They should not be counted twice (once per processor) during
global operations using internal faces (for instance, counting the internal faces per processor and
summing all the obtained numbers drives into overevaluing the number of internal faces of the
initial mesh).

e Writing; operations that should be made on one processor only in parallel mode.
In parallel mode, the user must pay attention during the writing of pieces of information. Writing
to the “listing” can be done simply by using the nfecra logical unit (each processor will write
to its own “listing” file): use write(nfecra,. ...
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If the user wants an operation to be done by only one processor (for example, open or write a file),
the associated instructions must be included inside a test on the value of irangp (generally it is
the processor 0 which realises these actions, and we want the subroutine to work in non-parallel
mode, too: if (irangp.le.0) then ...).

Some notes about periodicity

Note that periodic faces are not part of the domain boundary: periodicity is interpreted as a “geomet-
ric” condition rather than a classical boundary condition.

Some particular points should be reminded:
- Periodicity can also work when the periodic boundaries are meshed differently (periodicity of non-

conforming faces), apart from the case of a 180 degree rotation periodicity with faces coupled on
the rotation axis.

- rotation periodicity is incompatible with
- semi-transparent radiation,
- reinforced velocity-pressure coupling (ipucou=1).

- although it has not been the case so far, potential problems might be met in the case of rotation
periodicity with the LRR R;; — € model. They would come from the way of taking into account
the orthotropic viscosity (however, this term usually has a low influence).

3.9.2.7 Geometry and particule arrays related to Lagrangian modeling

In this section is given a non-exhaustive list of the main variables which may be seen by the user
in the Lagrangian module. Most of them should not be modified by the user. They are calculated
automatically from the data. However it may be useful to know their meaning.

These variables are listed in the alphabetical index in the end of this document.

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

SiZE OF THE LAGRANGIAN ARRAYS

1ndnod [i]: Size of the array icocel concerning the cells — faces connectivity (the faces — nodes
connectivity needs to be given to allow the construction of this connectivity. See note 3 of
section 3.9.2.1).

nbpmax [i]: Maximum number of particles simultaneously acceptable in the calculation domain.

nvp [i]: Number of variables describing the particles for which a stochastic differential equation (SDE)
is solved.

nvls [i]: Number of variables describing the supplementary user particles for which a SDE is solved.
nvep [i]: Number of real state variables describing the particles.
nivep [i]: Number of integer state variables describing the particles.

ntersl [i|: Number of source terms representing the backward coupling of the dispersed phase on the
continuous phase.

nvlsta [i]: Number of volumetric statistical variables .
nvlsts [i]: Number of supplementary user volumetric statistical variables.

nvisbr [ij: Number of boundary statistical variables.
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nusbor [i]: Number of supplementary user boundary statistical variables.

nvgaus [i]: Number of gaussian random variables.

NOTE: CONTINUOUS EULERIAN PHASE NUMBER
The current version of Lagrangian module is planned to work with only one eulerian phase. This phase
carries inclusions, and source terms of backward coupling are applied to it, if necessary.

LAGRANGIAN ARRAYS

icocel(lndnod) [ia]: Cells rightarrow internal/boundary faces connectivity. The numbers of the
boundary faces are marked out in icocel with a negative sign.

itycel(ncelet+1) [ia]: Array containing the position of the first face surrounding every cell in the
array icocel (see subroutine lagdeb for more details).

ettp(nbpmax,nvp) [ra]: Variables forming the state vector related to the particles: either at the
current stage if the Lagrangian scheme is a second-order, or at the current time step if the
scheme is a first-order. These variables are marked out by “pointers” whose value can vary
between 1 and nvp:

jmp: particle mass

jdp: particle diameter

jxp, jyp, jzp: particle coordinates

jup, jvp, jwp: particle velocity components

juf, jvf, jwf: locally undisturbed fluid flow velocity components
jtp, jtf: particle and locally undisturbed fluid flow temperature (°C)
jcp: particle specific heat

jhp: coal particle temperature (°C)

jmch: mass of reactive coal of the coal particle

jmck: mass of coke of the coal particle

N

jvls(ii): iith supplementary user variable

ettpa(nbpmax,nvp) [ral]: Variables forming the state vector related to the particles: either at the
previous stage if the Lagrangian scheme is a second-order, or at the previous time step if the
Lagrangian scheme is a first-order.

itepa(nbpmax,nivep) [ia]: Integer state variables related to the particles. They are marked out by
the following “pointers”:
— jisor: Number of the current cell containing the particle; this number is reactualised during the
trajectography step

— jinch: Number of the coal particle

tepa(nbpmax,nvep) [ra]: Real state variables related to the particles. They are marked out by the
following “pointers”:
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— jrtsp: particle residence time
— jrpoi: particle statistic weight
— jrdck: coal particle shrinking core diameter
— jrdOp: coal particle initial diameter
— jrrOp: coal particle initial density

indep(nbpmax) [ia]: Storage of the cell number of every particle at the beginning of a Lagrangian
iteration; this data is not modified during the iteration.

vitpar (nbpmax,3) [ra]: At the beginning of the trajectography, vitpar contains the particle velocity
vector components; the modifications of the particle velocity following every particle/bound-
ary interaction are saved in this array; after the trajectography and backward coupling steps,
ettp is updated with vitpar.

vitflu(nbpmax,3) [ra]: At the beginning of the trajectography, vitflu contains the locally undis-
turbed fluid flow velocity vector components; the modifications of the locally undisturbed
fluid flow velocity following every particle/boundary interaction are saved in this array; after
the trajectography and backward coupling steps, ettp is updated with vitflu.

gradpr (ncelet,3) [ral: Pressure gradient of the continuous phase.

gradvf (ncelet,9) [ral: Gradient of the continuous phase fluid velocity (useful if the complete model
is activated: see modcpl).

cpgdl (nbpmax) [ra]: First devolatilisation term (light volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpgd2 (nbpmax) [ra]: Second devolatilisation term (heavy volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpght (nbpmax) [ra]: Heterogeneous combustion term of the coal particles (useful in the case of back-
ward coupling on the continuous phase).

statis(ncelet,nvlsta) [ra]: Volumetric statistics related to the dispersed phase; these statistics
are the kind of results expected with the Lagrangian module. It is from these statistics that
we obtain information concerning the particle cloud (the particle trajectories should only be
observed on “pedagogical” account); they are marked out by the following “pointers”:

ilvx,ilvy,ilvz: mean dispersed phase velocity
ilvx2,ilvy2,ilvz2: dispersed phase velocity standard deviation
ilfv: dispersed phase volumetric concentration

ilpd: sum of the statistical weights

iltp: dispersed phase temperature (°C)

ildp: dispersed phase mean diameter

ilmp: dispersed phase mean mass

ilhp: temperature of the coal particle cloud (°C)

ilmch: mass of reactive coal of the coal particle cloud

N A A

ilmck: mass of coke of the coal particle cloud
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— ilmdk: shrinking core diameter of the coal particle cloud

— ilvu(ii): iith supplementary user volumetric statistics

parbor (nfabor,nvisbr) [ra]: Boundary statistics related the dispersed phase; after every parti-
cle/boundary interaction it is possible to save some data and to calculate averages; the
boundary statistics are marked out by the following “pointers”:

inbr: number of particle/boundary interactions

iflm: particle mass flow at the boundary faces

iang: mean interaction angle with the boundary faces (see example in uslabo)
ivit: mean interaction velocity with the boundary faces

ienc: mass of coal deposit at the walls

N

iusb(ii): iith supplementary user boundary statistics

tslagr(ncelet,ntersl) [ral: Source terms corresponding to the backward coupling of the dispersed
phase on the continuous phase. These source terms are marked out by the following “point-

7

ers”:

— itsvx, itsvy, itsvz: explicit source terms for the continuous phase velocity

— itsli: implicit source term for the continuous phase velocity and for the turbulent energy if the
k — e model is used

— itske: explicit source term for the turbulent dissipation and the turbulent energy if the k — ¢
turbulence model is used for the continuous phase

— itsrll,... itsr33: source terms for the Reynolds stress and the turbulent dissipation if the
R;; — € turbulence model is used for the continuous phase

— itsmas: mass source term

— itste, itsti: explicit and implicit thermal source terms for the thermal scalar of the continuous
phase

— itsmvl(icha), itsmv2(icha): source terms respectively for the light and heavy volatile matters
— itsco: source term for the carbon released during heterogeneous combustion

— itsf: source term for the air variance (not used at the present time)

croule(ncelet) [ral: Importance function for the technique of variance reduction (cloning/fusion of
particles).

vagaus (nbpmax ,nvgaus) [ra]: Vectors of gaussian random variables.

auxl (nbpmax,3) [ra]: Auxiliary work array.
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3.9.2.8 Variables saved to allow calculation restarts

The

directory checkpoint contains:

- main: main restart file,

- auxiliary: auxiliary restart file (see ileaux, iecaux),

- radiative_transfer: restart file for the radiation module,

- lagrangian: main restart file for the Lagrangian module,

- lagrangian_stats: auxiliary restart file for the Lagrangian module (mainly for the statistics),

- 1dwall_module: restart file for the 1D wall thermal module,

- vortex: restart file for the vortex method (see ivrtex).

The

main restart file contains the values in every cell of the mesh for pressure, velocity, turbulence

variables and scalars. Its content is sufficient for a calculation restart, but the complete continuity of

the
The

solution at restart is not ensured!®.

auxiliary restart file completes the main restart file to ensure solution continuity in the case of a

calculation restart. If the code cannot find one or several pieces of data required for the calculation
restart in the auxiliary restart file, default values are then used. This allows in particular to run
calculation restarts even if the number of faces has been modified (for instance in case of modification
of the mesh merging or of periodicity conditions!®). More precisely, the auxiliary restart file contains

the

following data:

- type and value of the time step, turbulence model,

- density value at the cells and boundary faces, if it is variable,

- values at the cells of the other variable physical properties, when they are extrapolated in time

(molecular dynamic viscosity, turbulent or subgrid scale viscosity, specific heat, scalar diffusivi-
ties); for the Joule effect, the specific heat is stored automatically (in case the user should need it
at restart to calculate the temperature from the enthalpy before the new specific heat has been
estimated),

- time step value at the cells, if it is variable,

- mass flow value at the internal and boundary faces (at the last time step, and also at the previous

time step if required by the time scheme),

- boundary conditions,

- values at the cells of the source terms when they are extrapolated in time,

- number of time-averages, and values at the cells of the associated cumulated values,

- for each cell, distance to the wall when it is required (and index-number of the nearest boundary

face, depending on icdpar),

- values at the cells of the external forces in balance with a part of the pressure (hydrostatic, in

general),

- for the D3P gas combustion model: massic enthalpies and temperatures at entry, type of bound-

ary zones and entry indicators,

155

n other words, a restart calculation of n time steps following a calculation of m time steps will not yield strictly the

same resluts as a direct calculation on m+n time steps, whereas it is the case when the auxiliary file is used

165

mposing a periodicity changes boundary faces into internal faces
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- for the EBU gas combustion model: temperature of the fresh gas, constant mixing rate (for the
models without mixing rate transport), types of boundary zones, entry indicators, temperatures
and mixing rates at entry,

- for the LWC gas combustion model: the boundaries of the probability density functions for
enthalpy and mixing rate, types of boundary zones, entry indicators, temperatures and mixing
rates at entry,

- for the pulverised coal combustion: coal density, types of boundary zones, variables ientat,
ientcp, timpat, x20 (in case of coupling with the Lagrangian module, iencp and x20 are not
saved),

- for the electric module: the tuned potential difference dpot and, for the electric arc module, the
tuning coefficient coejou (when the boundary conditions are tuned), the Joule source term for
the enthalpy (with the Joule effect is activated) and the Laplace forces (with the electric arc
module).

It should be noted that, if the auxiliary restart file is read, it is possible to run calculation restarts
with relaxation of the density'”(when it is variable), because this variable is stored in the restart file.
On the other hand, it is generally not possible to do the same with the other physical properties (they
are stored in the restart file only when they are extrapolated in time, or with the Joule effect for the
specific heat).

Apart from vortex which has a different structure and is always in text format, all the restart files
are binary files. Nonetheless, they may be dumped or compared using the cs_io_dump tool.

In the case of parallel calculations, it should be noted that all the processors will write their restart
data in the same files. Hence, for instance, there will always be one and only one main file, whatever
the number of processors used. The data in the file are written according to the initial full domain
ids for the cells, faces and nodes. This allows in particular to restart using p processors a calculation
begun with n processors, or to make the restart files independent of any mesh renumbering that may
be carried out in each domain.

WARNING: if the mesh is composed of several files, the order in which they appear in the launch script
or in the Graphical Interface must not be modified in case of a calculation restart'®.

NOTE: when joining of faces or periodicity is used, two nodes closer than a certain (small) tolerance
will be merged. Hence, due to numerical round-up errors, two different machines may yield differ-
ent results. This might change the number of faces in the global domain'® and make restart files
incompatible. Should that problem arise when making a calculation restart on a different architec-
ture, the solution is to ignore the auziliary file and use only the main file, by setting ileauz = 0 in
cs_user_parameters. f90

3.9.3 Using selection criteria in user subroutines

In order to use selection criteria (cf. §3.10) in Fortran user subroutines, a collection of utility subrou-
tines is provided. The aim is to define a subset of the mesh, for example:

- boundary regions (cf. cs_user_boundary_conditions, uscpcl, usray2, uslag?2,...),

- volumic initialization (cf. cs_user_initialization,...),

- head-loss region (cf. uskpdc),

- source terms region (cf. ustsns, ustssc),

7such a relaxation only makes sense for a stationary calculation

18when uncertain, the user can check the saved copy of the launch script in the RESU directory, or the head of the
preprocessor*.log files, which repeat the command lines passed to the Preprocessor module

9the number of cells will not be modified, it is always the sum of the number of cells of the different meshes
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- advanced post-processing (cf. usdpst), usproj, ...),

This section explains how to define surface or volume sections, in the form of lists 1stelt of nlelt
elements (internal faces, boundary faces or cells). For each type of element, the user calls the appro-
priate Fortran subroutine: getfbr for boundary faces, getfac for internal faces and getcel for cells.
All of these take the three following arguments:

- the character string which contains the selection criterion (see some examples below),
- the returned number of elements nlelt,

- the returned list of elements 1stelt.
Several examples of possible selections are given here:

- call getfbr(’Face_1, Face_2’, nlelt, lstelt) to select boundary faces in groups Face_1
or Face_2,

- call getfac(’4’, nlelt, lstelt) to select internal faces of color 4,

- call getfac(’not(4)’, nlelt, 1lstelt) to select internal faces which have a different color
from 4,

- call getfac(’4 to 8’, nlelt, lstelt) to internal faces with color between 4 and 8 internal
faces,

- call getcel(’1 or 27, nlelt, 1lstelt) to select cells with colors 1 or 2,

- call getfbr(’1 and y > 0’, nlelt, lstelt) to select boundary faces of color 1 which have
the coordinate Y > 0,

- call getfac(’normal[l, 0, O, 0.0001]’, nlelt, lstelt) to select internal faces which have
a normal direction to the vector (1,0,0),

- call getcel(’all[]’, nlelt, lstelt) to select all cells.
The user may then use a loop on the selected elements. For instance, in the subroutine cs_user_boundary_conditions
used to impose boundary conditions, let us consider the boundary faces of color number 2 and which

have the coordinate X <= 0.01 (so that call getfbr(’2 and x <= 0.01’, nlelt,lstelt)); we can
do aloop (do ilelt = 1, nlelt) and obtain ifac = lstelt(ilelt).

NOTE: LEGACY METHOD USING EXPLICIT FAMILIES AND PROPERTIES

The selection method for user subroutines by prior versions of Code_Saturne is still available, though
it may be removed in future versions. This method was better adpated to working with colors than
with groups, and is explained here:

From Code_Saturne’s point of view, all the references to mesh entities (boundary faces and volume
elements) correspond to a number (color number or negative of group number) associated with the
entity. An entity may have several references (for instance, one entity may have one color and belong
to several groups). In Code_Saturne, these references may be designated as “properties”.

The mesh entities are gathered in equivalence classes on the base of their properties. These equivalence
classes are called “families”. All the entities of one family have the same properties. In order to know
the properties (in particular the color) of an entity (a boundary face for example), the user must first
determine the family to which it belongs.

For instance, let’s consider a mesh whose boundary faces have all been given one color (for example
using SIMAIL). The family of the boundary face ifac is ifml=ifmfbr(ifac). The first (and only)
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property of this family is the color icoul, obtained for the face ifac with icoul=iprfml(ifml,1).
In order to know the property number corresponding to a group, the utility function numgrp (nomgrp,
lngnom) (with a name nomgrp of the type characterx and its lenght 1ngnom of the type integer)
may be used.

3.10 Face and cell mesh-defined properties and selection

The mesh entities may be referenced by the user during the mesh creation. These references may then
be used to mark out some mesh entities according to the need (specification of boundary conditions,
pressure drop zones, ...). The references are generally of one of the two following types:

e color. A color is an integer possibly associated with boundary faces and volume elements by
the mesh generator. Depending on the tool, this concept may have different names, which
Code_Saturne interprets as colors. Most tools allow only one color per face or element.

I-deas uses a color number with a default of 7 (green) for elements, be they volume elements
or boundary “surface coating” elements. Color 11 (red) is used for for vertices, but vertex
properties are ignored by Code_Saturne.

SIMAIL uses the equivalent notions of “reference” for element faces, and “subdomain”
for volume elements. By default, element faces are assigned no reference (0), and volume
elements domain 1.

Gmsh uses “physical property” numbers.

EnSight has no similar notion, but if several parts are present in an EnSight 6 file, or
several parts are present and vertex ids are given in an Ensight Gold file, the part number
is interpreted as a color number by the Preprocessor.

The Comet Design (pro-STAR/STAR4) and NUMECA Hex file formats have a CAD section
id that is interpreted as a color number. In the latter case, this notion only applies to faces,
so volume elements are given color.

The MED format allow integer “attributes”, though many tools working with this format
ignore those and only handle groups.

e groups. Named “groups” of mesh entities may also be used with many mesh generators or
formats. In some cases, a given cell or face may belong to multiple groups (as some tools allow
new groups to be defined by boolean operations on existing groups). In Code_Saturne, every
group is assigned a group number (base on alphabetical ordering of groups).

I-deas assigns a group number with each group, but by default, this number is just a
counter. Only the group name is considered by Code_Saturne (so that elements belonging to
two groups with identical names and different numbers are considered as belonging to the
same group).

CGNS allows both for named boundary conditions and mesh sections. If present, boundary
condition names are interpreted as group names, and groups may also be defined based on
element section or zone names using additional Preprocessor options (-grp-cel or -grp-fac
followed by section or zone).

Using the MED format, it is preferable to use “groups” to colors, as many tools ignore the
latter.

Selection criteria may be defined in a similar fashion whether using the GUI or in user subroutines.
Typically, a selection criteria is simply a string containing the required color numbers or group names,
possibly combined using boolean expressions. Simple geometric criteria are also possible.

A few examples are given below:

ENTRY
lor7
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all(]

3.1 >= z >= -2 or not (15 or entry)
range[04, 13, attribute]
sphere[0, O, O, 2] and (not no_groupl[])

Strings such as group names containing whitespace or having names similar to reserved operators may
be protected using “escape characters”.?? More complex examples of strings whith protected strings
are given here:

"First entry" or Wall\ or\ sym
entry or \plane or "noone’s output"

The following operators and syntaxes are allowed (fully capitalized versions of keywords are also al-
lowed, but mixed capitals/lowercase versions are not):

escape characters
protect next character only: \
protect string: ’string’  "string"

basic operators

priority: C

not: not ! I=

and: and & &&

or: or | Il ,
XOr: xor °

general functions

select all: allfl
entities having no group or color: no_group []
select a range of groups or colors: range [ first, last]

range[ first, last, group]
range [ first, last, attribute]

For the range operator, first and last values are inclusive. For attribute (color) numbers, natural
integer value ordering is used, while for group names, alphabetical ordering is used. Note also that in
the bizarre (not recommended) case in which a mesh would contain for example both a color number
15 and a group named “15”, using range[15, 15, group] or range[15, 15, attribute] could be
used to distinguish the two.

Geometric functions are also available. The coordinates considered are those of the cell or face centers.
Normals are of course usable only for face selections, not cell selections.

20Note that for defining a string in Fortran, double quotes are easier to use, as they do not conflict with Fortran’s
single quotes delimiting a string. In C, the converse is true. Also, in C, to define a string such as \plane, the string
\\plane must be used, as the first \ character is used by the compiler itself. Using the GUI, either notation is easy.
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geometric functions
face normals:

plane, ax + by 4+ cz +d = 0 form:

plane, normal + point in plane form:

box, extents form:
box, origin + axes form:

cylinder:
sphere:
inequalities:

normallz, y, z, epsilon]
normal[z, y, z, epsilon = epsilon]
planela, b, ¢, d, epsilon]
planela, b, ¢, d, epsilon = epsilon]
planela, b, ¢, d, inside]
planela, b, ¢, d, outsidel
planelng, ny, n., =, y, 2, epsilon]
planelng;, ny, n., =, y, 2, epsilon = epsilon]
planelng, ny, n., =, y, 2, insidel
plane[ng;, ny, n., v, y, z, outside]
box[xmin, Ymins Zmins LTmazs> Ymax> Zmax]
box[zg, Yo, 20,
dIl, dyl, le, d:ZEQ, dyg, dZQ, deg, dyg, ng]
planela, b, ¢, d, epsilon = epsilon]
planela, b, ¢, d, inside]
planela, b, ¢, d, outsidel
cylinder([zg, yo, 20, T1, Y1, 21, radius]
spherel[z., Y., 2., radius]
>, <, >=, <= associated with x, y, z or X, Y, Z keywords

and coordinate value;
Tmin <= X < Tmaez type syntax is allowed.

In the current version of Code_Saturne, all selection criteria used are maintained in a list, so that
re-interpreting a criterion already encountered (such as at the previous time step) is avoided. Lists
of entities corresponding to a criteria containing no geometric functions are also saved in a compact
manner, so re-using a previously used selection should be very fast. For criteria containing geometric
functions, the full list of corresponding entities is not maintained, so each entity must be compared to
the criterion at each time step. Heavy use of many selection criteria containing geometric functions
may thus lead to reduced performance.

4 Importing and Preprocessing Meshes

Importing and preprocessing meshes is done both by the Preprocessor module, which is used to import
meshes, and using preprocessing functions of the code Kernel.

The Preprocessor module of Code_Saturne reads the mesh file(s) (under any supported format) and
translates the necessary information into a Kernel input file.

When multiple meshes are used, the Preprocessor is called once per mesh, and each resulting output
is added in a mesh_input directory (instead of a single mesh_input file).

The executable of the Preprocessor module is cs_preprocess, and the most useful options and sub-
options are described briefly here. To obtain a complete and up-to-date list of options and environment
variables, use the following command: cs_preprocess -h or cs_preprocess --help. Many options,
such as this one, accept a short and a long version.

For the main options, the launch script runcase contains corresponding variables, that are used to
define options for the Preprocessor. This way, the user only has to define these variables and does not
detailed knowledge of the Preprocessor command line.

Nonetheless, it may be useful to call the Preprocessor manually in certain situations, especially for
frequent verification when building a mesh, so its use is described here. Verification may also be done
using the GUI or the mesh quality check mode of the general run script.

The Preprocessor is controlled using command-line arguments. A few environment variables allow an
expert user to modify some behaviors or to obtain a trace of memory management.
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4.1 Preprocessor options

Main choices are done using command-line options. For example:
cs_preprocess --num 2 fluid.med

means that we read the second mesh defined in the fluid.med file, while:
cs_preprocess --no-write --post-volume fluid.med fluid.msh

means that we read file f1luid.msh, and do not produce a mesh_input file, but do output a fluid.med
file (effectively converting a Gmsh file to a MED file).

4.1.1 Mesh selection

Any use of the preprocessor requires one mesh file (except for cs_preprocess and cs_preprocess -h
which respectively print the version number and list of options). This file is selected as the last
argument to cs_preprocess, and its format is usually automatically determined based on its extension
(c.f. 3.4.1 page 18) but a --format option allows forcing the format choice of the selected file.

For formats allowing multiple meshes in a single file, the ——num option followed by a strictly positive
integer allows selection of a specific mesh; by default, the first mesh is selected.

For meshes in CGNS format, we may in addition use the —-grp-cel or --grp-fac options, followed
by the section or zone keywords, to define additional groups of cell or faces based on the organization
of the mesh in sections or zones. The sub-options have no effect on meshes of other formats.

4.1.2 Post-processing output

By default, the Preprocessor does not generate any post-processor output. By adding --post-volume
[format], with the optional format argument being one of ensight, med, or cgns to the command-line
arguments, the output of the volume mesh to the default or indicated format is provoked.

In case of errors, output of error visualization output is always produced, and by adding --post-error
[format], the format of that output may be selected (from one of ensight, med, or cgns, assuming
MED and CGNS are available),

4.1.3 Element orientation correction

We may activate the possible element orientation correction using the --reorient option.

Note that we cannot guarantee correction (or even detection) of a bad orientation in all cases. Not all
local numbering possibilities of elements are tested, as we focus on “usual” numbering permutations.
Moreover, the algorithms used may produce false positives or fail to find a correct renumbering in the
case of highly non convex elements. In this case, nothing may be done short of modifying the mesh,
as without a convexity hypothesis, it is not always possible to choose between two possible definitions
starting from a point set.

With a post-processing option such as -—post-error or, ——post-volume, visualizable meshes of cor-
rected elements as well as remaining badly oriented elements are generated.

4.2 Environment variables

Setting a few environment variables specific to the Preprocessor allows modifying its default behavior.
In general, if a given behavior is modifiable through an environment variable rather than by a command-
line option, it has little interest for a non-developer, or its modification is potentially hazardous. The
environment variables used by the Preprocessor are described here:
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CS_PREPROCESS_MEM_LOG

Allows defining a file name in which memory allocation, reallocation, and freeing is logged.

CS_PREPROCESS_MIN_EDGE_LEN

Under the indicated length (1071% by default), an edge is considered to be degenerate and its vertices
will be merged after the transformation to descending connectivity. Degenerate edges and faces will
thus be removed. Hence, the post-processed element does not change, but the Kernel may handle a
prism where the preprocessor input contained a hexahedron with two identical vertex couples (and
thus a face of zero surface). If the Preprocessor does not print any information relative to this type of
correction, it means that it has not been necessary. To completely deactivate this automatic correction,
a negative value may be assigned to this environment variable.

CS_PREPROCESS_IGNORE_IDEAS_CO0_SYS

If this variable is defined and is a strictly positive integer, coordinate systems in I-deas universal format
files will be ignored. The behavior of the Preprocessor will thus be the same as that of versions 1.0
and 1.1. Note that in any case, non Cartesian coordinate systems are not handled yet.

4.2.1 System environment variables

Some system environment variables may also modify the behavior of the Preprocessor. For example,
if the Preprocessor was compiled with MED support on an architecture allowing shared (dynamic)
libraries, the LD_PRELOAD environment variable may be used to define a “prioritary” path to load MED
or HDF5 libraries, and thus experiment with another version of these libraries without recompiling
the Preprocessor. To determine which shared libraries are used by an executable file, use the following
command: 1dd {executable_path}.

4.3 Optional functionality

Some functions of the Preprocessor are based on external libraries, which may not always be available.
It is thus possible to configure and compile the Preprocessor so as not to use these libraries. When
running the Preprocessor, the supported options are printed. The following optional libraries may be
used:

o CGNS library. In its absence, CGNS format support is deactivated.
e MED-file library. In its absence, MED format is simply deactivated.

e Read compressed files using Zlib. With this option, it is possible to diretly read mesh files
compressed with a gzip type algorithm and bearing a .gz extension. This is limited to formats
not already based on an external library (i.e. it is not usable with CGNS or MED files), and
has memory and CPU time overhead, but may be practical. Without this library, files must be
uncompressed before use.

4.4 General remarks

Note that the Preprocessor is in general capable of reading all “classical” element types present in
mesh files (triangles, quadrangles, tetrahedra, pyramids, prisms, and hexahedra). Quadratic or cubic
elements are converted upon reading into their linear counterparts. Vertices referenced by no element
(isolated vertices or centers of higher-degree elements) are discarded. Meshes are read in the order
defined by the user and are appended, vertex and element indices being incremented appropriately. 2!

21Ppossible entity labels are not maintained, as they would probably not be unique when appending multiple meshes.
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At this stage, volume elements are sorted by type, and the fluid domain post-processing output is
generated if required.

In general, groups assigned to vertices are ignored. selections are thus based on faces or cells. with
tools such as SIMAIL, faces of volume elements may be referenced directly, while with I-deas or
SALOME, a layer of surface elements bearing the required colors and groups must be added. Internally,
the Preprocessor always considers that a layer of surface elements is added (i.e. when reading a
SIMAIL mesh, additional faces are generated to bear cell face colors. When building the faces —
cells connectivity, all faces with the same topology are merged: the initial presence of two layers of
identical surface elements belonging to different groups would thus lead to a calculation mesh with
faces belonging to two groups.

4.5 Files passed to the Kernel

Data passed to the Kernel by the Preprocessor is transmitted using a binary file, using “big endian”
data representation, named mesh_input (or contained in a directory of that name).

When using the Preprocessor for mesh verification, data for the Kernel is not always needed. In this
case, the -—no-write option may be avoid creating a Preprocessor output file.

4.6 Mesh preprocessing
4.6.1 Joining of non-conforming meshes

Conforming joining of possibly non-conforming meshes may be done by the solver, and defined either
using the Graphical User Interface (GUI) or the cs_user_join user function. In the GUI, the user needs
to add entries in the “Face joining” section of the “Meshes” tab in the item “Calculation environment
— Meshes selection”. The user may specify faces to be joined, and can also modify basic joining
parameters, see fig. 6. For a simple mesh, it is rarely useful to specify strict face selection criteria, as
joining is sufficiently automated to detect which faces may actually be joined. For a more complex mesh,
or a mesh with thin walls which we want to avoid transforming into interior faces, it is recommended
to filter boundary faces that may be joined by using face selection criteria. This has the additional
advantage of reducing the number of faces to test for in the intersection/overlap search, and thus
reduced to time required by the joining algorithm.

One may also modify tolerance criteria using 2 options:

fraction r assigns value r (where 0 < r < 0,49) to the maximum intersection distance
multiplier (0,1 by default). The maximum intersection distance for a given
vertex is based on the length of the shortest incident edge, multiplied by r.
The maximum intersection at a given point along an edge is interpolated from
that at its vertices, as shown on the left of figure 7;

lane c assigns the maximum angle between normals for two faces to be considered
coplanar (25°Cby default); this parameter is used in the second stage of the
algorithm, to reconstruct conforming faces, as shown on the right of figure 7.

In practice, we are sometimes led to increase the maximum intersection distance multiplier to 0.2 or
even 0.3 when joining curved surfaces, so that all intersection are detected. As this influences merging
of vertices and thus simplification of reconstructed faces, but also deformation of “lateral” faces, it
is recommended only to modify it if necessary. As for the plane parameter, its use has only been
necessary on a few meshes up to now, and always in the sense of reducing the tolerance so that face
reconstruction does not try to generate faces from initial faces on different surfaces.
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Figure 6: Conformal or non-conformal joining

4.6.2 Periodicity

Handling of periodicity is based on an extension of conforming joining, as shown on figure 8. It is thus
not necessary for the periodic faces to be conforming (though it usually leads to better mesh quality).
All options relative to conforming joining of non-conforming faces also apply to periodicity. Note also
that once pre-processed, 2 periodic faces have the same orientation (possibly adjusted by periodicity
of rotation).

This operation can also be performed by the solver and specified either using the GUI or the cs_user_periodicity
function.

As with joining, it is recommended to filter boundary faces to process using a selection criterion. As
many periodicities may be built as desired, as long as boundary faces are present. One a periodicity
is handled, faces having periodic matches do not appear as boundary faces, but as interior faces, and
are thus not available anymore for other periodicities.

4.6.3 Parameters for conforming or non-conforming mesh joinings

The setting of these parameters is done in the user subroutine cs_user_join (called once). The user
can specify the parameters used for the joining of different meshes. Below is given the list of the
standard parameters which can me modified:

- fract: the initial tolerance radius associated to each vertex is equal to the lenght of the shortest
incident edge, multiplied by this fraction,
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Figure 7: Maximum intersection tolerance and faces normal angle
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- plane: when subdividing faces, 2 faces are considered coplanar and may be joined if the angle
between their unit normals (in degree) does not exceed this parameter,

- iwarnj: the associated verbosity level (debug level if over 3).

In the call of the function cs_join_add, a selection criteria for mesh faces to be joined is specified. The
list of advanced modifiable parameters is given below:

- mtf: a merge tolerance factor, used to locally modify the tolerance associated to each vertex
before the merge step. Depending on its value four scenarii are possible:
— if mtf = 0, no vertex merge

— if mtf < 1, the vertex merge is more strict. It may increase the number of tolerance
reduction and therfore define smaller subset of vertices to merge together but it can drive
to loose intersections.

— if mtf =1, no change occurs
— if mtf > 1, the vertex merge is less strict. The subset of vertices able to merge is greater.

- pmf: a pre-merge factor. This parameter is used to define a limit under which two vertices are
merged before the merge step,

- tcm: a tolerance computation mode. If its value is:
— 1 (default), the tolerance is the minimal edge length related to a vertex, multiplied by a
fraction.

— 2, the tolerance is computed like for 1 with, in addition, the multiplication by a coefficient
equal to the maximum between sin(el) and sin(e2); where el and e2 are two edges sharing
the same vertex V for which we want to compute the tolerance.

— 11, it is the same as 1 but taking into account only the selected faces.

— 12, it is the same as 2 but taking into account only the selected faces.
- icm: the intersection computation mode. If its value is:

— 1 (default), the original algorithm is used. Care should taken to clip the intersection on an
extremity.

— 2, a new intersection algorithm is used. Caution should be used to avoid to clip the inter-
section on an extremity.

- maxbrk: defines the maximum number of equivalence breaks which is enabled during the merge
step,

- maxsf: defines the maximum number of sub-faces used when splitting a selected face

The followings are advanced parameters used in the search algorithm for face intersections between
selected faces (octree structure). They are useful in case of memory limitation:

- tml: the tree maximum level is the deepest level reachable during the tree building,

- tmb: the tree maximum boxes is the maximum number of bounding boxes (BB) which can be
linked to a leaf of the tree (not necessary true for the deepest level),

- tmr: the tree maximum ratio. The building of the tree structure stops when the number of
bounding boxes is superior to the product of tmr with the number of faces to locate. This is an
efficient parameter to reduce memory consumption.

The call to the subroutine ’setajp’ returns the value of these parameters.
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4.6.4 Parameters for the periodicity

Periodicities can be set directly in the Graphical User Interface (GUI) or using the user subroutine
cs_user_periodicity (called when once during the calculation initialisation). In the GUI, the user
can choose between 3 types of periodicities: translation, rotation, or mixed (see fig. 9). Then specific
parameters must be set.

Meshes Periodic Boundaries l B

—Periodicity

Fraction | Plane | Verbosity | Visualization Selection criteria

~Type of definition for the selected periodicity

[ Composite periodicity (defined by matrix) |v]
| Periodicity by translation
Periodicity by rotation (defined by angle and direction|)

~ Transfoarmation m

ma 1 a0 | mao | me0 |
ma o | a2 | malo | o )
ma o | a0 | maa | o 1
ma 3 | me o ) mao | mE 1

oD

Figure 9: Periodicity

cs_user_periodicity can be used instead of the GUI, it allows also the user to specify the parameters
used to set periodicities and gives access to more advanced parameters. Below is given the list of the
main parameters which can me modified:

- fract: the initial tolerance radius associated to each vertex is equal to the lenght of the shortest
incident edge, multiplied by this fraction,

- plane. When subdividing faces, 2 faces are considered as coplanar and may be joined if the angle
between their unit normals (in degree) does not exceed this parameter,

- iwarnj: the associated verbosity level (debug level if over 3).

The second part of the subroutine is used to define the periodic transformations. The user provides in
the subroutine ’defpro’ the reference of the mesh the transformation applies to, as well as:

- the translation vector, if a periodicity of translation is used,
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- the axis, the angle of rotation, and an invariant point if a periodicity of rotation is used,

- an homogeneous matrix if a general transformation is used.

In addition, the user can modify advanced parameters in case problems occur during the joining step,
or to get a better mesh quality:

- mtf: a merge tolerance factor, used to locally modify the tolerance associated to each vertex
before the merge step. Depending on its value four scenarii are possible:
— if mtf = 0, there is no vertex merge.

— if mtf < 1, the vertex merge is more strict. It may increase the number of tolerance
reduction and therfore define smaller subset of vertices to merge together, but it can drive
to loose intersections.

— if mtf =1, no changes occur.
— if mtf > 1, the vertex merge is less strict. The subset of vertices able to merge is greater.

- pmf: a pre-merge factor. This parameter is used to define a limit under which two vertices are
merged before the merge step,

- tcm: a tolerance computation mode. If its value is:
— 1 (default), the tolerance is the minimal edge length related to a vertex, multiplied by a
fraction.

— 2, the tolerance is computed like for 1 with, in addition, the multiplication by a coefficient
equal to the maximum between sin(el) and sin(e2), where el and e2 are two edges sharing
the same vertex V for which we want to compute the tolerance.

— 11, it is the same as 1 but taking into account only the selected faces.

— 12, it is the same as 2 but taking into account only the selected faces.
- icm: the intersection computation mode. If its value is:

— 1 (default), the original algorithm is used. Care should taken to clip the intersection on an
extremity.

— 2, a new intersection algorithm is used. Caution should be used to avoid to clip the inter-
section on an extremity.

- maxbrk: defines the maximum number of equivalence breaks which are enabled during the merge
step,

- maxsf: defines the maximum number of sub-faces used when splitting a selected face

The following are advanced parameters used in the search algorithm for face intersections between
selected faces (octree structure). There are useful in case of memory limitation:

- tml: the tree maximum level is the deepest level reachable during the tree building

- tmb: the tree maximum boxes is the maximum number of bounding boxes (BB) which can be
linked to a leaf of the tree (not necessary true for the deepest level)

- tmr: the tree maximum ratio. The building of the tree structure stops when the number of
bounding boxes is superior than the product of tmr with the number of faces to locate. This is
an efficient parameter to reduce memory consumption.

The call to the routine ’setapp’ returns the value of these parameters.
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4.6.5 Modification of the mesh geometry

Subroutines called only during the calculation initialisation.

The user subroutine cs_user_mesh_input allows a detailed selection of imported meshes read, reading
files multiple times, applying geometric transformations, and renaming groups.

The user subroutine cs_user_mesh modify may be used for advanced modification of the main cs_mesh_t
structure.

WARNING: Caution must be exercised when using this subroutine along with periodicity. Indeed, the
periodicity parameters are not updated accordingly, meaning that the periodicity may be unadapted after
one changes the mesh vertex coordinates. It is particularly true when one rescales the mesh. Rescaling
should thus be done in a separate run, before defining periodicity.

The user subroutine cs_user_mesh_thinwall allows insertion of thin walls in the calculation mesh.
Currently, this subroutine simply transforms the selected internal faces into boundary faces, on which
boundary conditions can (and must) be applied.

Faces on each side of a thin wall will share the same vertices, so postprocessing of the main volume
mesh may not show the inserted walls, though they will appear in the main boundary output mesh.

4.7 Mesh smoothing utilities

Subroutine called only during the calculation initialisation.

The smoothing utilities may be useful when the calculation mesh has local defects. The principle of
smoothers is to mitigate the local defects by averaging the mesh quality. This procedure can help for
the calculus robustness or/and results quality.

The user subroutine cs_user _mesh_smoothe allows to use different smoothing functions detailled below.

WARNING 1: Caution must be exercised when using this subroutine along with periodicity. Indeed,
the periodicity parameters are not currently updated accordingly, meaning that the periodicity may be
unadapted after one changes the mesh vertex coordinates. It is particularly true when one rescales the
mesh. Rescaling should thus be done in a separate run, before defining periodicity.

WARNING 2: Caution must be exercised when using smoothing utilities because the geometry may be
modified. In order to preserve geometry, the function cs_mesh_smoother_fix by _feature allows to fix
by a feature angle criterion the mobility of boundary vertices.

4.7.1 Fix by feature

The vertex normals are defined by the average of the normals of the faces sharing the vertex. The
feature angle between a vertex and one of its adjacent faces is defined by the angle between the vertex
normal and the face normal.

This function sets a vertex if one of its feature angles is less than cos() where 6 is the maximum
feature angle (in degrees) defined by the user. In fact, if § = 0° all boundary vertices will be fixed,
and if # = 90° all boundary vertices will be free.

Fixing all boundary vertices ensures the geometry is preserved, but reduces the smoothing algorithm’s
effectiveness.

4.7.2 Warped faces smoother

The function cs_mesh_smoother_unwarp allows to reduce face warping in the calculation mesh.

Be aware that, in some cases, this algorithm may degrade other mesh quality criteria.
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5 Partitioning for parallel runs

Graph partitioning (using one of the optional METIS or SCOTCH libraries) is done using a secondary
executable,

cs_partition, which reads the file produced by the Preprocessor and builds one or several “cell —
domain” distribution files, named domain number_p for a partitioning on p sub-domains.

This separation leads to extra work for the Kernel, which must redistribute data read in mesh_input
based on the associated partitioning, but avoids requiring re-running the Preprocessor whenever run-
ning on a different number of processors.

Without partitioning (for example if neither METIS nor SCOTCH is available, or the partitioner has not
been run for the required number of sub-domains), the Kernel will use a built-in partitioning using a
space-filling curve (Z-curve) technique. This usually leads to partitionings of lower quality than with
graph partitioning, but parallel performance remains reasonable.

5.1 Options

To list the partitioner’s options, use the following command: cs_partition -h

We provide the list of required partitionings an optionally additional options. For example, to simulate
a partitioning for calculations on 64 and 128 processes with no output, we may use the following
command:

cs_partition 64 128 --no-write

5.1.1 Ignore periodicity

By default, face periodicity relations are taken into account when building the “cell — cell” connectivity
graph used for partitioning. This allows better partitioning optimization, but increases the probability
of having groups of cells at opposite sides of the domain in a same sub-domain. This is not an issue for
standard calculations, but may degrade performance of search algorithms based on bounding boxes.
It is thus possible to ignore periodicity when partitioning a mesh using the --no-perio option.

Note that nothing guarantees that a graph partitioner will not place disjoint cells in the same sub-
domain independently of this option, but this behavior is rare.

5.1.2 Partitioner choice
If the Partitioner has been configured with both METIS and SCOTCH libaries, using the —--metis or

—--scotch option allows choosing between either library. By default, metis is used if both choices are
available.

5.1.3 Simulation mode

Using the -—no-write option, we can tell the partitioner not to output a domain number_p file. Par-
titioning is thus computed, but not saved.

5.1.4 Environment variables

CS_PARTITION_MEM_LOG

Allows defining a file name in which memory allocations, reallocations, and frees will be logged.
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6 Basic modelling setup

6.1 Initialisation of the main parameters

This operation is done in the Graphical User Interface (GUI) or by using the user subroutine cs_user_parameters.f90.
In the GUI, the initialisation is performed by filling the parameters displayed in Figs. 10 to ??7. If the

option 'Mobile mesh’ is activated in Fig. 10, please see Section 8.11.4 for more details. In fig. 13, the

equivalent initialisations occur in the subroutine cs_user_initialization when the GUI is not used.

The headings filled for the initialisation are the followings:

- Thermophysical model options: ALE mobile mesh, turbulence model, thermal model, see figs.
10 to 12.

- Additional scalars: definition, initialisation of the scalars, and physical characteristics, see figs.
13 and 14. In fig. 14, the initial values are given in the subroutine cs_user_initialization if
the GUI is not used, see Section 6.3.

- Physical properties: reference pressure, fluid characteristics, gravity, see figs. 15 to 17. If non-
constant values are used for the fluid properties, and if the GUI is not used, see Section 6.5.1.

- Numerical parameters: number and type of time steps, and advanced parameters for the numer-
ical solution of the equations, see figs. 18 to 20.

Calculation control: parameters related to the time averages, the time step, the locations of the
probes where some variables will be monitored over time (if the GUI is not used, this information
is specified in Section 6.3), the definition of the frequency of the outputs in the calculation listing,
the postprocessing output writer frequency and format options, and the postprocessing output
meshes and variables selection, see figs. 21, 22, 23, and 24. The item “Profiles” allows to save,
with a frequency defined by the user, 1D profiles on an axis defined by two points, see fig. 25.
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| " calculation features
¥ i Mobile mesh
L, | Turbulence models
L, ] Thermal model

., | Radiative transfers
| Conjugate heat transfer @

F- s Additional scalars
[ [«]»

Figure 10: Mobile mesh option
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Figure 11: Turbulence model selection
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Figure 12: Thermal scalar selection
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Figure 13: Definition and initialisation of the scalars
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Figure 14: Associated physical properties of the scalars
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Figure 15: Setting of the reference pressure
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Figure 16: Fluid properties
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Figure 17: Settings of the gravity and of the hydrostatic pressure
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Figure 18: Time step settings
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Figure 19: Numerical parameters for the main variables resolution
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Figure 20: Global resolution parameters

In the case of a calculation launched using the interface, the subroutine cs_user_parameters.f90
is only used to modify high-level parameters which can not be managed by the interface. In the
case of a code utilisation without interface, this subroutine is compulsory and all the headings must
be completed. cs_user_parameters.f90 is used to indicate the value of different calculation basic
parameters: constant and uniform physical values, parameters of numerical schemes, input-output
management...

It is called only during the calculation initialisation.

For more details about the different parameters, please refer to the key word list (§9).

cs_user_parameters.f90 is in fact constituted of 6 seperate subroutines: usipph, usinsc, usipsc,
usipgl, usipsu and usipes. Each one controls various specific parameters. The key words which are
not featured in the supplied example can be provided by the user in SRC/REFERENCE/base; in this case,
understanding of the comments is required to add the key words in the appropriate subroutine, it will
ensure that the value has been well defined). The modifiable parameters in each of the subroutines of
cs_user_parameters.f90 are:

e usipph: iturb and icp (don’t modify these parameters anywhere else)
e usinsc: nscaus (don’t modify these parameters anywhere else)

e usipsc: iscavr and ivisls (don’t modify these parameters anywhere else)
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Figure 21: Management of time averaged variables
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Figure 22: Parameters of chronological logging options

e usipgl: idtvar, ipucou, iphydr and the parameters related to the error estimators (don’t
modify these parameters anywhere else).

e usipsu: physical parameters of the calculation (thermal scalar, physical properties,...), numerical
parameters (time steps, number of iterations, ...), definition of the time averages.

e usipes: post-processing output parameters (periodicity, variable names, probe positions,...)

For more details on the different parameters, see the list of key words (§9). The names of the key
words can also be seen in the help sections of the interface.

NOTES
e The table iscavr is filled with the user scalars which represent the mean square fluctuations of
another scalar amongst the list of the nscaus scalars (warning, this was not the case in version 1.0).
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Figure 23: Management of postprocessing writers
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Figure 24: Management of postprocessing meshes

For the other scalars, iscavr does not need to be completed (by default, iscavr (ii)<0). For instance,
if the scalar jj represents the average of the square of the fluctuations of the scalar kk, the user must
indicate iscavr(jj)=kk (1<kk<nscaus).

e When using the interface, only the additional parameters (which can not be defined in the in-
terface) should appear in cs_user_parameters.f90. To spare the user the necessity to delete the
other parameters given as examples in the subroutine, the setup program code_saturne create com-
ments automatically all the example lines of cs_user_parameters.f90 with a code “!ex”. The user
needs then only to remove comments at the lines which are useful for his case. This function of
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Figure 25: Management of 1D profiles of the solution

“

code_saturne create can be deactivated with the option “--nogui” (useful if the user knows that

he will not use the interface).

6.2 Selection of mesh inputs: cs user mesh input

Subroutine called only during the calculation initialisation.

This C function may be used to select which mesh input files are read, and apply optional coordinate
transformations or group renumberings to them. By default, the input read is a file or directory
named mesh_input, but if this function is used, any file may be selected, and the same file may be read
multiple times (applying a different coordinate transformation each time). All inputs read through
this function are automatically concatenated, and may be later joined using the mesh joining options.

Geometric transformations are defined using a homogeneous coordinates transformation matrix. Such
a matrix has 3 lines and 4 columns, with the 3 first columns describing a rotation/scaling factor,
and the last column describing a translation. A 4th line is implicit, containing zeroes off-diagonal,
and 1 on the diagonal. The advantages of this representation is that any rotation/translation/scaling
combination may be expressed by matrix multiplication, while simple rotations or translations may
still be defined easily.

6.3 Non-default variables initialisation

The non-default variables initialisation is performed in the subroutine cs_user_initialization (called
only during the calculation initialisation).

At the calculation beginning, the variables are initialised automatically by the code. Velocities and
scalars are set to 0 (or scamax or scamin if 0 is outside the acceptable scalar variation range), and the
turbulent variables are estimated from uref and almax.

For the kin k — ¢, R;; — ¢, v2f or kK — w model:

rtp(iel . lklph) =1. 5*(0 . 02*uref) **2 (m Rij — &, Rij = %kéw)

For the € in k — €, R;j — € or v2f model:

rtp(iel,ieiph) = rtp(iel,ikiph)*x*1.5%cmu/almax
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For w in the k¥ — w model:

rtp(iel,iomgip) = rtp(iel,ikiph)**0.5/almax
For ¢ and f in the v2f model:

rtp(iel,iphiph) = 2/3

rtp(iel,ifbiph) = 0

The subroutine cs_user_initialization allows if necessary to initialise certain variables to values
closer to their estimated final values, in order to obtain a faster convergence.

This subroutine allows also to make a non-standard initialisation of physical parameters (density,
viscosity, ...), to impose a local value of the time step, or to modify some parameters (time step,
variable specific heat, ...) in the case of a calculation restart.

NOTE: VALUE OF THE TIME STEP

- For calculations with constant and uniform time step (idtvar=0), the value of the time step is
dtref, given in the parametric file of the interface or cs_user_parameters.f90.

- For calculations with a non-constant time step (idtvar=1 or 2) which is not a calculation restart,
the value of dtref given in the parametric file of the interface or in cs_user_parameters.f90 is
used to initialise the time step.

- For calculations with a non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was different (for instance, restart using a variable time step of a calculation
run using a constant time step), the value of dtref, given in the parametric file of the interface
or in cs_user_parameters.f90, is used to initialise the time step.

- For calculations with non-constant time step (idtvar=1 or 2) which is a restart of a calculation
whose time step type was the same (for instance, restart with idtvar=1 of a calculation run
with idtvar=1), the time step is read from the restart file and the value of dtref given in the
parametric file of the interface, or in cs_user_parameters.f£90, is not used.

It follows, that for a calculation with a non-constant time step (idtvar=1 or 2) which is a restart of a
calculation in which idtvar had the same value, dtref does not allow to modify the time step. The
user subroutine cs_user_initialization allows to modify the array dt which contains the value of
the time step read from the restart file (array whose size is ncelet, defined at the cell centers whatever
the chosen time step type is).

WARNING: to initialise the variables in the framework of a specific physics module (nscapp.gt.0),
one of the subroutines usebui, usd3pi, uslwci or uscpiv should be used (depending on the activated
module) instead of cs_user_initialization.

6.4 Manage boundary conditions

The boundary conditions can be specified in the Graphical User Interface (GUI) under the heading
“Boundary conditions” or in the user subroutine cs_user_boundary_conditions called every time
step. With the GUI, each region and the type of boundary condition associated to it are defined in
fig. 26. Then, the parameters of the boundary condition are specified in fig. 27. The colors of the
boundary faces may be read directly from a “listing” file created by the Preprocessor. This file can
be generated directly by the interface under the heading “Definition of boundary regions — Add from
Preprocessor listing — import groups and references from Preprocessor listing”, see fig. 26.

cs_user_boundary_conditions is the second compulsory subroutine for every calculation launched
without interface (except in the case of specific physics where the corresponding boundary condition
user subroutine must be used)

When the subroutine is used, cs_user_boundary_conditions is used to define complex boundary
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Figure 26: Definition of the boundary conditions

| Identity and paths

g4 Calculation environment
g5 Thermophysical models
g4 Additional scalars
Physical properties

[E38 Volume conditions
&

Boundary conditions

B Numerical parameters
B Calculation control
G- B Calculation management

efinition of boundary regi...

)

~Boundary conditions

[+]

Label Zone Nature Selection criteria
outlet 2 outlet 34
wall_2 5 wall 2or3
wall_3 (& wall 4or7or2lor2z..
wall_4 7 wall 6 and ¥=1
wall_5 8 wall 6 and ¥Y==1
wall_6 9 wall 31 or33
wall_1 4 wall 24 and 0.1==X an...
~Velocity

norm |v] [1.0 ] mfs

Direction
[specified coordinates |v]
x[1.0 | v[oo | z[oo0 |
~Turbulence
| Calculation by hydraulic diameter | ~|
Hydraulic diameter m
~Scalars
Exchange

‘ Scalar Name Type Value Coefficiont

|HTempC Prescribed v... | 300

|H scalar_2 Prescribed v... | 200 E

I

Figure 27: Parameters of the boundary conditions
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interface, all the boundary conditions must appear in cs_user_boundary_conditions.
cs_user_boundary_conditions is essentially constituted of loops on boundary face subsets. Several
sequences of call getfbr (’criterion’, nlelt, lstelt) (cf. §3.9.3) allow to select the boundary
faces with respect to their group(s), their color(s) or geometric criteria. If needed, geometric and
physical variables are also available to the user. These allow him to select the boundary faces using
other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical and
computer documentation [11] of the subroutine condli (for wall conditions, see clptur) (to access
this document on a workstation, use code_saturne info --guide theory).

From the user point of view, the boundary conditions are fully defined by three arrays??: itypfb(nfabor),
icodcl (nfabor,nvar) and rcodcl(nfabor,nvar,3).

- itypfb(ifac) defines the type of the face ifac (input, wall, ...).

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar on the face
ifac (Dirichlet, flux ...).

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet, of the flux ...).

In the case of standard boundary conditions (see §6.4.1), it is sufficient to complete itypfb(ifac)
and parts of the array rcodcl; the array icodcl and most of rcodcl are filled automatically. For
non-standard boundary conditions (see §6.4.2), the arrays icodcl and rcodcl must be fully completed.

6.4.1 Coding of standard boundary conditions

The standard key words used by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib
and iindef.

o If itypfb=ientre: inlet face.

— Zero-flux condition for pressure and Dirichlet condition for all other variables. The value
of the Dirichlet must be given in rcodcl(ifac,ivar,1) for every value of ivar, except for
ivar=ipr. The other values of rcodcl and icodcl are filled automatically.

o If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

— the potential sliding wall velocity of the face is found in rcodcl(ifac,ivar,1) (ivar being
iu, iv or iw). The initial values of rcodcl(ifac,ivar,1) are zero for the three velocity
components (and therefore are to be specified only if the velocity is not equal to zero).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code only uses the projection of this velocity on the face. As a consequence, if the velocity
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.

— For scalars, two kinds of boundary conditions can be defined:

~~ Imposed value at the wall. The user must write
icodcl(ifac,ivar)=>5
rcodcl(ifac,ivar,1)=imposed value

~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=flux imposed value (depending on the variable, the user
may refer to the case icodc1=3 of Section 6.4.2 for the flux definition).

22except with Lagrangian
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~» If the user does not fill these arrays, the default condition is zero flux.
o If itypfb=iparug: rough solid wall face, impermeable and with friction.

— the eventual moving velocity of the wall tangent to the face is given by rcodcl (ifac,ivar,1)

(ivar being iu, iv or iw). The initial value of rcodcl(ifac,ivar,1) is zero for the three
velocity components (and therefore needs to be specified only in the case of the existence
of a slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

— The dynamic roughness must be specified in rcdocl (ifac,iu,3). The values of rcdocl(ifac,iv,3)
and rcdocl(ifac,iw,3) are not used.

— For scalars, two kinds of boundary conditions can be defined:

~> Imposed value at the wall. The user must write
icodcl(ifac,ivar)=6
rcodcl(ifac,ivar,1)=imposed value
rcodcl(ifac,ivar,3)=thermal roughness value

~~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=flux imposed value (for the flux definition according to
the variable, the user may refer to the case icodc1=3 of the paragraph 6.4.2).

~» If the user does not complete these arrays, the default condition is zero flux.

o If itypfb=isymet: symmetry face (or wall without friction)
— Nothing to be writen in icodcl and rcodcl.
o If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)

— The pressure is always treated with a Dirichlet condition, calculated with the constraint
d (dP
dn \ dr

) = 0. The pressure is set to Py at the first isolib face met. The pressure
calibration is always done on a single face, even if there are several outlets.

— If the mass flow is coming in, the “infinite” velocity is retained and a Dirichlet condition for
the scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value
has been specified).

— If the mass flow is going out, zero-flux condition are set for the velocity, the scalars and the
turbulent quantities.

— Nothing is written in icodcl or rcodcl for the pressure or the velocity. An optional Dirichlet
condition can be specified for the scalars and turbulent quantities.

o If itypfb=iindef: undefined type face (non-standard case)

— Coding is done in a non-standard way by filling both arrays rcodcl and icodcl (see §6.4.2).

NOTES

e Whatever is the value of the indicator itypfb(ifac), if the array icodcl(ifac,ivar) is modified by
the user (i.e. filled with a non-zero value), the code will not use the default conditions for the variable
ivar at the face ifac. It will take into account only the values of icodcl and rcodcl provided by the
user (these arrays must then be fully completed, like in the non-standard case).

For instance, for a normal symmetry face where scalar 1 is associated with a Dirichlet condition equal
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to 23.8 (with an infinite exchange coefficient):

itypfb(ifac)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8
(rcodcl(ifac,isca(1l),2)=rinfin is the default value, therfore it is not necessary to specify a value)
The boundary conditions for the other variables are remain automatically defined.

e The user can define new types of boundary faces. He only needs to choose a value N and to fully
specify the boundary conditions (see §6.4.2). He must specify itypfb(ifac)=N where N range is 1
to ntypmx (maximum number of boundary face types), and of course different from the values ientre,
iparoi, iparug, isymet, isolib and iindef (the values of these variables are given in the paramx
module). This allows to easily isolate some boundary faces, in order for instance to calculate balances.

6.4.2 Coding of non-standard boundary conditions

In the case a face does not correspond to a standard type, the user must fill completely the arrays
itypfb, icodcl and rcodcl. itypfb(ifac) is then equal to iindef or another value defined by the
user (see note at the end of Section 6.4.1). The arrays icodcl and rcodcl must be filled as follows:

e If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

— rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates an
ideal transfer between the outside and the fluid (default case).

— rcodcl(ifac,ivar,3) is not used.

1

rcodcl (ifac,ivar,1) has the units of the variable ivar, i.e.:

~ m/s for the velocity

m?/s? for the Reynolds stress
m?/s3 for the dissipation

Pa for the pressure

°C for the temperature

J.kg™! for the enthalpy

°C? for temperature fluctuations

LN T T A

~s J? kg2 for enthalpy fluctuations

— rcodcl(ifac,ivar,2) has the following units (defined in such way that when multiplying
the exchange coefficient by the variable, the given flux has the same units as the flux defined
below when icodcl=3):

257! for the velocity

~ kg.m
kg.m=2.s7! for the Reynolds stress
s.m~! for the pressure

W.m=2.°C™" for the temperature

s
S
~
~ 2

kg.m~2.s7! for the enthalpy

e If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

— rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:
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A : 9
~r —Cp(= + —)VT - n for a temperature (in W/m?).
Cp ar
—(\n+ &)Zh -n for an enthalpy (in W/m?2).
oh
—(Ap+ &)Zgw@ in the case of another scalar ¢ (in kg.m=2.s71.[p], where [¢] are the
O¢
units of ¢).

~ —At VP - n for the pressure (in kg.m2.s71).
~ —(p 4 pe)YU; - n for a velocity component (in kg.m~—t.s72).
~» —uVR;; -n for a R;; tensor component (in W/m?2).

e If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for velocity components (U - n = 0) and the R;; tensor
components (for other variables, a zero-flux condition type is usually used).

e If icodcl(ifac,ivar)=>5: friction condition, for wall faces with friction. This condition can not
be applied to the pressure.

~+ For the velocity and (if necessary) the turbulent variables, the values at the wall are calcu-
lated from theoretical profiles. In the case of a sliding wall, the three components of the slid-
ing velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does mot belong to the face plane, the wall sliding velocity really taken
into account will be different.

~ For other scalars, the condition icodcl1=5 is similar to icodcl=1, but with a wall exchange
coefficient calculated from a theoretical law. Therefore, the values of rcodcl (ifac,ivar,1)
and rcodcl(ifac,ivar,2) must be specified: see [11].

e If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be used with the pressure.

~+ For the velocity and (if necessary) the turbulent variables, the values at the wall are calcu-
lated from theoretical profiles. In the case of a sliding wall, the three components of the slid-
ing velocity are given by (rcodcl(ifac,iu,1), rcodcl(ifac,iv,1), and rcodcl(ifac,iw,1)).
WARNING: the wall sliding velocity must belong to the boundary face plane. For safety, the
code uses only the projection of this velocity on the face. Therefore, if the velocity vector
specified by the user does not belong to the face plane, the wall sliding velocity really taken
into account will be different.
The dynamic roughness height is given by rcodcl(ifac,iu,3) only.

~» For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

o If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition is only applicable
to velocity components.
If the mass flow at the face negative, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is positive, the velocity at the face is set to zero (but not to the mass
flow).
rcodcl is not used.

NoOTE
e A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free
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outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodc1=3) for the other variables.

6.4.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:

e On each face, the boundary conditions of the three velocity components must belong to the same
type. The same is true for the components of the R;; tensor.

e If the boundary conditions for the velocity belong to the “sliding” type (icodcl=4), the conditions
for R;; must belong to the “symmetry” type (icodcl=4), and vice versa.

e If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
boundary conditions for the turbulent variables must belong to the “friction” type, too.

e If the boundary condition of a scalar belongs to the “friction” type, the boundary condition of the
velocity must belong to the “friction” type, too.

In case of mistakes, if the post-processing output is activated (which is the default setting), a special
error output, similar to the mesh format, is produced in order to help correcting boundary condition
definitions.

6.4.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. To ease this
kind of search, an array made of sorted faces is automatically filled (and updated at each time step):
itrifb(nfabor).
ifac=itrifb(i) is the number of the i'" face of type 1.
ifac=itrifb(i+n) is the number of the i*" face of type 2, if there are n faces of type 1.

. ete.

Two auxiliary arrays of size ntypmx are also defined.
idebty(ityp) is the index corresponding to the first face of type ityp in the array itrifb.
ifinty(ityp) is the index corresponding to the last face of type ityp in the array itrifb.

Therefore, a value ifacO found between idebty(ityp) and ifinty(ityp) is associated to each face
ifac of type ityp=itypfb(ifac), so that ifac=itrifb(ifac0).

If there is no face of type ityp, the code set
ifinty(ityp)=idebty(ityp)-1,

which enables to bypass, for all the missing ityp, the loops such as
do ii=idebty(ityp),ifinty(ityp).

The values of all these indicators are displayed at the beginning of the code execution listing.

6.4.5 Boundary conditions with LES

The subroutine usvort allows to generate the non-stationary inlet boundary conditions for the LES by
the vortex method. The method is based on the generation of vortices in the 2D inlet plane with help
from the pre-defined functions. The fluctuation normal to the inlet plane is generated by a Langevin
equation. It is in the subroutine usvort where the parametres of this method are given.

subroutine called for each time step

To allow the application of the vortex method, an indicator must be informed of the method in the
user subroutine cs_user_parameters.f90(ivrtex=1)

The subroutine usvort contains 3 seperate parts:
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- The 1st part defines the number of inlets concerned with the vortex method (nnentt) and the
number of vortex for each inlet (nvort), where ient represents the number of inlets.

- The 2nd part (iappel=1) defines the boundary faces at which the vortex method is applicable.
The irepvo array is informed by ient which defines the number of inlets concerned with the
vortex (essentially, the vortex method can be applied with many independant inlets).

- The 3rd section defines the main parameters of the method at each inlet. With the complexity
of any given geometry, 4 cases are distinguished (the first 3 use the data file ficvor and in the
final case only 1 initial velocity and energy are imposed.):

* icas=1, For the outlet of a rectangluar pipe; 1 boundary condition is defined for each side

of the rectangle taking into account their interaction with the vortex.

* icas=2, For the outlet of a circular pipe; the entry face is considered as a wall (as far as
interaction with the vortex is concerned)

* icas=3, For inlets of any geometry; no boundary conditions are defined at the inlet face

(i.e no specific treatment on the interation between the vortex and the boundary)

* icas=4, similar to icas=3 except the data file is not used (ficvor); the outflow parameters
are estimated by the code from the global data (initial velocity, level of turbulence and
dissipation), information which is supplied by the user.

When the geometry allows, cases 1 and 2 are used. Case 4 is only used if it is not possible to use
the other 3.

In the first 3 cases, the 2 base vectors in the plane of each inlet must be defined (vectors dirl
and dir2). The 3rd vector is automatically calculated by the code, defined as a product of dir1
and dir2. dirl and dir2 must be chosen imperatively to give (cen, dirl, dir2) an orthogonal
reference of the inlet plane and so dir3 is oriented in the entry domain. If icas=2, the cen
position must be the center of gravity of the rectangle or disc.

The reference points (cen, dirl, dir2, dir3) which define the values of the variable in the ficvor
file.
In the case where icas=4, the vectors dirl and dir2 are generated by the code.

If icas=1, the boundary conditions at the rectangle’s edges must be defined. They are defined
in the array iclvor. iclvor(ii,ient) represents the standard boundary conditions at the edge
IT(1<II<4) of the inlet ient. The code for the boundary conditions is as follows:

* iclvor=1 for a wall

* iclvor=2 for symmetry

* iclvor=3 for periodicity of translation (the face corresponding to periodicity will automat-
ically be taken as 3)

The 4 edges are numbered relative to the directions dirl and dir2 as shown in figure 28:

If icas=1, the user must define 11x and 11y which give the lengths of the rectangular pipe in
the directions dirl and dir2.

If icas=2, 11d represents the diameter of the circular pipe. If icas=4, udebit ,kdebit and
edebit are defined for each inlet, these give respectively, initial speed, turbulent energy level and
the dissipation level. These can be used to obtain their magnitude using the correlations in the
user routine cs_user_boundary_conditions for fully developed flow in a pipe.

The case independant parameters are defined as follows:

* itmpl represents the indicator of the advancement in time of the vortex. If itmpli=1, the

vortex will be regenerated after a fixed time of tmplim second (defined as itmpli=1). If

itmpli=2, following the data indicated in ficvor file, the vortex will have a variable life
3

2
span equal to 5C},— , where C, = 0,09 and k, € and U represent respectively, turbulent

energy, turbulent dissipation and the convective velocity in the direction normal to the inlet
plane.
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Figure 28: Numbering of the edges of a rectangular inlet(icas=1) treated by the vortex method

* xsgmvo represents the support functions used in the vortex method. They are represen-

tative of the eddy sizes entered in the vortex method. isgmvo is used to define their

size: if isgmvo=1, xsgmvo will be constant across the inlet face and is defined in usvort, if

isgmvo=2, xsgmvo will be variable and equal to the mixing length of the standard k—e model
3

(C’H%—z)7 if isgmvo=3, xsgmvo will be equal to the maximum of L; et Lx where L; and
€
3

k 1 1
Ly are the ({;—U é;—U Taylor and Kolmogrov co-efficients (Lp = (51/g)§, Ly = 200(%)1).
y oy

idepvo gives the vortex displacement method in the 2D inlet plane (the vortex method is a
langrangian method in which the eddy centers are replaced by a set velocity). If idepvo=1,
the velocity displacement referred to by ud which is the vortex following a random sampling
(a sample number r, is taken for each vortex, at each time step and for each direction and
the center of the vortex is replaced by the 2 principle directions, rudAt where At is the
time step of the calcualtion). If idepvo=2, the vortex will be convected by itself (with the
speed given by the time step before the vortex method)

A data file, ficvor, must be defined in the cases of icas=1,2,3, for each inlet. The data file must
oUu
ay
the integer ndat. x and y are the co-ordinates in the inlet plane defined by the vectors dirl and
dir2. U, k and ¢ are respectively, the average speed normal to the inlet, the turbulent energy

contain the following data in order (z, y, U, , k, €). The number of lines of the file is given by

and the turbulent dissipation. — is the derivative in the direction normal to the inlet boundary

0

in the cases, icas=1, icas=2. yVVhere icas=3 and icas=4 this variable is not applied (it is
given the value 0) so the Langevin equations, used to generate fluctuations normal to the inlet
plane, is de-activated (the flucutations normal to the inlet is 0 on both these cases). Note that
the application of many different test of the Langevin equation doesn’t have a notable influence
on the results and that, by contrast it simply increases the computing time per iteration and so it
decreases the random sampling which slows down the pressure solver. The interpolation used in
the vortex method is defined by the function phidat. An example is given at the end of usvort
where the user can define the interpolation required. In the phidat function, xx and yy are the
co-ordinates by which the value of phidat is calculated. xdat and ydat are the co-ordinates in
the ficvor file. vardat is the value of the phidat function with the co-ordinates xdat and ydat
(given in the ficvor file). Note that using an indicator iii accelerates the calculations (the user
need not modify or delete). The user must also define the parameter isuivo which indicates if
the vortex were started at 0 or if the file must be re-read (ficmvo).

WARNING
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e Be sure that the ficvor file and the interpolation in the user function phidat are compatible
(in particular that all the entry region is covered by ficvor)

o If the user wants to use a 1D profile in the dir2 direction, set £ =0 in the ficvor file and define
the interpolation in phidat.

6.5 Manage the variable physical properties
6.5.1 Basic variable physical properties

When the fluid properties are not constant, the user is offered the choice to define the variation laws
in the Graphical User Interface (GUI) or in the subroutine usphyv which is called at each time step.
In the GUI, in the item “Fluid properties” under the heading “Physical properties”, the variation laws
are defined for the fluid density, viscosity, specific heat and thermal conductivity through the use of a
formula editor, see figs. 29 and 30.

—Density

b | ldentity and paths

[ Calculation environment
B Thermophysical models
|=5 Physical properties

L, | Reference values

B Fluid properties
“l | Gravity, hydrostatic pressure
- B Volume conditions

- B Additional scalars constant I'] E]
- [l Boundary conditions
- B Numerical parameters Reference value p Pa.s
- [y Calculation control

- Calculation management

constant

user law
user subroutine (usphyv)

)

—\iscosity

e

-

~Specific heat

constant |v] E]
Reference value Cp |[5483.0 Ifkeg/K

~Thermal conductivity

constant |v] E]
Reference value 4 |0.02495 Wim/K

(«1 [«I*]

Figure 29: Physical properties - Fluid properties

If necessary, all the variation laws related to the fluid physical properties are written in the subroutine
usphyv.

The validity of the variation laws must be checked, particularly when non-linear laws are defined (for
instance, a third-degree polynomial law may produce negative density values).

WARNING

e If one wishes to impose a variable density or variable viscosity in usphyv, it must be flagged
either in the interface or in cs_user_parameters.f90(irovar=1, ivivar=1).
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User expression | Predefined symbols | Examples |

rho = TempC* -4, 0668e-3*TempC -5.0754e-2) + 1000.9;

[ oK H Cancel ]

Figure 30: Definition of a user law for the density

e In order to impose a physical property (p, p, A, Cp)23 a reference value should be provided in

the interface or in cs_user_parameters.f90 (in particular for p, the pressure will be function of
P0gZ)

o By default, the C), coefficient and the diffusivity for the scalars iscal (A\/C), for the temperature)

are considered as constant in time and uniform in space, with the values cp0O and visls0(iscal)
specified in the interface or in cs_user_parameters.f90.
To assign a variable value to C),, the user mustt specify it in the interface or assign the value
1 to icp in cs_user_parameters.f90, and fill for each cell iel the array propce(iel,ipccp)
in usphyv. Completing the array propce(iel,ipccp) while icp=0 induces array overwriting
problems and produces wrong results.

e In the same way, to have variable diffusivities for the scalars iscal, the user must specify it in
the interface or give the value 1 to ivisls(iscal) in cs_user_parameters.f90, and complete
for each cell iel the array propce(iel,ipcvsl) in usphyv. Completing propce(iel,ipcvsl)
while ivisls(iscal)=0 induces memory overwriting problems and produces wrong results.

Ezxample: If scalars 1 and 3 have a constant and uniform diffusivity, and if scalars 2 and 4 have
a variable diffusivity, the following values must be set in cs_user_parameters.f90:
ivisls(1)=0, ivisls(2)=1, ivisls(3)=0 and ivisls(4)=1.

The indicators ivisls(2) and ivisls(4) are then modified automatically by the code in or-
der to return the rank corresponding to the diffusivity of each scalar in the list of physi-
cal properties?*. The arrays propce(iel,ipcvsl) in usphyv must then be completed with

ipcvsl=ipproc(ivisls(2)) and ipcvsl=ipproc(ivisls(4)).

Note: The indicators ivisls must not be completed in the case of user scalars representing the
average of the square of the fluctuations of another scalar, because the diffusivity of a user scalar
jj representing the average of the square of the fluctuations of a user scalar kk comes directly
from the diffusivity of this last scalar. In particular, the diffusivity of the scalar jj is variable if
the diffusivity of kk is variable.

6.5.2 Modification of the turbulent viscosity

The subroutine usvist is used to modify the calculation of the turbulent viscosity, i.e. p; in kg.m=!.s71
(this piece of information, at the mesh cell centers, is conveyed by the variable propce(iel,ipcvst),
with ipcvst = ipproc(ivisct)). The subroutine is called at the beginning of every time step, after
the calculation of the physical parameters of the flow and of the “conventional” value of u; correspond-
ing to the chosen turbulence model (indicator iturb).

WARNING: The calculation of the turbulent viscosity being a particularly sensible stage, a wrong use
of usvist may seriously distort the results.

23except for some specific physics

24they are no longer equal to 1 but stay positive so that ivisls>0 is synonymous with variable diffusivity
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6.5.3 Modification of the variable C' of the dynamic LES model

Subroutine called every time step in the case of LES with the dynamic model.

The subroutine ussmag is used to modify the calculation of the variable C' of the LES sub-grid scale
dynamic model.

Let us first remind that the LES approach introduces the notion of filtering between large eddies and
small motions. The solved variables are said to be filtered in an “implicit” way. Sub-grid scale models
(“dynamic” models) introduce in addition an explicit filtering.

The notations used for the definition of the variable C' used in the dynamic models of Code_Saturne
are specified below. These notations are the ones assumed in the document [3], to which the user may
refer for more details.

The value of a filtered by the explicit filter (of width i) is called a and the value of a filtered by the
implicit filter (of width A) is called @. We define:

_ T s
Sij = %(gm; + o) Sl =14/25:55i;

~2 ~ ~ o 1
aij = =24 |[5]|Si;  Bij = —247]15]55 @
Lij =wu; —u; My = o6y — Bij

L.s71 may be written in

In the framework of LES, the total viscosity (molecular + sub-grid) in kg.m™
Code_Saturne:

Htotal = W+ Usub-grid if Hsub-grid > 0
i otherwise (2)

—2  —
pCA||S]|

with Hsub-grid

§ is the width of the implicit filter, defined at the cell ©; by
A = XLESFL % (ALES  |Q;|)BLES .

In the case of the Smagorinsky model (iturb=40), C is a constant which is worth C2. C? is the
so-called Smagorinsky constant and is stored the variable csmago.

In the case of the dynamic model (iturb=41), C' is variable in time and in space. It is determined by

_ M;;Lij
My My

In practice, in order to increase the stability, the code does not use the value of C' obtained in each
cell, but an average with the values obtained in the neighboring cells (this average uses the extended
neighborhood and corresponds to the explicit filter). By default, the value calculated by the code is

o MyLij
MMy,

The subroutine ussmag allows to modify this value. It is for example possible to calculate the local
average after having calculated the ratio

M, Lij
o= | MiLis ]
|:Mk-lel

WARNING: The subroutine ussmag can be activated only when the dynamic model is used.

6.6 User source terms

Let us assume that the user source terms modify the equation of a variable ¢ in the following way:

dp

pﬁ—k‘..:...ﬁ‘sz'mplx@'*‘sexpl
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The example is valid a velocity component, for a turbulent variable (k, e, R;;, w, ® or f) and for
a scalar (or for the average of the square of the fluctuations of a scalar), because the syntax of the
subroutines ustske, ustsri, ustsv2, ustskw and ustssc is similar.

In the finite volume formulation, the solved system is then modified as follows:

1Q’L
<pAt S ) (%(nﬂ) 505")) A+ QiSimprie™ + QiSenpri

The user needs therefore to provide the following values:
CrVimpi = QiSimpl,i
crvexp, = ;Sexpi i

i)
In practice, it is essential for the term Zt : - QiSimpM) to be positive. To ensure this property, the
i
equation really taken into account by the code is the following;:
<’Zt}’ — Min(€ Sipmpi.i; 0)) (<p§"+ 2 gaﬁ”)) + QS i + QiSeapri
3

To make the “implicitation” effective, the source term decomposition between the implicit and explicit
parts will be done by the user who must ensure that crvimp, = Q;S;mp1; is always negative (otherwise
the solved equation remains right, but there will not be “implicitation”).

WARNING: When the second-order in time is used along with the extrapolation of the source terms®®
it is no longer possible to test the sign of Simpi,i, because of coherence reasons (for more details, the
user may refer to the theoretical and computer documentation [11] of the subroutine preduv). The
user must therefore make sure it is always positive (or take the risk to affect the calculation stability).

PARTICULAR CASE OF A LINEARISED SOURCE TERM

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Let us consider an equation of the type:

Par = F(p)

We want to make it implicit using the following method:

piA? (SOZ('nH) - ‘Pz('n)) = [F(%(-n)) + (@E"H) (pgn)) dF(goE"))]

dF . 41 n F .
- 9%«05- N x4 [F«o& ) - @«oﬁ- ) soi’”]

The user must therefore specify:

dF,
crvinp; = 5 (p!")

ervexp; = i | Fo{"”) = = (") x o[
2
FEzxzample:

0
If the equation is pa—f = —K?, the user must set:

crvimp, = 72KQZ@§")

crvexp, = KQ; [<p( )]

?

25indicator isno2t for the velocity, ISTO2T for the turbulence and isso2t for the scalars
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6.6.1 In Navier-Stokes

The subroutine ustsns is used to add user source terms to the Navier-Stokes equations (at each time
step). It is called three times every time step, once for each velocity component (ivar is successively
worth iu, iv and iw). At each passage, the user must complete if necessary the arrays crvimp and
crvexp expressing respectively the implicit and explicit part of the source term. If no other source
terms apart from ivar=iu for example, are required, crvimp and crvexp must be read over and their
2 other components, ivar=iv(ihpas) and ivar=iw must be cancelled.

6.6.2 For Lk and ¢

Subroutine called every time step, in k — € and in v2f.

The subroutine ustske is used to add source terms to the transport equations related to the turbulent
kinetics energy k and to the turbulent dissipation e. This subroutine is called every time step (the
treatment of the two variables k and ¢ is made simultaneously). The user is expected to provide the
arrays crkimp and crkexp for k, and creimp and creexp for €. These arrays are similar to the arrays
crvimp and crvexp given for the velocity in the user subroutine ustsns. The way of making implicit
the resulting source terms is the same as the one presented in ustsns. For ¢ and f in the v2f model,
see ustsv2, §6.6.4.

6.6.3 For R;; and ¢

Subroutine called every time step, in R;; — €.

The subroutine ustsri is used to add source terms to the transport equations related to the Reynolds
stress variables R;; and to the turbulent dissipation . This subroutine is called 7 times every time
step (once for each Reynolds stress component and once for the dissipation). The user must provide
the arrays crvimp and crvexp for the variable ivar (referring successively to irll, ir22, ir33, ir12,
ir13, ir23 and iep). These arrays are similar to the arrays crvimp and crvexp given for the velocity
in the user subroutine ustsns. The method for impliciting the resulting source terms is the same as
that presented in ustsns.

6.6.4 Foryand f

Subroutine called every time step, in v2f.

The subroutine ustsv2 is used to add source terms to the transport equations related to the variables
¢ and f of the v2f p-model. This subroutine is called twice every time step (once for ¢ and once for
f). The user is expected to provide the arrays crvimp and crvexp for ivar referring successively to
iphi and ifb. Concerning ¢, these arrays are similar to the arrays crvimp and crvexp given for the
velocity in the user subroutine ustsns. Concerning f, the equation is slightly different:

L2div(N(f)) = f+ .. + Simpt X f + Seapl
In the finite volume formulation, the solved system is written as:

— 1 — —(
V()8 = o5 (AF o+ Qi f T+ QiSenpi)
o9 i

The user must then specify:
crvimp, = ;Simpl,i
crvexp, = £ Sexpi i

The way of making implicit the resulting source terms is the same as the one presented in ustsns.
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6.6.5 Forkandw

Subroutine called every time step, in k — w.

The subroutine ustskw is used to add source terms to the transport equations related to the turbulent
kinetics energy k and to the specific dissipation rate w. This subroutine is called every time step (the
treatment of the two variables k& and w is made simultaneously). The user is expected to provide the
arrays crkimp and crkexp for the variable k, and the arrays crwimp and crwexp for the variable w.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsns. The way of making implicit the resulting source terms is the same as the one presented in
ustsns.

6.6.6 For user scalars

Subroutine called every time step.

The subroutine ustssc is used to add source terms to the transport equations related to the user
scalars (passive or not, average of the square of the fluctuations of a scalar, ...). In the same way as
ustsns, this subroutine is called every time step, once for each user scalar. The user needs to provide
the arrays crvimp and crvexp related to each scalar. cvimp and crvexp must be set to 0 for the
scalars on which it is not wished for the user source term to be applied (the arrays are initially set to
0 at each inlet in the subroutine.)

6.7 Pressure drops (head losses)

Pressure drops can be defined in the Gaphical User Interface (GUI) or in the subroutine uskpdc (called
three times every time step). In the GUI, under the heading “Volume conditions”, the item “Volume
regions definition” allows to define areas where pressure drops occur, see an example in fig 31. The
item “Head losses” allows to specify the head loss coefficients, see fig 32. The tensor representing the
pressure drops is supposed to be symmetric and positive.

If necessary, the pressure drops are written in the subroutine uskpdc.

e During the first call, all the cells are checked to know the number of cells in which a pressure
drop is present. This number is called ncepdp in uskpdc (and corresponds to ncepdc). It is used
to lay out the arrays related to the pressure drops. If there is no pressure drop, ncepdp must be
equal to zero (it is the default value, and the rest of the subroutine is then useless).

e During the second call, all the cells are checked again to complete the array icepdp whose size
is ncepdp. icepdc(ielpdc) is the number of the ielpdcth cell containing pressure drops.

e During the third call, all the cells containing pressure drops are checked in order to complete the
array containing the components of the tensor of pressure drops ckupdc (ncepdp,6). This array
is so that the equation related to the velocity may be written:

0
pay:..—p@m-y

The tensor components are given in the following order (in the general reference frame): k11,
k22, k33, k12, k13, k23 with k12, k13 and k23 being zero if the tensor is diagonal.

The three calls are made every time step, so that variable pressure drop zones or values may be treated.
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Figure 31: Creation of head losses region
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Figure 32: Head losses coefficients

6.8 Management of the mass sources

The subroutine ustsma is used to add a density source term in some cells of the domain (called at each
time step). The mass conservation equation is then modified as follows:

ap , B
E +div(pu) =T

I is the mass source term expressed in kg.m>.s71.

The presence of a mass source term modifies the evolution equation of the other variables, too. Let ¢
be a any solved variable apart from the pressure (velocity component, turbulent energy, dissipation,
scalar, ...). Its evolution equation becomes:

dp
Pt

©; is the value of ¢ associated with the mass entering or leaving the domain. After discretisation, the
equation may be written:

P+ _ ()

Y = 4T(p — D
p A7 + +T(pi — ¢ )

For each variable ¢, there are two possibilities:

e We can consider that the mass is added (or removed) with the ambient value of . In this case
©; = @™+ and the equation of ¢ is not modified.

e Or we can consider that the mass is added with an imposed value ; (this solution is physically
correct only when the mass is effectively added, T' > 0).

This subroutine is called three times every time step.

e During the first call, all the cells are checked to know the number of cells containing a mass
source term. This number is called ncesmp in ustsma (and corresponds to ncetsm). It is used to
lay out the arrays related to the mass sources. If there is no mass source, ncesmp must be equal
to zero (it is the default value, and the rest of the subroutine is then useless).
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e During the second call, all the cells are checked again to complete the array icetsm whose

th

dimension is ncesmp. icetsm(ieltsm) is the number of the ieltsm™ cell containing a mass

source.

e During the third call, all the cells containing mass sources are checked in order to complete the
arrays itypsm(ncesmp,nvar) and smacel (ncesmp,nvar):

th cell

- itypsm(ieltsm,ivar) is the flow type associated with the variable ivar in the ielstm
containing a mass source.
itypsm=0: ¢; = "1 condition
itypsm=1: imposed ¢, condition
itypsm is not used for ivar=ipr
- (ieltsm,ipr) is the value of the mass source term I, in kg.m 3.5~ 1.
- smacel (ieltsm,ivar), for ivar different from ipr, is the value of ; for the variable ivar in

the ielstm™ cell containing a mass source.

NOTES

o If itypsm(ieltsm,ivar)=0, smacel(ieltsm,ivar) is not used.

e If '=smacel(ieltsm,ipr) <0, mass is removed from the system, and Code_Saturne considers
automatically a ¢; = (1) condition, whatever the values given to itypsm(ieltsm,ivar) and
smacel (ieltsm,ivar) (the extraction of a variable is done at ambient value).

The three calls are made every time step, so that variable mass source zones or values may be treated.

For the variance, do not take into account the scalar ¢; in the environment where ¢ # ¢; generates a
variance source.

7 Results analysis

7.1 Management of the post-processing intermediate outputs

The subroutine usnpst is used to specify when post-processing outputs will be generated (it is called
at each time step even if the user hasn’t moved it to the directory SRC). By default, it tests if the
current time step number (ntcabs) is a multiple of the chosen output frequency (ntchr). If it is the
case, the indicator iipost turns to 1, which triggers the writing of an intermediate output. If the
frequency is given a negative value, the test is not performed.

For instance, a user who wants to generate post-processing outputs (also called “chronological out-
puts”) at the time step number 36 and around the physical time ¢=12 seconds may use the following
test:

iipost = 0 No output by default.

if (ntcabs.eq.36) then If the current time step is the 362,
iipost=1 generate an output.

endif End of the test on the time step number.

if (abs(ttcabs-12.d0).1le.0.01d0) then If the physical time is 12s +/- 0.01s,
iipost=1 generate an output.

endif End of the test on the physical time.

In any case, a post-processing output is generated after the last time step, usnpst being used or not.
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7.2 Definition of post-processing and mesh zones

The functions defined in cs_user_postprocess.c, namely cs_user_postprocess_writers, cs_user_postprocess_meshe
and cs_user_postprocess_activate allow for the definition of postprocessing output formats and fre-

quency, and for the definition of surface or volume sections, in the form of lists of nlfac internal

faces (Lstfac) and nlfab boundary faces (1stfab), or of nlcel cells (1stcel), in order to generate

chronological outputs in EnSight, MED or CGNS format.

One or several writers can be associated with each post-processing mesh, or “part” created. The
arguments of the function cs_post_define writer are as follows:

e writer_id: id the the associated writer.
negative ids are reserved (-1 for the main output), but the matching writer’s options may be
redifined by calls to this function.

e case_ name: basic name of the associated case.
WARNING: depending on the chosen format, this name may be shortened (maximum number
of characters: 32 for MED, 19 for EnSight) or modified automatically (whitespaces or forbidden
characters will be replaced by ’_%)

e dir name: name of the output directory
e fmt_name: choice of the output format:

— EnSight Gold (EnSight also accepted)
— MED_fichier (MED also accepted)
— OGNS

The options are not case-sensitive, so ensight or cgns are valid, too.

e fmt_opts: character string containing a list of options related to the format, separated by com-
mas; for the EnSight Gold format, these options are:
— binary for a binary format version (for EnSight, default)
big_endian to force outputs to be in big-endian mode (for EnSight).
text for a text format version (for EnSight).
adf for ADF file type (for CGNS).
hdf5 for HDF5 file type (for CGNS, normally the default if HDF5 support is available).

discard_polygons to prevent from exporting faces with more than four edges (which may not
be recognized by some post-processing tools); such faces will therefore not appear in the
post-processing mesh.

Ll Ll

J

discard_polyhedra to prevent from exporting elements which are neither tetrahedra, prisms,
pyramids nor hexahedra (which may not be recognized by some post-processing tools); such
elements will therefore not appear in the post-processing mesh.

— divide_polygons to divide faces with more than four edges into triangles, so that any post-
processing tool can recognize them

— divide_polyhedra to divide elements which are neither tetrahedra, prisms, pyramids nor hex-
ahedra into simpler elements (tetrahedra and pyramids), so that any post-processing tool
can recognize them

— split_tensor to export the components of a tensor variable as a series of independent variables
(a variable is recognised as a tensor if its dimension is 6 or 9); not implemented yet.

e time_dep: indicates if the post-processing (i.e. visualization) meshes (or “parts”) are:

— FVM_WRITER_FIXED_MESH fixed (usual case)
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— FVM_WRITER_TRANSIENT_COORDS deformable (the vertex positions may vary over time)

— FVM_WRITER_TRANSIENT_CONNECT modifiable: (the lists of cells or faces defining these meshes
can be changed over time)

e output_at_end: force output at calculation end if not 0

e frequency.n: default output frequency in time steps associated with this writer, or < 0 (the out-

put may be forced or prevented at any time step using the function cs_user_postprocess_activate)

e frequency_t: default output frequency in seconds associated with this writer, or < 0 (has priority
over frequency n, and the output may be forced or prevented at any time step using the function
cs_user_postprocess_act ivate)

In order to allow the user to add an output format to the main output format, or to add a mesh to the
default output, the lists of standard and user meshes and writers are not separated. Negative numbers
are reserved for the non-user items. For instance,the mesh numbers -1 and -2 correspond respectively
to the global mesh and to boundary faces, generated by default, and the writer -1 corresponds to the
usual post-processing case defined via cs_user_parameters.f90 or via the interface.

The user chooses the numbers corresponding to the post-processing meshes and writers he wants to
create. These numbers must be positive integers. It is possible to assocate a user mesh with the
standard post-processing case (-1), or to ask for outputs regarding the boundary faces (-2) associated
with a user writer.

For safety, the output frequency and the possibility to modify the post-processing meshes are associated
with the writers rather than with the meshes. This logic avoids unwanted generation of inconstitent
post-processing outputs. For instance EnSight would not be able to read a case in which one field is
output to a given part every 10 time steps while another field is output to the same part every 200
time steps.

The possibility to modify a mesh over time is limited by the most restrictive writer which is associated
with. For instance, if writer 1 allows the modification of the mesh topology (argument time dep =
FVM_WRITER_TRANSIENT_CONNECT in the call to cs_post_define writer) and writer 2 allows no modifi-
cation (time_dep = FVM_WRITER_FIXED_MESH), a user post-processing mesh associated with the writers
1 and 2 will not be modifiable, but a mesh associated only with the writer 1 will be modifiable. The
modification is done by means of the user subroutine usmpst, which is called once per time step and
per modifiable mesh.

It is possible to output variables which are normally automatically output on the main volume or
boundary meshes to a user mesh which is a subset of one of these by setting the auto_variables
argument of one of the cs_post_define_... mesh to true.

It is also possible to define an alias of a post-processing mesh. An alias shares all the attributes of its
parent mesh (without duplication), except its number. This may be used to output different variables
on a same mesh with 2 different writers: the choice of output variables is based on the mesh, so if P, is
associated with writer W,, all that is needed is to define an alias P, to P, and associate it with writer
W, to allow a different output variable selection with each writer. An alias may be created using the
pstalm subroutine.

Modification of a postprocessing mesh or it’s alias over time is always limited by the most restrictive
"writer” to which it’s meshes have been asscoiated (parts of the structures being shared in memory).
It is possible to define as many aliases as are required for a true mesh, but an alias cannot be defined
for another alias.

It is not possible to mix cells and faces in the same mesh (most of the post-processing tools being
perturbed by such a case)?S.

26actually, faces adjacent to selected cells and belonging to face or cell groups may be selected when the add_groups
of cs_post_define_... mesh is set to true, so as to maintain group information, but those faces will only be written for
formats supporting this (such as MED), and will only bear groups, not variable fields
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For a better understanding, the user may refer to the examples given in cs_user_postprocess_meshes.
We can note that the whitespaces in the beginning or in the end of the character strings given as
arguments of the functions called are suppressed automatically.

The additional variables to post-process on the defined meshes will be specified in the subroutine
usvpst. “

WARNING In the parallel case, some meshes may not contain any local elements on a given processor.
This is not a problem at all, as long as the mesh is defined for all processors (empty or not). It would
in fact not be a good idea at all to define a postprocessing mesh only if it contains local elements, global
operations on that mesh would become impossible, leading to probable deadlocks or crashes.

7.3 Modification of the mesh zones to post-process

Subroutine called only for each modifiable “part”, at every active time step of an associated “writer”.

The subroutine usmpst is used to modify the lists of cells, internal and boundary faces which define a
“user part” (or post-processing mesh) defined through the user subroutine usdpst and associated only
with “writers”; allowing “part” modifications over time (i.e. created with the parameter indmod = 2).

At first, the corresponding lists contain the previously defined values. If these lists are modified for a
given post-processing mesh, the argument imodif must be given the value 1.If this argument maintains
it’s initial value of 0, the code will not consider this ”"part” to have been modified away from that call
and it will offer to bring it upto date. It is in fact at the end of an optimisation so there is no need to
modify these ”parts” within the definate and modifiable assembly (if in doubt, let imodif=1).

Note that the itypps flag can be used to determine whether the current post-processing mesh contains
cells (itypps (1) = 1), internal faces (itypps(2) = 1), or boundary faces (itypps(2) = 1) globally (as
the number of local cells or faces of a processor could be 0, it doesn’t provide sufficient information).
If at any time, a given part contains no element of any type, all the values of itypes will be 0 and that

number cannot be put in the part (nummai) to determine if it will affect the cells or faces®7.

The user may refer to the example, in which cells are selected according to a given criterion:

- For a volume “part”, cells for which the velocity exceeds a certain value.

- For a surface “part”, interior faces which are between a cell in which the velocity exceeds a certain
value and a cell in which the velocity is lower than this value (and boundary faces neighboring a cell
in which the velocity exceeds this value). This surface post-processing mesh corresponds therefore to
an approximation of a velocity isosurface.

7.4 Definition of the variables to post-process

For the parts defined in usdpst, the subroutine usvpst is used to specify the variables to post-process
(called for each “part”, at every active time step of an associated “writer”, see usdpst).

The output of a given variable is generated by means of a call to psteva, whose arguments are:

e nummai: current “part” number (input argument in usvpst).

e namevr: name to give to the variable.

e idimt: dimension of the variable (3 for a vector, 1 for a scalar).
e ientla: indicates if the stored arrays are “interlaced” or not:

— 0: not interlaced, in the form {1, Za, ..., Ty, Y1, Y2, -y Yns 21, 225 -ovs Zn )
(case of all variables defined in rtp).

27Tt is not expressly forbidden to associate cells with the “part” at a certain timestep and faces at another, but this
has not been tested
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— 1: interlaced, in the form {x1, y1, 21,2, Y2, 22, s Try Yns Zn }
(case of the geometric parameters, like xyzcen, surfbo, ...).

For a scalar variable, this argument does not matter.
e ivarpr: indicates if the variable is defined on the “parent” mesh or locally:

— 0: variable generated by the user in the given work arrays tracel, trafac, and trafbr
(whose size is respectively the number of cells, internal faces and boundary faces of the
“part”, x3). The arrays lstcel, 1lstfac, and lstfbr can be used to get the numbers
corresponding to the cells, internal faces and boundary faces associated with the “part” and
to generate the appropriate post-processing variable.

— 1: variable already defined in the main mesh (“parent” mesh of the “parts”), for example
the variables in the rtp array. Instructions in the report which listlstcel, 1stfac, and
1stfbrwill be treated directly by the sub routine, avoiding unused copies and simplifying
hte code

ntcabs: absolute current time step number. If a negative value is given (usually -1), the variable
will be regarded as time-independent (and we will have to make sure this call is only made once).

e ttcabs: current physical time value. It is not taken into account if ntcabs < 0.

e tracel: array containing the values of the variable at the cells. If ivarpr = 1, this argument
will be replaced by the position of the beginning of the array on which the variable in defined,
for instance rtp(1, iu(1)) for the velocity.

e trafac: equivalent of tracel for the internal faces.

trafbr: equivalent of tracel for the boundary faces.

The user may refer to the example, which presents the different ways of generating an output of a
variable.

WARNING: Apart from the time-independent variables, it is not recommended not to generate the
same variables at every call (corresponding to an active time step) for a given mesh, because the post-
processing tool may have difficulties to deal with such a case. To generate outputs of different variables
on the same mesh with different frequancies, it is recommended to create an alias of this mesh and to
associate it with a different “writer” in the subroutine usdpst.

7.5 Modification of the variables at the end of a time step

The subroutine usproj is called at the end of every time step. It is used to print of modify any variable
at the end of every time step.

Several examples are given:

- Calculation of a thermal balance at the boundaries and in the domain (including the mass source
terms)

- Modification of the temperature in a given area starting from a given time
- Extraction of a 1D profile, see fig. 25
- Printing of a moment

- Utilisation of utility subroutines useful in the case of a parallel calculation (calculation of a sum
on the processors, of a maximum, ...)
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WARNING: As all the variables (solved variables, physical properties, geometric parameters) can be
modified in this subroutine, a wrong use may distort totally the calculation.

The thermal balance example is particularly interesting.

- It can be easily adapted to another scalar (only three simple modifications to do, as indicated in
the subroutine).

- It shows how to make a sum on all the subdomains in the framework of a parallel calculation
(see the calls to the subroutines parx).

- It shows the precautions to take before doing some operations in the framework of periodic or
parallel calculations (in particular when we want to calculate the gradient of a variable or to
have access to values at the cells neighboring a face).

- Finally it must not be forgotten that the resolution with temperature as a solved variable is
questionable when the specific heat is not constant.

7.6 Non-standard management of the chronological record files

The interface and the subroutine cs_user_parameters.f90 allow to manage the “automatic” chrono-
logical record files in an autonomous way: position of the probes, printing frequency and related
variables. The results are written in a different file for each variable. These files are written in xmgrace
or gnuplot format and contain the profiles corresponding to every probe. This type of output format
may not be well adapted if, for instance, the number of probes is too high. The subroutine ushist,
called at each time step, allows then to personalise the output format of the chronological record files.
The version given as example in the directory works as follows:

- Positionning of the probes (only at the first passage): the index ii varies between 1 and the
number of probes. The coordinates xx, yy and zz of each probe are given. The subroutine
findpt gives then the number icapt(ii) of the cell center which is the closest to the defined
probe.

- Opening of the output files (only at the first pass): in the version given as example, the program

opens a different file for all the nvar variables. ficush(j) contains the name of the T file and
impush(j) its unit number (impush is initialised by default so that the user has at his disposal
specific unit numbers and does not run the risk to overwrite an already open file).

- Writing to the files: in the version given as example, the program writes the time step number,
the physical time step (based on the standard time step in the case of a variable time step) and
the value of the selected variable at the different probes.

- Closing of the files (only at the last time step).
WARNING: The use of ushist neither erases nor replaces the parameters given in the interface or in
cs_user_parameters.f90. Therefore, in the case of the use of ushist, and to avoid the creation of
useless files, the user should set ncapt=0 in the interface or in cs_user_parameters.f90 to deactivate

the automatic production of chronological records.
In addition, ushist generates supplementary result files.

8 Advanced modelling setup

8.1 Use of a specific physics

Specific physics such as dispersed phase, atmospheric flows and coal combustion models can be added
by the user from the interface, or by using the subroutine usppmo (called only during the calculation
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initialisation). With the interface, when a specific physics is activated in fig. 33, additional items or
headings may appear (see for instance Sections 8.6.1 and 8.2.0.1).

— ~Steady/Unsteady flow algorithm
- | ldentity and paths
: Calculation environment [unsteady flow |v]
- Thermophysical models
ulation features
obile mesh
| Turbulence models [single Phase Flow I'l
| Thermal model
| Radiative transfers
. [ ] Conjugate heat transfer
- B Additional scalars [Of'f l_l
Physical properties
B Wolume conditions
B Boundary conditions
B Numerical parameters [of‘f v]
- @ Calculation control |
G- B Calculation management

~Eulerian-Lagrangian multi-phase treatment

A
i
A
A

~atmospheric flows

~Gas combustion

—Pulverized coal combustion

|off -]

~Electrical models

(off -]

.| [« ]»

Figure 33: Thermophysical models selection

When the interface is not used, usppmo is one of the three subroutines which must be obligatory
completed by the user in order to use a specific physics module. Also, some specific physics modules
can not yet be activated through the interface such as the modules listed below which were not quoted
at the beginning of this section. At the moment, Code_Saturne allows to use two “pulverised coal”
modules (with Lagrangian coupling or not), two “gas combustion” modules, two “electrical” modules,
a “compressible” module, an “cooling towers” module and an “atmospheric” module. To activate one
of these modules, the user needs to complete one (and only one) of the indicators ippmod(i... .. )
in the subroutine usppmo. By default, all the indicators ippmod(i..... ) are initialised at -1, which
means that no specific physics is activated.

e Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod (icod3p)

— ippmod(icod3p) = 0 adiabatic conditions
— ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)
— ippmod(icod3p) =-1 module not activated

e Eddy Break Up pre-mixed flame: indicator ippmod (icoebu)

— ippmod(icoebu) = 0 adiabatic conditions at constant richness
— ippmod(icoebu) = 1 permeatic conditions at constant richness
— ippmod(icoebu) = 2 adiabatic conditions at variable richness

— ippmod(icoebu) = 3 permeatic conditions at variable richness

— ippmod(icoebu) =-1 module not activated
e Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

— ippmod(icolwc)=0 two peak model with adiabiatic conditions.
— ippmod(icolwc)=1 two peak model with permeatic conditions.

— ippmod(icolwc)=2 three peak model with adiabiatic conditions.
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— ippmod(icolwc)=3 three peak model with permeatic conditions.
— ippmod (icolwc)=4 four peak model with adiabiatic conditions.
— ippmod(icolwc)=>5 four peak model with permeatic conditions.
— ippmod (icolwc)=-1 module not activated.
e Multi-coals and multi-classes pulverised coal combustion: indicator ippmod (icp3pl) The number

of different coals must be inferior or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be inferior or equal to ncpcmx = 10.

— ippmod(icp3pl) = 0 imbalance between the temperature of the continuous and the solid
phases
— ippmod(icp3pl) = 1 otherwise
— ippmod(icp3pl) =-1 module not activated
e Lagrangian modeling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod(icpl3c) The number of different coals must be inferior or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be inferior or equal to
ncpemx = 10.
— ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of Ho
— ippmod(icpl3c) =-1 module not activated
e Electric arc module (Joule effect and Laplace forces): indicator ippmod (ielarc)
— ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)
— ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

— ippmod(ielarc) =-1 module not activated
e Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

— ippmod(ieljou) = 1 use of a real potential

— ippmod(ieljou) = 2 use of a complex potential

— ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.
%

ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

— ippmod(ieljou) =-1 module not activated
e Compressible module: indicator ippmod (icompf)

— ippmod(icompf) = 0 module activated

— ippmod (icompf) =-1 module not activated
e atmospheric flow module: indicator ippmod(iatmos)

— ippmod(iatmos) =-1 module not activated
— ippmod(iatmos) = 0 standard modelling
— ippmod(iatmos) = 1 dry atmosphere

— ippmod(iatmos) = 2 humid atmosphere (NOT functional)
e cooling towers module: indicator ippmod(iaeros)

— ippmod(iaeros =-1 module not activated

— ippmod(iaeros = 0 no model (NOT functional)
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— ippmod(iaeros = 1 Poppe’s model

— ippmod(iaeros = 2 Merkel’s model

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modeling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default

value being 1). For more details, the user may refer to the following note (thermo-chemical files).

NOTE: THE THERMO-CHEMICAL FILES

The user must not forget to place in the directory DATA the thermo-chemical file dp_FCP, dp_C3P,
dp_C3PSJ or dp_ELE (depending on the specific physics module he activated) and to specify the name
of this file in the variable THERMOCHEMISTRY _DATA in the launch script (for instance: THER-
MOCHEMISTRY _DATA”dp_C3P”). Some example files are placed in the directory DATA/THCH at the

creation of the study case. Their content is described below.

e Example of file for the gas combustion:

— if the enthalpy-temperature conversion data base JANAF is used: dp-C3P (see arrayl).

stoeg(ngazg,nrgaz)

Lines| Examples of values Variables Observations
1 5 ngaze Number of current species
2 10 npo Number of points for the
enthalpy-temperature tabulation
3 300. tmin Temperature inferior limit
for the tabulation
4 3000. tmax Temperature superior limit
for the tabulation
5 Empty line
6 |CH4 02 CO2 H20 N2 nomcoe(ngaze) List of the current species
7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species

8 4 nato Number of elemental species
9 01210100 wmolat(nato), Molar mass of the elemental
10 .00140020 species (first column)
11 01602210 atgaze(ngaze,nato) Composition of the current species
12 .01400002 as a function of the elemental species

(ngaze following columns)
13 3 ngazg Number of global species

Here, ngazg = 3 (Fuel, Oxidiser and Products)
14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) | fonction of the current species of the line 6
16 0. 0. 1. 2. 7.52 In the order: Fuel (line 15),
Oxidiser (line 16) and Product (line 17)
17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1
in this version)
18 igfuel(nrgaz), Numbers of the global species concerned by
12-1-9.5210.52 igoxy(nrgaz), the stoichiometric ratio

(first 2 integers)
Stoichiometry in reaction global species.
Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for
the products (here “Products”)

Table 1: Example of file for the gas combustion when JANAF is used: dp_C3P
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— if the user provides his own enthalpy-temperature tabulation (there must be three chemical
species and only one reaction): dp_-C3PSJ (see array 2). This file replaces dp_C3P.

Lines Examples of values Variables Observations
1 6 npo Number of tabulation points
2 50. -0.32E+407 -0.22E+06 -0.13E+408
3 [250. -0.68E+406 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E407 0.14E+406 -0.13E4-08 | ehgazg(l,npo),| mass enthalpy of fuel, oxidiser
5 650. 0.50E+07 0.33E406 -0.12E+08 | ehgazg(2,npo), | and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 | ehgazg(3,npo) from line 2 to line npo+1
7 11050. 0.11E4+08 0.76E406 -0.11E+08
8 .00219 .1387 .159 wmolg(1), Molar mass of fuel,
wmolg(2), oxidiser
wmolg(3) and products
9 1111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)
10 0.4 0.5 0.87 ckabsg(1), Absorption coefficient of fuel,
ckabsg(2), oxidiser
ckabsg(3) and products
11 1. 2. xco2, xh2o0 Molar coefficents of CO2
and H20 in the products
(radiation using Modak)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature
tabulation (there must be three species and only one reaction): dp_C3PSJ (this file replaces dp_C3P)

e Example of file for the pulverised coal combustion: dp_FCP (see array 3).

e Example of file for the electric arc: dp_ELE (see array 4).
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Lines Examples of values Variables Observations
1 THERMOCHEMISTRY Comment line
2 8 ncoel Number of current species
3 8 npo Number of points for the
enthalpy-temperature tabulation
4 CURRENT SPECIES Comment line
5 CH4 C2H4 CO O2 CO2 H20 N2 C(S) | nomcoel(ncoel) Tist of the
current species
6 300. tmin Temperature inferior limit (Kelvin)
for the enthalpy-temperature tabulation
7 2400. tmax Temperature superior limit (Kelvin)
for the enthalpy-temperature tabulation
8 4 nato Number of elementary species
9 01212101001 Molar mass of the elemental species
10 00144000200 wmolat (nato), (first column)
11 01600122100 atcoel(ncoel,nato) and composition of the current species
12 01400000020 as a function of the elemental species
13 RADIATION Comment line
14 0.1 ckabs1 Constant absorption coefficient
for the gas mixture
15 COAL CHARACTERISTICS Comment line
16 2 ncharb Number of coal types
17 11 nclpch(ncharb) Number of classes for each coal
(each column corresponding to
one coal type )
18 50.B-6 50.5-6 diam20(nclacp) Tnitial diameter of each class (m)
nclacp is the total number of cla;
All the diameters are written on the same line
(sucessively for each coal, we give the
diameter corresponding to each class)
19 74.8 60.5 cch(ncharb) Composition in C (mass.-%, dry) of each coal
20 5.1 4.14 heh(ncharb) Composition in H (mass.-%, dry) of each coal
21 12.01 5.55 och(ncharb) Composition in O (mass.-%, dry) of each coal
22 0 31524000. 0 31524000. ipci(ncharb) Value of the PCI (Jkg 1) for each coal,
pcich(ncharb) the first integer indicating if this value refers
to pure (0) or dry coal (1)
23 1800. 1800. cp2ch(ncharb) Heat-storage capacity at constant pressure
(Jkg— YK —1) for each coal
24 1200. 1200. rhoOch(ncharb) Initial density (kgm 5) of each
25 Coke Comment line
26 0. 0. cck(ncharb) Composition in C (mass.-%, dry) of the coke
for each coal
27 0. 0. hck(ncharb) Composition in H (mass.-%, dry) of the coke
for each coal
28 0. 0. ock(ncharb) Composition in O (mass.%, dry) of the coke
for each coal
29 0. 0. pcick(ncharb) PCI of the dry coke (Jkg_l) for each coal
30 Ashes Comment line
31 6.3 6.3 xashch(ncharb) Ash mass fraction (mass.-%, dry) in each coal
32 0. 0. hoashc (ncharb) Ash formation enthalpy (Jkg 1)
for each coal
33 0. 0. cpashc (ncharb) CP of the ashes (Jkg LK 1) for each coal
34 0. 0. xwatch(ncharb) humidity rate of the ashes (mass.-%) for each coal
35 Devolatilisation (Kobayashi) Comment line
36 10.37 0 0.37 iylch(ncharb), For each coal, pairs (iyich, yich).
yich(ncharb) The real yich is the adimensional stoich. coefficient
If the integer iyich is worth 1,
the provided value of yich is adopted and
the composition of the light volatile matters
is calculated automatically.
If the integer iyich is worth 0,
the provided value of yich is ignored:
yich is calculated automatically (the light
volatiles are then composed of CHy, CO).
37 10.7410.74 iy2ch(ncharb), For each coal, pairs (iy2ch, y2ch).
y2ch(ncharb) The real y2ch is the adimensional stoich. coefficient
If the integer iy2ch is worth 1,
the provided value of y2ch is adopted and
the composition of the heavy volatile matters
is calculated automatically.
If the integer iy2ch is worth 0,
the provided value of y2ch is ignored:
y2ch is calculated automatically (the heavy
volatiles are then composed of CoHy, CO).
38 370000. 410000. alch(ncharb) Devolatilisation pre-exponential factor Al (s~ 1)
for each coal (light volatile matters)
39 1.3E13 1.52E13 a2ch(ncharb) Devolatilisation pre-exponential factor A2 (5_1)
for each coal (heavy volatile matters)
40 74000. 80000. elch(ncharb) Devolatilisation activation energy E1 (Jvnalfl)
for each coal (light volatile matters)
41 250000. 310000. e2ch(ncharb) Activation energy E2 (Jmol 1) of devolatilisation
for each coal (heavy volatile matters)
42 heterogeneous combustion Og Comment lign
43 17.88 17.88 ahetch(ncharb) Char burnout pre-exponential constant
(kg7n72sflatm71) for each coal
44 16.55 16.55 ehetch(ncharb) Char burnout activation energy (kcalmol 1)
for each coal
45 11 iochet (ncharb) Char burnout reaction order for each coal
0.5 if iochet = O and 1 if jochet = 1
16 heterogeneous combustion COg Comment lign
47 1.788 1.788 ahetch(ncharb) Char burnout pre-exponential constant
(kgm ™25 Latm—1) for each coal
48 1.655 1.655 ehetch(ncharb) Char burnout activation energy (kcalm ol_l)
for each coal
49 T1 fochet (ncharb) Char burnout reaction order for cach coal
0.5 if iochet = 0 and 1 if iochet = 1
50 OXYDIZERS CHARACTERISTICS Comment lign
51 3 noxyd Number of oxydizers
(mixtures of Og, Ng, H3O, COs9)
52 1. 0.1 oxyo2(noxyd) Composition in Og of each oxydizer (moles)
53 0. 0.1 oxyn2(noxyd) Composition in Ng of each oxydizer (moles)
54 0. 0. 1. oxyh20(noxyd) Composition in HoO of each oxydizer (moles)
55 2.39 1. 1. oxyco2(noxyd) Composition in COq of each oxydizer (moles)

Table 3: Example of file for the pulverised coal combustion: dp_FCP
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Lines | Examples of values Variables Observations
1 | # Fichier ASCII format libre ... Free comment
2 | # Les lignes de commentaires ... Free comment
3 |# .. Free comment
4 | # Proprietes de ’Argon ... Free comment
5 |# .. Free comment
6 | # Nb d’especes NGAZG et Nb ... Free comment
7 |# NGAZG NPO ... Free comment
8 1238 ngazg Number of species
npo Number of given temperature points for
the tabulated physical properties
(npo < npot set in ppthch)
So there will be ngazg blocks of npo lines each
9 | # .. Free comment
14 |0 ixkabe Radiation options for xkabe
15 | # .. Free comment
16 |# Proprietes ... Free comment
17 |# T H .. Free comment
18 | # Temperature Enthalpie ... Free comment
19 |# .. Free comment
20 |# K J/kg ... Free comment
21 | # ... Free comment
22 300. 14000. ... Tabulation in line of the physical properties
as a function of the temperature in Kelvin
for each of the ngazg species
h Enthalpy in J/kg
roel Density in kg/m3
cpel Specific heat in J/(kg K)
sigel Electric conductivity in Ohm/m
visel Dynamic viscosity in kg/(m s)
xlabel Thermal conductivity in W/(m K)
xkabel Absorption coefficient (radiation)

Table 4: Example of file for the electric arc module: dp_ELE
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8.2 Pulverised coal and gas combustion module
8.2.0.1 Initialisation of the variables

For coal combustion, it is possible to initialise the specific variables in the Graphical User Interface
(GUI) or in the subroutines usebui, usd3pi, uslwci and uscpiv. In the GUI, when a coal combus-
tion physics is selected in the item “Calculation features” under the heading “Thermophysical models”,
an additional item appears: “Pulverized coal combustion”. In this item the user can define coal types,
its composition, the oxydant and reactions parameters, see figs. 34 to 38.

Coal | Oxydant

~Coal combustion

|Number of coal types |
Coal 1 Add

Coal 2

Classes I Coal | Coke | Ashes | Devolatilisation | Heterogeneous combusi(lb

—~Classes

|Number of classes |Initial diameter |

Class 1 0,002
Class 2 0,0001

Add

Delete

Figure 34: Thermophysical models - Pulverized coal combustion, coal classes

Classes | Coal | Coke [ Ashes | Devolatilisation | Heterogeneous com

~Coke composition

Composition over C on dry
Composition over H on dry

Composition over O on dry

- -

—Coke properties

Figure 35: Pulverized coal combustion, coke

If the user deals with gas combustion or if he (or she) does not want to use the GUI for coal com-
bustion, the subroutines usebui, usd3pi, uslwci and uscpiv are used (only during the calculation
initialisation).

In this section, “specific physics” will refer to gas combustion or to pulverised coal combustion.
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Classes J Coal l Coke | Ashes | Devolatilisation | Heterogeneous corﬁﬂﬂ

—Coal composition
Composition over C on dry

e
Composition over H on dry %

Composition over O on dry %

~Coal properties

PCI [0.0 l Ifkg [on pure |v]

Figure 36: Pulverized coal combustion, coal composition

| Coal | Coke | Ashes | Devolatilisation | Heterogeneous combustion ]EE]

~Parameters for 02

Pre-exponential constant kg/m¥sfatm

Activation energy kealfmol

Reaction order 0.5 -
—Parameters for CO2

Pre-exponential constant kg/m?/s/atm

Activation energy kealfmol

Reaction order 0.5 -

Figure 37: Pulverized coal combustion, reaction parameters

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

WARNING: in the case of a specific physics modeling, all the variables will be initialised here, even
the potential user scalars: cs_user_initialization is no longer used.

e in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate rtp(iel,isca(ifm)) in variable richness, the fresh gas mass fraction
rtp(iel,isca(iygfm)) and the mixture enthalpy rtp(iel,isca(ihm)) in permeatic conditions

e in the case of the rapid complete chemistry diffusion flame module, the user can initialise in
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Oy

— Oxydants caracterization (by number of mol)

Oxydant

number 02

1 0,25 0,75 0 0

Add

Delete

d

Figure 38: Pulverized coal combustion, oxydant

every cell iel: the mixing rate rtp(iel,isca(ifm)), its variance rtp(iel,isca(ifp2m)) and
the mixture mass enthalpy rtp(iel,isca(ihm)) in permeatic conditions

e in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

— the transport variables related to the solid phase

rtp(iel,isca(ixch(icla))) the reactive coal mass fraction related to the class icla
(icla from 1 to nclacp which is the total number of classes, i.e. for all the coal type)

rtp(iel,isca(ixck(icla))) the coke mass fraction related to the class icla
rtp(iel,isca(inp(icla))) the number of particles related to class icla per kg of
air-coal mixture

rtp(iel,isca(ih2(icla))) the mass enthalpy related to the class icla in permeatic
conditions

— rtp(iel,isca(ihm)) the mixture enthalpy

— the transport variables related to the gas phase

rtp(iel,isca(ifim(icha))) the mean value of the tracer 1 representing the light
volatile matters released by the coal icha

rtp(iel,isca(if2m(icha))) the mean value of the tracer 2 representing the heavy
volatile matters released by the coal icha

rtp(iel,isca(if3m)) the mean value of the tracer 3 representing the carbon released
as CO during coke burnout

rtp(iel,isca(if4p2m)) the variance associated with the tracer 4 representing the air
(the mean value of this tracer is not transported, it can be deduced directly from the
three others)

rtp(iel,isca(ifp3m)) the variance associated with the tracer 3

8.2.1 Boundary conditions

In this section, “specific physics” refers to gas combustion or to pulverised coal combustion.

For coal combustion, it is possible to manage the boundary conditions in the Graphical User Interface
(GUI). When the coal combustion physics is selected in the heading “Thermophysical models”, specific
boundary conditions are activated for inlets, see fig. 39. The user fills for each type of coal previously
defined (see Section 8.2.0.1) the initial temperature and initial composition of the inlet flow, as well as
the mass flow rate.

For gas combustion or if the GUI is not used for coal combustion, the use of usebuc (called at every
time step), usd3pc, uslwcc, uscpcl or uscplc is as mandatory as cs_user_parameters.f90 and
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—Boundary conditions
Label |Zone |Nature |Se|ection criteria
wall 3 wall 5
cold_inlet 1

inlet 2

hot_inlet 2
outlet 5 outlet 7

~Flows and temperatures

[Ox}rdant and coal |v]

—Mass flow rate and temperature for oxydant

Norm ~| [o0.03183 | mrs E]
Oxydant number E Temperature [|1273.15 K

Direction

[Normalto the inlet I'] EI

—Mass flow rate and temperature of coals

Coal 2 1 127315

~Ratio of mass distribution for each class of coal

o2 1

Figure 39: Boundary conditions for the combustion of coal

usppmo to run a calculation involving specific physics. The way of using them is the same as using
cs_user_boundary_conditions in the framework of standard calculations, that is, run several loops
on the boundary faces lists (cf. §3.9.3) marked out by their colors, groups, or geometrical criterion,
where the type of face, the type of boundary condition for each variable and eventually the value of
each variable are defined.

WARNING: In the case of a specific physics modeling, all the boundary conditions for every variable
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must be defined here, even for the eventual user scalars: cs_user_boundary_conditions is not used

at all.

In the case of a specific physics modeling, a zone number izone 2® (for instance the color icoul) is
associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to cs_user_boundary_conditions, the main change from the user point of view

concerns the faces whose boundary conditions belong to the type itypfb=ientre:

e for the

EBU pre-mixed flame module:

— the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas
indicator ientgf (izone)=1)

— for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,

- the user gives to the indicator iqimp(izone) the value 1,

- the mass flow value is set in qimp(izone) (positive value, in kgs™1)

- finally he imposes the velocity vector direction by giving the components of a di-
rection vector in rcodcl(ifac,iu), rcodcl(ifac,iv) and rcodcl(ifac,iw)

WARNING:

- the variable qimp (izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axisymetric calculations, the inlet

suface of the mesh must be broken up)

- the variable qimp (izone) deals with the inflow across the area izoz and only across
this zone;it is recomended to pay attention to the boundary conditions.

- the velocity direction vector is neither necessarily normed, nor necessarily incoming.

- to impose a velocity, the user must give to the indicator iqimp(izone) the value 0 and
set the three velocity components (in m.sil) in rcodcl(ifac,iu), rcodcl(ifac,iv)

and rcodcl(ifac,iw)

— finally he specifies for each gas inlet type the mixing rate fment (izone) and the temperature
tkent (izone) in Kelvin

e for the

“3 points” diffusion flame module:

— the user can choose between the “oxydiser inlet” type marked out by ientox(izone)=1
and the “fuel inlet” type marked out by ientfu(izone)=1

— concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

— finally, the user sets the temperatures tinoxy for each oxydiser inlet and tinfue, for each
fuel inlet

Note: In the standard version, only the cases with only one oxydising inlet type and one
fuel inlet type can be treated. In particular, there must be only one input temperature for

the ozidiser (tinozy) and one input temperature for the fuel (tinfuel).

e for the

pulverised coal module:

— the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat(izone)=1

28

2000 in pppvar;not to be modified

izone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at
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— in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat (izone),
its direction in rcodcl(ifac,iu), rcodcl(ifac,iv) and
rcodcl(ifac,iw) and the incoming air temperature timpat (izone) in Kelvin. If the ve-
locity is imposed, he has to set rcodcl(ifac,iu),
rcodcl(ifac,iv) and rcodcl(ifac,iw).

— if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)
the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

8.2.2 Initialisation of the options of the variables

In the case of coal combustion, time averages, chronological records and listings follow-ups can be set
in the Graphical User Interface (GUI) or in the subroutines usebul, usd3pl, uslwcl, uscpil and
uscpll. In the GUI, under the heading “Calculation control”, additional variables appear in the list
in the items “Time averages” and “Profiles”, as well as in the item Volume solution control”, see figs.
40 and 41.

~Time averages

Number | Average name | Start

Label of time average

Start iteration number

for time average calculation

If restart, number in preceding calculation
of the time a to use to initalize

the current selected time average. :]

Ga_DCHO2 [=] Rho_CPOZ2
Ga_DCHO3 Temp_CP02
Frm_CPO2
XCH_CPO2 @’
Pression

total_pressure
Rho_CPO3 @

automatic

Figure 40: Calculation control - Time averages

In this section, “specific physics” refers to gas combustion or pulverised coal combustion.

For gas combustion or if the GUI is not used for coal combustion, the 3 subroutines usebul, usd3pi,
uslwcl, uscpil and uscpll can be used to complete cs_user_parameters.f90 for the considered
specific physics. These subroutines are called at the calculation start. They allow to:

e generate, for the variables which are specific to the activated specific physics module, chrono-
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~Solution contral
Name Filrr::tnlg? proF::[::s-ing Bigass
Fr_HET_02 x x 1234
Enthalpy % (%] 1234
NP_CPO1 x x 1234
NP_CP02 x x 1234
NP_CPO3 x x 1234
XCH_CPO1 * * 1234
XCH_CPO2 x x 1234
XCH_CPO3 x x 1234
XCK_CPO1 x x 1234
XCK_CPO2 * * 1234
XCK_CPO3 x x 1234
ENT_CPOL1 x x 1234
ENT_CPO2 x x 1234
ENT_CPO3 * * 1234
Fr_Mv101 x x 1234
Fr_MV102 x x 1234
Fr_Mv201 x x 1234
Fr_Mv202 * * 1234
var_AIR ® * 1234
Temp_GAZ ® ® 1234
ROM_GAZ x x 1234
YM_CHx1m x x 1234
YM_CHx2m * * 1234

Figure 41: Calculation control - Volume solution control

logical outputs (indicators ichrvr (ipp)), follow-ups in the listings (indicator ilisvr (ipp)) and
to activate chronological records at the probes defined in cs_user_parameters.f90 (indicators

ihisvr (ipp)).

The way of doing it is the same as in cs_user_parameters.f90 and the writing frequencies
of these ouputs are set by cs_user_parameters.f90. The values of the indicators ipp are
ipp=ipppro(ipproc(ivar)), with ivar the number of the specific physics variable. Concerning
the main variables (velocity, pressure, etc ...) the user must still complete cs_user_parameters.f90
if he wants to get chronological records, printings in the listing or chronological outputs. The
variables which can be activated by the user for each specific physics are listed below. The
calculation variables ivar (defined at the cell iel by rtp(iel,ivar)) and the properties iprop

(defined at the cell iel by propce(iel,ipproc(iprop))) are listed now:

— EBU pre-mixed flame modeling;:

- Calculation variables rtp(iel,ivar)

ivar =
ivar =

ivar =

isca(iygfm) fresh gas mass fraction

isca(ifm) mixing rate

isca(ihm) enthalpy, if transported
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- Properties propce(iel,ipproc(iprop))

iprop = itemp temperature

iprop = iym(1) fuel mass fraction

iprop = iym(2) oxidiser mass fraction

iprop = iym(3) product mass fraction

iprop = ickabs absorption coefficient, when the radiation modeling is activated

iprop = it3m and it4m “T” and “T*” terms, when the radiation modeling is acti-
vated

— rapid complete chemistry diffusion flame modeling;:

everything is identical to the “EBU” case, except the fresh gas mass fraction which is
replaced by the variance of the mixing rate ivar=isca(ifp2m)

— pulverised coal modeling with 3 combustibles:

variables shared by the two phases:
- Calculation variables rtp(iel,ivar)
ivar = isca(ihm): gas-coal mixture enthalpy
ivar = isca(immel): molar mass of the gas mixture
variables specific to the dispersed phase:

- Calculation variables rtp(iel,ivar)

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(inp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in

permeatic conditions
- Properties propce(iel,ipproc(iprop))

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla

iprop = igmdv1(icla): mass transfer caused by the release of light volatiles from
the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles
from the class icla

iprop = igmhet(icla): coke disappearance rate during the coke burnout of the
class icla

iprop = ix2(icla): solid mass fraction of the class icla

variables specific to the continuous phase:
- Calculation variables rtp(iel,ivar)

ivar = isca(ifim(icha)): mean value of the tracer 1 representing the light
volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy
volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released
as CO during coke burnout

ivar = isca(if4pm): variance of the tracer 4 representing the air

ivar = isca(if3p2m): variance of the tracer 3

- Properties propce(iel,ipproc(iprop))
iprop = itempl: temperature of the gas mixture
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iprop = iym1(1): mass fraction of CHx1,, (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of CHxa,, (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iym1(4): mass fraction of Oy in the gas mixture

iprop = iym1(5): mass fraction of CO; in the gas mixture

iprop = iym1(6): mass fraction of HyO in the gas mixture

iprop = iym1(7): mass fraction of N» in the gas mixture

e set the relaxation coefficient of the density srrom, with
p" ! = srrom  p" + (1 — srrom)p™ !
(by default, the adopted value is srrom = 0.8. At the beginning of a calculation, a sub-relaxation
of 0.95 may reduce the numerical “schocks”).

e set the dynamic viscosity dift10. By default dift10= 4.25 kgm 15! (the dynamic diffusivity
being the ratio between the thermal conductivity A and the mixture specific heat C), in the
equation of enthalpy).

e set the value of the constant cebu of the Eddy Break Up model (only in usebul. By default
cebu=2.5)

8.3 Heavy fuel oil combustion module
8.3.1 Initialisation of transported variables

To initialise or modify (in case of a continuation) values of transported variables and of the time step,
the subroutine usfuiv is used. It is similar to cs_user_initialization. It is called at the beginning
of every computation (new or continuation) before the time loop.

Physical properties are stored in propce (cell center), propfa (inner face) and propfb. For instance,

propce(iel, ipproc(irom )) isrom(iel), the mean density (in kg.m~=3), and propfa(ifac,ipprof (ifluma(ivar)))
is flumas (IFAC,IVAR), the convective flux of the variable ivar.

Physical properties (rom, viscl, cp, ...) are computed in ppphyv and are not to be modified here.

All cells can be identified by using the subroutine ’getcel’. All boundary faces may be identified using
the ’getfbr’ subroutine. All internal faces may be identified using the 'getfac’ subroutine. Details of
the syntax of these three subroutines are given in usfuiv.

In usfuiv the user initialise quantities related to the turbulent model chosen, and to gaseous species
and droplets compositions. Exemples are provided in the subroutine.

8.3.2 Boundary conditions

Boundary conditions are defined on a per-face basis in usfucl. Boundary faces may be identified using
the ’getfbr’ subroutine. usfucl is very similar to uscpcl, see Section 8.2.1. Boundary conditions
may be assigned in two ways:

. for “standard” boundary conditions (inlet, free outlet, wall, symmetry): a code is defined in the
array itypfb (of dimensions equal to the number of boundary faces). This code will then be
used by a non-user subroutine to assign the conditions.

. for “non-standard” conditions: see details given in usfucl.

8.3.3 Initialisation of the options of the variables

The presence of a fuel combustion module variable in the listing, histo files, and the output frequency
are set in the subroutine usfuil. If the vectors below are not allocated, default values will be used:
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- ichrvr: chronological output (1:yes / 0:no)
- ilisvr: listing output (1:yes / 0:no)

- ihisvr: histo output (number of probes and probe numbers), if = —1, every probes defined in
cs_user_parameters.f90 will be found in the histo files

Calculation options such as a the relaxation parameter the for density (recommended when starting
a combustion computation but forbidden for unstationnary computations) can also be set, as well as
physical constants like the the laminar viscosity for the enthalpy.

8.4 Radiative thermal transfers in semi-transparent gray media
8.4.1 Initialisation of the radiation main parameters

The main radiation parameters can be initialise in the Graphical User Interface (GUI) or in the user
subroutine usrayl. In the GUI, under the heading “Thermophysical models”, when one of the two
thermal radiative transfers models is selected, see fig. 42, additional items appear. The user is asked
to choose the number of directions for angular discretisation, to define the absorption coefficient and
select if the radiative calculation are restarted or not, see figs. 43 and 45. When “Advanced options” is
selected for both models figs. 44 or 46 appear, the user must fill the resolution frequency and verbosity
levels. In addition, the activation of the radiative transfer leads to the creation of an item “Surface
solution control” under the heading “Calculation control”, see fig. 47, where radiative transfer variables
can be selected to appear in the output listing.

N Thermal radiative transfers
i Identity and paths
--E Calculation environment [NQ radiative transfers |vl
E‘ Thermophysical models Mo radiative transfers
~| ./ Calculation features te ordinates method
-1, | Mobile mesh P-1 Model

- L ) Turbulence models

-] Thermal model

B Radiative transfers

il | Conjugate heat transfer

Figure 42: Radiative transfers models

If the GUI is not used, usray1 is one of the two subroutine which must be completed by the user for all
calculations including radiative thermal transfers. It is called only during the calculation initialisation.
It is composed of three headings. The first one is dedicated to the activation of the radiation module,
only in the case of classic physics.

WARNING: when a calculation is ran using a specific physics module, this first heading must not be
completed. The radiation module is then activated or not, according to the parameter file related to the
considered specific physics.

In the second heading the basic parameters of the radiation module are indicated.

Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary
faces.

For more details about the different parameters, the user may refer to the key word list (§9).
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~Thermal radiative transfers

Discrete ordinates method Ivl

Number of directions for angular discretisation 32 |-

Absorption coefficient

[user subroutine (usray3) I']
(8]
Restart of radiative calculation ) on @ off

Advanced options

Figure 43: Radiative transfers - parameters of the DO method

lteration resolution frequency
Radiative source term calculus

Verbosity level for wall temperature
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Figure 44: Radiative transfers - advanced parameters of the DO method

8.4.2 Radiative transfers boundary conditions

These informations can be filled by the user through the Graphical User Interface (GUI) or by using
the subroutine usray2 (called every time step). If the interface is used, when one of the “Radiative
transfers” options is selected in fig. 42, it activates specific boundary conditions each time a “Wall” is
defined, see fig. 48. The user can then choose between 3 cases. The parameters the user must specify
are displayed for one of them in fig. 49.

When the GUI is not used, usray?2 is the second subroutine necessary for every calculation which
includes radiative thermal transfers. It is used to give all the necessary parameters concerning, in the
one case, the wall temperature calculation, and in the other, the coupling between the thermal scalar
(temperature or enthalpy), and the radiation module at the calculation domain boundaries. It must
be noted that the boundary conditions concerning the thermal scalar which may have been defined in
the subroutine cs_user_boundary_conditions will be modified by the radiation module according to
the data given in usray2 (cf. §3.9.3).

A zone number must be given to each boundary face 2°and, specifically for the walls, a boundary
condition type and an initialisation temperature (in Kelvin). The initialisation temperature is only
used to make the solving implicit at the first time step. The zone number allows to assign an arbitrary
integer to a set of boundary faces having the same radiation boundary condition type. This gathering
is used by the calculation, and in the listing to print some physical values (mean temperature, net
radiative flux ...). An independent graphic output in EnSight format is associated with each zone and
allows the display on the boundary faces of the variables selected in the third heading of the subroutine
usrayl.

29this must be less than the maximum allowable by the code, nozrdm. This is fixed at 2000 in radiat and cannot be
modified.
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~Thermal radiative transfers

|P-1 Model B

aAbsorption coefficient

[user subroutine (usray3) Ivl
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Restart of radiative calculation () on @ off

Advanced options

Figure 45: Radiative transfers - parameters of the P-1 model

Iteration resolution frequency
Radiative source term calculus

Verbosity level for wall temperature

—
= %]
4 4

’ oK ][ Cancel ]

Figure 46: Radiative transfers - advanced parameters of th P-1 model

A boundary condition type stored in the array ISOTHP is associated with each boundary face. There
are five different types:

itpimp: wall face with imposed temperature,
ipgrno: for a gray or black wall face, calculation of the temperature by means of a flux balance,

iprefl: for a reflecting wall face, calculation of the temperature by means of a flux balance.
This is fixed at 2000 in radiat and cannot be modified.

ifgrno: gray or black wall face to which a conduction flux is imposed,

ifrefl: reflecting wall face to which a conduction flux is imposed, which is equivalent to impose
this flux directly to the fluid.

Depending on the selected boundary condition type at every wall face, the code needs to be given some
supplementary pieces of information:

e itpimp: the array tintp must be completed with the imposed temperature value and the array

epsp must be completed with the emissivity value (strictly positive).

e ipgrno: must be given: an initialisation temperature in the array tintp, the wall emissivity

(strictly positive, in epsp), thickness (in epap), thermal conductivity (in xlamp) and an external
temperature (in textp) in order to calculate a conduction flux across the wall.

e iprefl: must be given: an initialisation temperature (in tintp), the wall thickness (in epap)

and thermal conductivity (in xlamp) and an external temperature (in textp).
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Figure 47: Calculation control - Radiative transfers postprocessign output

e ifgrno: must be given: an initialisation temperature (in tintp), the wall emissivity (in epsp)
and the conduction flux (in W/m? whatever the thermal scalar, enthalpy or temperature) in the
array rcodcl. The value of rcodcl is positive when the conduction flux is directed from the
inside of the fluid domain to the outside (for instance, when the fluid heats the walls). If the
conduction flux is null, the wall is adiabatic.

e ifrefl: must be given: an initialisation temperature (in tintp) and the conduction flux (in
W/m? whatever the thermal scalar) in the array rcodcl. The value of rcodcl is positive when
the conduction flux is directed from the inside of the fluid domain to the outside (for instance,
when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic. The flux
received by rcodcl is directly imposed as boundary condition for the fluid.

WARNING: it is mandatory to set a zone number to every boundary face, even those which are not
wall faces. These zones will be used during the printing in the listing. It is recommended to gather
together the boundary faces of the same type, in order to ease the reading of the listing.

8.4.3 Absorption coefficient of the medium, boundary conditions for the lu-
minance and calculation of the net radiative flux

When the absorption coefficient is not constant, the subroutine usray3 is called instead at each time
step. It is composed of three parts. In the first one, the user must provide the absorption coefficient
of the medium in the array CK, for each cell of the fluid mesh. By default, the absorption coefficient
of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption co-
efficient in this subroutine. In this case, it is calculated automatically, or given by the user via a
thermo-chemical parameter file (dp-C3P or dp-C3PSJ for gas combustion, and dp_-FCP for pulverised
coal combustion,).
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Thermal radiative transfer
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Figure 48: Boundary conditions - choice of wall thermal radiative transfers

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

8.4.4 Encapsulation of the temperature-enthalpy conversion

Subroutine called every time step.

The user subroutine usray4 is used to call the user subroutine usthht. usthht is used to encapsulate
a simple enthalpy-temperature conversion law and its inverse. The user can implement his own con-
version formulas into it.

This subroutine is useless when the thermal scalar is the temperature.

WARNING: when a specific physics is activated, it is forbidden to use this subroutine. In this case,
usray4 s replaced by ppray4, which is not a user subroutine.

The value of the argument mode allows to know in which direction the conversion will be made:

e mode = 1: the fluid enthalpy in the cell must be converted into temperature (in Kelvin),

e mode = -1: the wall temperature (text or tparoi, in Kelvin) must be converted into enthalpy.

WARNING: the value of mode is passed as argument and must not be modified by the user.

8.4.5 Input of radiative transfer parameters

The routine usrayb is called twice. The first time is for boundary conditions. The second time is for
the net radiation flux computation

In this subroutine, during the first call (iappel=1), the boundary conditions are filled:
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Figure 49: Boundary conditions - example of wall thermal radiative transfer

- the radiative intensity must be set in the array cofrua when the discrete ordinates model is used;
an example is given in usray5 for an isotropic radiation field on a gray wall. Proposed boundary
conditions for the intensity in usray5 are: symmetry, inlet/oulet, and wall boundary,

- the entering intensity for free boundaries is set to zero in cofrua (if the user has more information,
he can improve it),

- arrays cofrua and cofrub must be filled when the P-1 model is used. The boundary conditions
proposed are the same as with the discret ordinates model.

During the second call (iappel=2), the density of the net radiation flux must be calculated consistently
with the boundary conditions of the intensity considering that the density of net flux is the balance
between the radiative emiting part of a boundary face (and not the reflecting one) and the radiative
absorbing part. The provided example is consistent with the example of the intensity boundary
conditions given when the discret ordinates model is used.

8.5 Conjugate heat transfers
8.5.1 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the affected thermal inertia by a wall. Some boundary faces are
treated as a solid wall with a given thickness, on which the code resolves an undimensional equation
for the heat conduction. The coupling between the 1D module and the fluid works in a similar way to
the coupling with the SYRTHES. In construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required to
evaluate the relevance of its usage by way of a report of the simple conditions (temperature, zero-flux
) or a coupling with SYRTHES.

The use of this code requires that the thermal scalar is defined as (iscalt> 0).

WARNING: The 1D thermal module is developped assuming the thermal scalar as a temperature. If
the thermal scalar is an enthalpy, the code calls the subroutine usthht for each transfer of information
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between the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. This
function has not been tested and is firmly discouraged. If the thermal variable is the total (compressible)
energy, the thermal module will not work.

This procedure is called twice,on initialisation and again at each time step.

e The 1st call (initialisation) all the boundary faces that will be treated as a coupled wall are
marked out. This figure is written noted as nfkptid. It applies dimension to the arrays in the
thermal module. nfkptid will be at 0 if there are no coupled faces (it is in fact the default value,
the remainer of the subroutine is not used in this case). The parameter isuitl also need to
be defined, this indicates if the temperature of the wall must be initialised or written in the file
(stored in the variable filmt1).

The 2nd call (initialisation) again concern the wall faces, it completes the ifpt1d array of dimen-

sion nfptld. ifpt1d(ifbtid) is the number ifbt 1qth boundary faces coupled with the thermal
module of a 1D wall. The directional parameters are then completed for a pseudo wall associated
to each face

npptld(nfpti1d): number of cells in the 1D mesh associated to the pseudo wall.

- epptld(nfptid): thickness of the pseudo wall.

- rgptid(nfpt1d): geometery of the pseudo wall mesh (refined as a fluid if rgt1d is smaller
than 1)

- tpptld(nfptid): initialisation temperature of the wall (uniform in thickness). In the course
of the calculation, the array stores the temperature of the solid at the fluid/solid interface.

Other than for re-reading a file (ficmt1), tpptld is not used. npptid, ifptild, rgptid and
epptld are compared to data from the follow-up file and they must be identical.

WARNING: The test in ifptid implicilty assumes that the array is completed in ascending
order (i.e ifptid(ii)><fpt1d(53) if ©i>jj. This will be the case if the coupled faces are defined
starting from the unique loop on the boundary faces (as in the example). If this is not the case,
contact the development team to short circuit the test.

The 3rd call (at each time step) is for the confirmation that all the arrays involving physical
parameter and external boundary conditions have been completed.

- iclt1d(nfptid):Typical boundary condition at the external (pseudo) wall: Dirichlet con-
dition (icltild=1) or flux condition (iclt1d=3)
- teptld(nfptid): External temperature of the pseudo wall in the Dirichlet case.

- heptid(nfptid): External coefficient of transfer in the pseudo wall under Dirichlet condi-
tions (in W.m=2.K").

- feptid(nfpt1d): External heat flux in the pseudo wall under the flux conditions(in W.m =2,
negative value for energy entering the wall).

- x1mt1d(nfpt1d): Conductivity\ of the wall uniform in thickness (in W.m~t.K~1).

- rcptld(nfptld): Volumetric heat capacity pC, of the wall uniform in thickness (in Jom=3. K ~1).

- dtptld(nfptid): Physical time step ascociated with the solved 1D equation of the pseudo
wall(which can be different from the time step in the calculation).

The 3" call, done at each time step, allows to impose boundary conditions and physical values in time.
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8.5.2 Fluid-Thermal coupling with SYRTHES

When the user wishes to couple Code_Saturne with SYRTHES to include heat transfers, it can be done
in the Graphical User Interface (GUI) or in the user subroutine cs_syrthes_coupling. In the GUI,
to set such a coupling, a thermal scalar must be selected first in the item “Thermal scalar” under the
heading “Thermophysical models”. Then the item “Conjugate heat transfer” will appear, see fig. 50.
The zones where the coupling occurs must be defined and a projection axis can be specified in case of
2D coupling.

Conjugate heat transfer: Syrthes coupling

“ Verbosity | Visualization Projection Axis Selection criteria

o 1 X 2 and box([5., -100, -100, 100, 100, 100]

Figure 50: Thermophysical models - coupling with SYRTHES

If the subroutine ussyrc is used, the user must specify the arguments passed to the subroutine 'defsyr’.
These arguments are:

- numsyr is the matching SYRTHES application id number, or —1

)

- namsyr is the matching SYRTHES application name,

- cprjsy: ’ ' if the user wishes to use a 3D standard coupling, or specify ’x’, 'y’, or ’z’ as the
projection axis if a 2D coupling with SYRTHES is used,

- critsu is the surface selection criteria,
- critvl is the volume selection criteria (only with SYRTHES 4),

- iwarns is the verbosity level.

Examples are provided in 'ussyrc’.

8.6 Lagrangian modeling of multiphase flows with dipersed inclu-
sions

8.6.1 Initialisation of the Lagrangian modeling parameters

The initialisation of the Lagrangian module parameters can be performed in the Graphical User In-
terface (GUI) or in the user subroutine uslagl (called only during the calculation initialisation). In
the GUI, the selection of the Lagrangian module in the item “Calculation features” under the heading
“Thermophysical models” activates the heading “Particle and droplets tracking”. The initialisation
is performed in the three items included in this heading. In “Global settings”, the user defines the
Eulerian/Lagrangian multi-phase treatment, the main parameters, the specific physics associated with
the particles and numerical adavanced options, see figs. 51 to 53. In the item “Statistics”, names are
associated to volume and boundary statistical variables for listing and post-processing, see fig. 54. In
the item “Output”, the user defines the output frequency, post-precessing options for particles and
selects the variables that will appear in the listing, see.fig. 55.

When the GUI is not used, uslagl is one of the two subroutines which must be completed in the case of
a calculation using a Lagrangian multiphase flow model. This subroutine gathers in different headings
all the key word which are necessary to configure the Lagrangian module. The different headings refer
to:
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~Two-way coupling
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Two-way coupling for temperature ]

Two-way coupling for mass (evaporation) |
Starting lagrangian iteration of coupling

~Mumerical scheme

Advanced options

Figure 51: Lagrangian module - global settings

e the global configuration parameters

e the specific physical models describing the particle behaviour

e the backward coupling (influence of the dispersed phase on the continuous phase)
e the numerical parameters

e the volumetric statistics

e the boundary statistics

e the postprocessing in trajectory mode

For more details about the different parameters, the user may refer to the key word list (§9.8).

The results of the lagangian module consist in some information about the particle cloud. These pieces
of information are displayed in the form of statistics. It is therefore necessary to activate the calculation
of the statistics at a given instant during the simulation. To do so, there are different strategies which
are strongly related to the flow nature, stationary or not.

Except from the cases where the injection conditions depend on the time, it is generally recommended
to realise a first Lagrangian calculation whose aim is to get a nearly constant particle number in the
calculation domain. In a second step, a calculation restart is done to calculate the statistics.

When the single-phase flow is steady and the inclusion presence rate is low enough to neglect their
influence on the continuous phase behaviour, it is better to realise a Lagrangian calculation on a
fixed field. It is then possible to calculate stationary volumetric statistics and to give a statistical
weight higher than 1 to the particles, in order to reduce the number to treat while keeping the right
concentrations.
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Figure 52: Lagrangian module - global settings, specific physics
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Figure 53: Lagrangian module - global settings, advanced numerical options

Otherwise, when the continuous phase flow is stationary, but the backward coupling must be taken
into consideration, it is still possible to activate stationary statistics.

When the continuous phase flow is non-stationary, it is no longer possible to use stationary statistics.
To have correct statistics at every moment in the whole calculation domain, it is imperative to have
an established particle seeding and it is recommended (when it is possible) not to impose statistical
weights different from the unity.

Finally, when the complete model is used for the turbulent dispersion modeling, the user must make
sure that the volumetric statistics are directly used for the calculation of the locally undisturbed fluid
flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees
Celsius, whatever the thermal scalar associated with the continuous phase is (temperature or enthalpy).
If the thermal scalar associated with the continuous phase is the temperature in Kelvin, the unit change
is done automatically. If the thermal scalar associated with the continuous phase is the enthalpy, the
enthalpy-temperature conversion subroutine usthht must be completed for mode=1, and must express
temperatures in degrees Celsius.

In all cases, the thermal backward coupling of the dispersed phase on the continuous phase is adapted
to the thermal scalar transported by the fluid.

WARNING: Up to now, parallelism and periodicity are not compatible with the Lagrangian module.
This compatibility will be soon implemented. It is however possible, in the framework of a Lagrangian
calculation on a fixed field, to realise in a first step the calculation of the continuous phase using
parallelism, and to conduct in a second step the Lagrangian calculation by doing a restart on only one
processor.
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Figure 54: Lagrangian module - statistics

8.6.2 Management of the boundary conditions related to the particles

The boundary conditions related to particles can be defined in the Graphical User Interface (GUI) or
in the subroutines uslag2 and uslain. In the GUI, the selection of the Lagrangian module in the
item “Calculation features” under the heading “Thermophysical models” activates the item “Parti-
cle boundary conditions” under the heading “Boundary conditions”. Different options are available
depending on the type of standard boundary conditions selected (wall, inlet/outlet, etc...), see fig. 56.

In the framework of the multiphase lagrangrian modeling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the eulerian fluid
phase (they are of course generally coherent). The boundary condition zones are actually redefined by
the Lagrangian module (cf. §3.9.3), and a type of particle behaviour is associated with each one.

The management of the Lagrangian boundary conditions is done by means of several user subroutines:
uslag?2 for the classic conditions and uslain to specify profiles if necessary. Otherwise, the subroutine
uslabo allows to define the type of particle/wall interaction. It will be described in a specific paragraph.

SUBROUTINE USLAG2

Subroutine called every time step.

It is the second indispensable subroutine for every calculation using the Lagrangian module. The main
numerical variables are described below.

ifrlag(nfabor) [ia]: In the Lagrangian module, the user defines nfrlag boundary zones from the
color of the boundary faces, or more generally from their properties (colors, groups ...),
from the boundary conditions defined in cs_user_boundary_conditions, or even from their
coordinates. To do so, the array ifrlag(nfabor) giving for each face ifac the number
ifrlag(ifac) corresponding to the zone to which it belongs, is completed. The zone num-
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bers (i.e. the values of ifrlag(ifac)) are chosen freely by the user, but must be strictly
positive integers inferior or equal to nflagm (parameter stored in lagpar, whose default value
is 100). A zone type is associated with every zone; it will be used to impose global boundary

~Output listing

Output listing at each time step I'l [1 l

~Post-processing for particles

Trajectory mode O

Displacement mode [ ]

Output frequency

Number of particles for post-processing

Format |EnSight -

~\ariables selection

Particle velocity

Fluid velocity seen by particles
Residence time

Particle diameter

Particle temperature

Particle mass

[ (1 [ (O [ [ (T |

Temperature of the coal particles
Shrinking core diameter of the coal particles ]
Mass of reactive coal of the coal particles [

Mass of char of the coal particles O

Figure 55: Lagrangian module - output

conditions. WARNING: it is essential that every boundary face belongs to a zone..

iusncl(nflagm) [ial:

lagpar, whose default value is 20)..

iusclb(nflagm) [ia]:

in the subroutine uslabo.

e if iusclb(izone) = ientrl, izone is a particle injection zone. For each particle class associated
with this zone, some pieces of information must be given (see below). If a particle trajectory

For all the nfrlag boundary zones previously identified, the number of classes
nbclas®® of entering particles is given: iusncl(izone) = nbclas. By default, the number
of particle classes is zero. The maximum number of classes is nclagm (parameter stored in

For all the nfrlag boundary zones previously identified, a particle boundary
condition type is given. There are two categories of particle boundary condition types: those
predefined in the subroutine uslabo (marked out by the key words ientrl, isortl, irebol,
idepol, idepo2, idepo3, iencrl) and the user boundary condition types (marked out by
the key words jbordl to jbord5), whose corresponding particle behaviour must be defined

crosses an injection zone, then we consider that this particle leaves the calculation domain.

e if iusclb(izone) = isortl, the particles interacting with the zone izone leave the calculation
domain.

e if iusclb(izone) = irebol, the particles undergo an elastic rebound on the boundary zone

304 class is a set of particles sharing the same physical properties and the same characteristics concerning the injection

in the calculation domain




Code_Saturne
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 119/205

~Lagrangian boundary condition

Label Nature Par‘Fche-bm{ndary Number of classes
interaction
wall wall Particles deposit ~|0
cold inlet inlet Particles injection zone 0
- Particles deposit + memory
hot_inlet inlet Particles deposit + suspension |Q
Particles rebound zone
outlet outlet Particles ¢ sit 0
Particles depo...tachment force

Figure 56: Lagrangian module - boundary conditions

izone.

e if iusclb(izone) = idepol, the particles settle definitevely on the boundary zone izone. These
particles can not be put in suspension again, and we consider that they leave the calculation
domain.

e if iusclb(izone) = idepo2, the particles settle definitevely on the boundary zone izone, but
they are kept in the calculation domain. This distinction with the type idepo1 is useful only when
post-processings in movement mode (ifensi2 = 1) are realised: the particles do not disappear
after touching the boundary zone. However, using idepo2 type zones necessitates more memory
than using idepol type zones.

o if iusclb(izone) = idepo3, the particles settle on the boudary zone izone, but can be put in
suspension again depending on the local description of the continuous phase flow.

e if iusclb(izone) = iencrl, the particles which are coal particles (if iphyla = 2) can become
fouled up on the zone izone. The slagging is a idepol type deposit of the coal particle if a
certain criterion is respected. Otherwise, the coal particle rebounds (irebol type behaviour).
This boundary condition type is available if iencra = 1. A limit temperature tprenc, a critical
viscosity visref and the coal composition in mineral matters must be given in the subroutine
uslagl. The slagging criterion given by default may be modified in the subroutine uslabo.

o if iusclb(izone) = jbordl to jbord5, then the particle interaction with the boundary zone
izone is given by the user. The particle behaviour associated with each type jbord* must be
defined in the subroutine uslabo.

iuslag(nclagm, nflagm, ndlaim) [ia]: Some pieces of information must be given for each par-
ticle class associated with an injection zone. The first part consists in integers contained in
the array iuslag. There are at the most ndlaim integers. These pieces of information must
be provided for each class iclas and each particle injection zone izone. They are marked
out by means of “pointers”:

— iuslag(iclas,izone,ijnbp): number of particles to inject in the calculation domain per class
and per zone.

— iuslag(iclas,izone,ijfre): injection period (expressed in number of time steps). If the
period is null, then there is injection only at the first absolute Lagrangian time step (including
the restart calculations).

— iuslag(iclas,izone,ijuvw): type of velocity condition:



Code_Saturne
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 120/205

- if iuslag(iclas,izone,ijuvw) = 1, the particle velocity vector is imposed, and its com-
ponents must be given in the array ruslag (see below).

- if iuslag(iclas,izone,ijuvw) = 0, the particle velocity is imposed perpendicular to the
injection boundary face and with the norm ruslag(iclas,izone,iuno).

- if iuslag(iclas,izone,ijuvw) = -1, the particle injection velocity is equal to the fluid
velocity at the center of the cell neighboring the injection boundary face.

— iuslag(iclas,izone,inuchl): when the particles are coal particles (iphyla = 2), this part

of the array contains the coal index-number, between 1 and ncharb (defined by the user in the
thermo-chemical file dp_FCP, with ncharb<ncharm = 3).

ruslag(nclagm, nflagm, ndlagm) [ra]: Some pieces of information must be given for each parti-
cle class associated with an injection zone. The second and last part consists in real numbers
contained in the array ruslag. There are at the most ndlagm such real numbers. These
pieces of information must be provided for each class iclas and each particle injection zone
izone. They are marked out by means of “pointers”:

ruslag(iclas,izone,iuno): norm of the injection velocity,
useful if iuslag(iclas,izone,ijuvw) = 0.

ruslag(iclas,izone,iupt), ruslag(iclas,izone,ivpt),
ruslag(iclas,izone,iwpt): components of the particle injection vector,
useful if iuslag(iclas,izone,ijuvw) = 1.

ruslag(iclas,izone,idebt): allows to impose a particle mass flow. According to the number
of injected particles, the particle statistical weight tepa(npt, jrpoi) is recalculated in order to
respect the required mass flow (the number of injected particles does not change). When the
mass flow is null, it is not taken into account.

ruslag(iclas,izone,ipoit): particle statistical weight per class and per zone.

ruslag(iclas,izone,idpt): particle diameter. When the particles are coal particles (iphyla
= 2), this diameter is provided by the thermo-chemical file dp_FCP wvia the array diam20(iclg),
where iclg is the “pointer” on the total class number (i.e. for all the coal types). When the
standard deviation of the particle diameter is different from zero, this diameter becomes a mean
diameter.

ruslag(iclas,izone,ivdpt): standard deviation of the injection diameter. To impose this
standard deviation allows to respect granulometric distribution: the diameter of each particle
is calculated from the mean diameter, the standard deviation and a gaussian random number.
In this case, it is strongly recommended to intervene in the subroutine uslain to restrict the
diameter variation range, in order to avoid aberrant values. If this standard deviation is null,
then the particle diameter is constant per class and per zone.

ruslag(iclas,izone,iropt): particle density. When the particles are coal particles (iphyla
= 2), this density is set in the thermo-chemical file dp_FCP wvia the array rhoOch(icha), where
icha is the coal number.

ruslag(iclas,izone,itpt): particle injection temperature in °C. Useful if iphyla = 1 and if
itpvar = 1.

ruslag(iclas,izone,icpt): particle injection specific heat. Useful if iphyla = 1 and if itpvar
= 1. When the particles are coal particles (iphyla = 2), the specific heat is set in the thermo-
chemical file dp_FCP via the array cp2ch(icha).

ruslag(iclas,izone,iepsi): particle emissivity. Useful if iphyla = 1 and if itpvar = 1, and
if the radiation module is activated for the continuous phase (note: when iphyla = 2, the coal
particle emissivity is given the value 1).
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— ruslag(iclas,izone,ihpt): particle injection temperature in °C when these particles are coal
particles. The array ruslag(iclas,izone,itpt) is then no longer active. Useful if iphyla =
2.

— ruslag(iclas,izone,imcht): mass of reactive coal. Useful if iphyla = 2.

— ruslag(iclas,izone,imckt): mass of coke. This mass is null if the coal did not begin to burn
before its injection. Useful if iphyla = 2.

iusvis(nflagm) [ia]: In order to display the variables at the boundaries defined in the subroutine
uslagl, this array allows to select the boundary zones on which a display is wanted. To
do so, a number is associated with each zone izone. If this number is strictly positive,
the corresponding zone is selected; if it is null, the corresponding zone is eliminated. If
several zones are associated with the same number, they will be displayed together in the
same selection with EnSight. Each selection will be split in EnSight parts according to the
geometric types of the present boundary faces ((i.e. ’triad’, ’quad4’ and 'nsided’)..

SUBROUTINE USLAIN

Subroutine called every time step.
It is not mandatory to intervene in this subroutine.

uslain is used to complete uslag2 when the particles must be injected in the domain according to fine
constraints (profile, position, ...): the arrays ettp, tepa and itepa can be modified here for the new
particles (these arrays were previously completed automatically by the code from the data provided
by the user in uslag?2).

In the case of a more advanced utilisation, it is possible to modify here all the arrays ettp, tepa and
itepa. The particles already present in the calculation domain are marked out by an index varying
between 1 and nbpart. The particles entering the calculation domain at the current iteration are
marked out by an index varying between nbpart+1 and nbpnew.
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8.6.3 Treatment of the particle/boundary interaction

The subroutine uslabo is not mandatory but is required in four different cases. It is called for each
particle/boundary interaction.

Firstly, an intervention is required when jbord* type boundary conditions are used: it is then necessary
to code in this subroutine the corresponding particle/boundary interactions.

Secondly, it is possible to select the particle/boundary interaction types (irebol, idepol, ...) for
which the user wants to save the wall statistics activated in the subroutine uslagl.

Thirdly, if user boundary statistics are activated via the key word nusbor in the subroutine uslagi,
it is then necessary to program them in the subroutine uslabo. When the boundary statistics are
stationary, these new boundary statistics are added using the array parbor. When they are non-
stationary (number of Lagrangian iterations lower than nstbor, or isttio = 0), the array parbor is
reset at every iteration.

Fourthly, when the user wants to modify the formulation of the wall slagging by the coal particles, it
is then necessary to program the new laws in the subroutine uslabo.

CONSTRUCTION RULES OF A NEW PARTICLE/BOUNDARY INTERACTION

1. The real numbers kx, ky, kz provide the coordinates of the intersection point between the current
particle trajectory and the interacting boundary face.

2. If the user wants to modify the particle position, it can be done directly via the arrays ettp and
ettpa:

- new departure point of the current trajectory segment:
ettpa(upt,jxp), ettpalnpt, jyp), ettpa(npt, jzp)

- new arrival point of the current trajectory segment:
ettp(npt, jxp), ettp(npt, jyp), ettp(npt,jzp)

3. The particle and the fluid velocities may be modified according to the desired interaction via the
arrays vitpar and vitflu, they must not be modified vie ettp and ettpa in this subroutine.

4. For a given interaction, it is necessary to specify the key word isuivi:

- isuivi = 0 if the particle does not need to be followed in the mesh after the interaction
between its trajectory and the boundary face (by default, it is the case for ientrl, isortl,
idepol, idepo2);

- isuivi = 1 to continue to follow the particle in the mesh after its interaction (by default, it
is the case for irebol and idepo3). The value of isuivi may be a function of the particle
and boundary state (for instance, isuivi = 0 or 1 depending on the physical properties for
the interaction type iencrl).

5. The array zone itepa(npt, jisor), containing the index-number of the cell where the particle
is, must be updated. Generally:

- itepa(npt, jisor) = ifabor(kface) when the particle stays in the calculation domain
(kface is the number of the interacting boundary face).

- itepa(npt,jisor) = 0 to eliminate definitively the particle from the calculation domain.

NOTE: ORDER OF THE NUMERICAL SCHEME AFTER A PARTICLE/BOUNDARY INTERACTION

When a particle interacts with a boundary face, the integration order of the associated stochastic
equations is always a first-order, even if a second-order scheme is used elsewhere.




Code_Saturne
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 123/205

8.6.4 Option for particle cloning/merging

Subroutine called every Lagrangian iteration.

An intervention in the subroutine uslaru is required when the particle cloning/merging option is
activated via the key word iroule. The important function ’croule’ must then be completed.

The aim of this technique is to reduce the number of particles to treat in the whole flow and to refine the
description of the particle cloud only where the user wants to get more accurate volumetric statistics
than in the rest of the calculation domain.

The values given to the importance function are strictly positive real numbers allowing to classify the
zones according to their importance. The higher the value given to the importance function, the more
important the zone.

For instance, when a particle moves from a zone of importance 1 to a zone of importance 2, it undergoes
a cloning: the particle is replaced by two identical particles, whose statistical weight is the half of the
initial particle. When a particle moves from a zone of importance 2 to a zone of importance 1, it
undergoes a fusion: the particle survives to its passing through with a probability of 1/2. A random
dawing is used to determine if the particle will survive or disappear.

In the same way, when a particle moves from a zone of importance 3 to a zone of importance 7, it
undergoes a cloning. The particle is cloned in Int(7/3)=2 or Int(7/3)+1=3 particles with a probability
of respectively 1-(7/3-Int(7/3))=2/3 and 7/3-Int(7/3)=1/3. 1If the particle moves from a zone of
importance 7 to a zone of importance 3, it undergoes a fusion: it survives with a probability of 3/7.

WARNING: The importance function must be a strictly positive real number in every cell

8.6.5 Manipulation of particulate variables at the end of an iteration and user
volumetric statistics

uslast: subroutine called at the end of every Lagrangian iteration

uslaen: subroutine called at every chronological output and every listing printing

The subroutine uslast is called at the end of every Lagrangian iteration, it allows therefore the
modification of variables related to the particles, or the extraction and preparation of data to display
in the listing or the post-processing.

An intervention in both subroutines uslast and uslaen is required if supplementary user volumetric
statistics are wanted.

USER VOLUMETRIC STATISTICS:

The volumetric statistics are calculated by means of the array statis. Two situations may happen:

- the calculation of the statistics is not stationary: statis is reset at every Lagrangian iteration;

- the calculation of the statistics is stationary: the array statis is used to store cumulated values
of variables, which will be averaged at the end of the calculation in the subroutine uslaen.

According to the user parameter settings, it may happen that during the same calculation, the statistics
will be non-stationary in a first part and stationary in second part.

e USER VOLUMETRIC STATISTICS: SUBROUTINE USLAST

In this subroutine, the variable whose volumetric statistic is wanted is stored in the array statis.
In the framework of stationary statistics, the average itself is calculated in the subroutine uslaen.
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This average is obtained through the division of the cumulated value by:
- either the duration of the stationary statistics calculation stored in the variable tstat,
- or the number of particles in statistical weight.
This method of averaging is applied to every piece in the listing and to the post-processing
outputs.

e USER VOLUMETRIC STATISTICS: SUBROUTINE USLAEN

In this subroutine is calculated the average corresponding to the cumulated value obtained in the
subroutine uslast. This subroutine is also used for the standard volumetric statistics. Several
examples are therefore described.

8.6.6 User stochastic differential equations

An intervention in the subroutine uslaed is required if supplementary user variables are added to the
particle state vector (arrays ettp and ettpa). This subroutine is called at each Lagrangian sub-step.

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this subroutine.

When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called
twice.

The solved stochastic differential equations must be written in the form:

e, @, 11

dt T¢

where @, is the Ith supplementary user variable (nvls in total) available in ettp(nbpmax, jvls(i))
and in ettpa(nbpmax, jvls(i)), 74 is a quantity homogen to a characteristic time, and II is a coefficient
which may be expressed as a function of the other particulate variables contained in ettp and ettpa.
In order to do the integration of this equation, the following parameters must be provided:

- Tg, equation characteristic time, in the array auxl1 for every particle,

- II , equation coefficient, in the array aux12. If the integration scheme is a first-order, then IT
is expressed as a function of the particulate variables at the previous iteration, stored in the
array ettpa. If the chosen scheme is a second-order, then II is expressed at the first call of
the subroutine (prediction step nor = 1) as a function of the variables at the previous iteration
(stored in ettpa), then at the second call (correction step nor = 2) as a function of the predicted
variables stored in the array ettp.

If necessary, the thermal characteristic time 7., whose calculation can be modified by the user in the
subroutine uslatc, is stored for each particle in the part tempct (nbpmax,1) of the array tempct.

8.6.7 Particle relaxation time

An intervention in this subroutine is not mandatory.

The particle relaxation time may be modified in the subroutine uslatp according to the chosen for-
mulation of the drag coefficient.
The particle relaxation time, modified or not by the user, is available in the array taup.
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8.6.8 Particle thermal characteristic time

An intervention in this subroutine is not mandatory.

The particle thermal characteristic time may be modified in the subroutine uslatc according to the
chosen correlation for the calculation of the Nusselt number. This subroutine is called ar each La-
grangian sub-step.

The thermal characteristic time, modified or not by the user, is available in the zone tempct (nbpmax, 1)
of the array tempct.

8.7 Compressible module

When the compressible module3! is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in cs_user_parameters.f90

- keep the convective numerical schemes proposed by default.

8.7.1 Initialisation of the options of the variables

Subroutines called at each time step.
The subroutines uscfx1 and uscfx2 complete cs_user_parameters.f90.

uscfxl allows to set non standard calculation options related to the compressible module, and in
particular to fill in the key word icfgrp allowing to take into account the hydrostatic equilibrium in
the boundary conditions.

uscfx2 allows to specify for the molecular thermal conductivity and the volumetric viscosity the
following pieces of information:

- variable or not (iviscv)

- reference value (viscv0)

8.7.2 Management of the boundary conditions

Subroutine called every time step.

The use of uscfcl is compulsory when running a calculation that uses the compressible module, just as
it is in both cs_user_parameters.f90 and usppmo. The way of using it is the same as the way of using
cs_user_boundary_conditions in the framework of standard calculations, that is to say several loops
on the boundary faces lists (cf. §3.9.3) marked out by their colors, groups, or geometrical criterion,
where the type of face, the type of boundary condition for each variable and eventually the value of
each variable are defined.

WARNING: in the case of a calculation using the compressible module, the boundary conditions of all
the variables are defined here, even those of the eventual user scalars: cs_user_boundary_conditions
is not used at all.

In the compressible module, the different available boundary conditions are the followings:

- inlet/outlet for which everything is known

31For more details concerning the compressible version, the user may refer to the document “Implantation d’un
algorithme compressible dans Code_Saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F. Archambeau et J.-M.
Hérard.
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- supersonic outlet
- subsonic inlet

- subsonic wall

- wall

- Symimetry

8.7.3 Initialisation of the variables

The subroutine uscfxi, called during the calculation initialisation, is used to initialise some variables
specific to the specific physics activated via usppmo. As usual, the user may have access to several
geometric variables to discriminate between different initialisation zones if needed.

WARNING: in the case of a specific physics modeling, all the variables are initialised here: cs_user_initialization
is not used at all.

This subroutine works like cs_user_initialization for velocity, turbulence and passive scalars. Con-
cerning pressure, density, temperature and specific total energy, only 2 variables out of the 4 are
independant. The user may also initialise the variable pair he wants (apart from temperature-energy)
and the two other variables will be calculated automatically by giving the right value to the variable
iccfth used for the call to uscfth.

8.7.4 Thermodynamics
The subroutine uscfth is called several times at each time step (boundary conditions, physical proper-
ties, solving of the energy equation, ...).

This subroutine is used to set the thermodynamics parameters. By default, the perfect gas laws are
implemented. If the user needs to use other laws (perfect gas with variable Gamma, Van der Waals),
he (or she) must modify this subroutine.

8.7.5 Management of variable physical properties

If necessary, all the variation laws of the fluid physical properties (viscosity, specific heat, ...) can be
described in the subroutine uscfpv which is then called at each time step. This subroutine replaces
and is similar to usphyv.

The user should make sure that the defined variation laws are valid for the whole variation range of
the variables.

8.8 Management of the electric arc module
8.8.1 Initialisation of the variables

subroutine called only at the initialisation of the calculation

The subroutine useliv allows the user to initialise some of the specific physics variables prompted via
usppmo. It is called only during the initialisation of the calculation. The user has access, as usual, to
many geometric variables so that the zones can be treated separately if needed.

WARNING: For the specific physics, it is here that all variables are initialised: cs_user_initialization
is not used

This subroutine works like cs_user_initialization. The values of potential and its constituents are
initialised if required.
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It should be noted that the enthalpy is relevant.

- For the electric arc module, the enthalpy value is taken from the temperature of reference t0
(given in cs_user _parameters.f90) from the temperature-enthalpy tables supplied in the data
file dp_ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user . An ex-
ample is given of how to obtain the enthalpy from the temperature of reference t0(given in
cs_user_parameters.f90), the temperature-enthalpy law must be supplied. A code is suggested
in the sub routine usthht(which is there for the determination of physical properties).

8.8.2 Variable physical properties

All the laws of the variation of physical data of the fluid are written (when neccessary) in the subroutine
uselph... The subroutine replaces usphyyv and works in a similar manner. It is called at each time
step.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventuel user scalars):usepelph is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular care should be taken with non-linear laws (for example, a 3" degree polynomial law giving
negative values of density)

WARNING: in the electric module, all the physical propertie are considered as variables and are there-
fore stored in the propce array. cp0, visclsO, visclO are not used

For the Joule effect, the user is required to supply the physical properties in the sub- routine. Examples
are given which are to be adapted by the user. If the temperature is to be determined to calculate the
physical properties, the solved variable, enthalpy must be deduced. The prefered temperature-enthalpy
law can be selected in the subruotine usthht (an example of the interpolation is given from the law
table. This subroutine can be re-used for the initialisation of the variables(useliv)) For the electric
arc module, the physical properties are interpolated from the data file dp_ELE supplied by the user.
Modifications are generally not necessary.

8.8.3 Boundary Conditions

SUBROUTINE USELCL
subroutine called at each time step.

As much as cs_user_parameters.f90 and usppmo, the use of usecl is required to run an electric
calculation. The main use is the same as occurs in cs_user_boundary_conditions for the standard
Code_Saturne calculations, for which different loops on the boundary faces is defined. Each faces list is
built with the use of selection criteria (cf. §3.9.3), and is referenced by their group(s), their color(s) or
geometrical criterions. The face type, the boundary conditions for each variable, and finally the value
of each variable or imposed flow are fixed.

WARNING:for the electric module, the boundary conditions of all the variables are defined here, even
for those of the eventual user scalars: cs_user_boundary_conditions is not used at all.

For the electric module, each boundary face is associated with a number izone 3?(the color icoul
for example) in order to group together all the boundary faces of the same type. In the report
cs_user_boundary_conditions, the main change from the users point of view concerns the specification
of the boundary conditions of the potential, which isn’t implied by default. The Dirichlet and Neumann

32jzone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar and cannot
be modified.
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conditions must be imposed explicitly using icodcl and rcodcl (as would be done for the classical
scalar).

Whats more, if one wishes to slow down the power dissipation(Joule effect module) or the current
(electric arc module) from the imposed values (puismp and couimp respectively), they can be changed
by the potential scalar as shown below:

- For the electric arc, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in uselil by an estimated potential difference. If ielcor=1 (see uselil), dpot is
updated automatically during the calculation to obtain the required current.

- For the Joule module effect, dpot is again used with the same signification as in the electric arc
module. If dpot is not wanted in the setting of the boundary conditions, the variable coejou can
be used. coejou is the coefficient by which the potential difference is multiplied to obtain the
desired power dissipation. By default this begins at 1 and is updated automatically. If ielcor=1
(see uselil), multiply the imposed potentials in uselcl by coejou at each time step to achieve
the desired power dissipation.

WARNING: In alternative current, attention should be paid to the values of potential imposed at the
limits: the variable named “real potential” represents an affective value if the current is in single phase,
and a "real part” if not.

- For the Joule studies, a complex potential is sometimes needed (ippmod(ieljou)=2): this is the
case in particular where the current has 3 phases. To have access to the phase of the potential,
and not just to its amplitude, the 2 variables must be deleted: in Code_Saturne, there are 2
arrays specified for this role, the real part and the imaginary part of the potential. For use in the
code, these variables are named “real potential” and “imaginary potential”. For an alternative
sinusoidal potential Pp, the maximum value is noted as Ppuyax, the phase is noted as ¢, the real
potential and the imaginary potential are respecively Ppmax cos¢ and Ppyax sine.

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary
part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continous current,
but also with single phase alternative current. In Code_Saturne there is only 1 varialbe for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the "real
potential” represents a effective value of potential , % Ppiax (in continous current there is no

such ambiguity).

SUBROUTINE USETCL
Subroutine called every time step.

This subroutine is compulsory when the electrical module is used. It manages the boundary conditions
for variables unknown by cs_user_boundary_conditions. It calculates:

e the intensity at each electrode

e the voltage on each termin of transformers. To achieve it, the intensity, the rvoltage at each
termin, the Rvoltage, and the total intensity of the transformer are calculated.

Finally, a test is performed to check if the offset is zero or if a boundary face is in contact with the
ground.

8.8.4 Initialisation of the variable options

The subroutine uselil is completed in cs_user_parameters.f90 for the specific physics. It is called
at each time step. It allows:
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e to activate the variables in the specific physics module, the chronological outputs (ichrvr (ipp)
indicators), the listings (ilisvr(ipp) indicators) and the historical exits at the probes de-
fined in cs_user_parameters.f90 (ihisvr(ipp) indicators). The functions are the same as in
cs_user_parameters.f90 and the script frequency of the exits are fixed using cs_user_parameters.f90.
The indicators ipp are for the value ipp=ipppro (ipproc(ivar), with ivar, the number of spe-
cific physics variables. With the main variables which concern the user (velocity, pressure, etc),
the user must always use cs_user_parameters.f90 if the history, the listings, or the chronolog-
ical files are required. The variables which the user can activate are marked out. The number
of variables in the calculation is given in ivar (defined by propce(iel,ipproc(iprop) for cell
iel):

— Electric Arc Module:

- Calculation variables rtp(iel,ivar)
ivar = isca(ihm) enthalpy

ivar = isca(ipotr) real potentiel
ivar = isca(ipotva(i)) solved components of the potential vector.
ivar = isca(iycoel(iesp)) the mass fraction of ngazg composites if there are more
than 1
- Properties propce(iel,ipproc(iprop))
iprop = itemp temperature
iprop = iefjou power dissipation by the Joule effect.
iprop = ilapla(i) components of the laplace forces.

— Joule Module effect :

- Calculation variables rtp(iel,ivar)

ivar = isca(ihm) enthalpy
ivar = isca(ipotr) real potential
ivar = isca(ipoti) imaginary potential if its to be taken into account
ivar = isca(iycoel(iesp)) the mass fraction of ngazg composites if there are more
than 1
- Properties propce(iel,ipproc(iprop))
iprop = itemp temperature
iprop = iefjou volumic power dissipation by Joule effect.

e to give the coefficient of relaxation of the density srrom:
p" 1 = srrom* p" + (1 — srrom)p”
(for the electric arc, the sub-relaxation is taken into account during the 2nd time step; for the
Joule effect the sub relaxation is not accounted for unless the user specifies in uselph

e indicates if the data will be fixed in the power dissipation or in the current, done in ielcor.

e target current fixed as couimp (electric arc module) or the power dissipation puism (Joule module
effect).

e Fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

8.8.5 Post-processing output

The subroutine uselen allows the addition on n variables in the preprocessing output and works like
the subroutine usvpst (with the electric module, it is however also possible to use usvpst. It is called
at each chronological output

The algebraic variables related to the electric module are provided by default provided that they are
not explicitely contained in the propce array:
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- gradient of real potential in Vm™! (VPotgr = —E)

- density of real current in Am=? (j = oE)
specifically for the Joule module effect with ippmod(ieljou)=2 :

- gradient of imaginary potential in Vm~!

- density of real current in Am ™2
specifically for the electric arc module with ippmod(ielarc)=2 :
- magnetic field in 7' (B = rot A)

If it is convenient for the user, there is no need to add this subroutine into the SRC directory: the
post-processing will be done automatically (at the same frequency (NTCHR) as the other calculation
variables)

8.9 Code Saturne-Code Saturne coupling

Subroutine called once during the calculation initialisation.

This user subroutine ussatc is used to couple Code_Saturne with itself. It is used for turbomachine
applications for instance, the first Code_Saturne managing the fluid around the rotor and the other the
fluid around the stator. In the case of a coupling between two Code_Saturne instances, the numsat and
namsat arguments of the subroutine ’defsat’ are ignored. In case of multiple couplings, a coupling
will be matched with available Code_Saturne instances prioritarily based on the namsat (Code_Saturne
instance name) argument, then on the numsat (Code_Saturne instance application number) argument.
If namsat is empty, matching will be based on numsat only.

The arguments of 'defsat’ are:

- numsat: the matching Code_Saturne application id, or —1,

- namsat: the matching Code_Saturne application name,

- crtcsu: the cell selection criteria for support,

- crtfsu: the boundary face selection criteria for support (not functional),
- crtccp: the cell selection criteria for coupled cells,

- crtfcp: the boundary face selection criteria for coupled faces,

- iwarns: the verbosity level.

8.10 Fluid-Structure external coupling

?22Subroutine called only once or at each iteration???.

The subroutine usaste belongs to the module dedicated to external Fluid-Structure coupling with
Code_Aster. Here one defines the boundary faces coupled with Code_Aster and the fluid forces com-
ponents which are given to structural calculation. When using external coupling with Code_Aster,
structure number necessarily needs to be negative; the references of coupled faces being i.e. -1, -2,
etc... The subroutine performs the following operations:

- ’'getfbr’ is called to get a list of elements matching a geometrical criterion or reference number
then a colour (negative value) is associated to these elements.
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- the value passed to asddlf, for user-chosen component, for every negative colour, defines the
movement imposed to the external structure.

- the user specify with the value of isyncp if Code_Saturne and Code_Aster use synchronised
chronological output or not.

8.11 ALE module
8.11.1 Initialisation of the options

This initialisation can be performed in the Graphical User Interface (GUI) or in the subroutines usalin
and usstrl. First of all, in the GUI when the “Mobile mesh” is selected in the “Thermophysical
models” heading, additional options are displayed. The user must choose a type of mesh viscosity and
how to describe its spatial distribution, see fig. 57.

(%] Mobile mesh (ALE method)

Mumber of iterations for fluid initialization D
Type of the viscosity of mesh

Spatial distribution of
the viscosity of the mesh

[user formula |vl

Formula for the viscosity of mesh =4

" Mathematical expression editor

Userexpressmn Predefined symbols Examples

mesh vil = 1; ‘

[ oK H Cancel

Figure 57: Thermophysical models - mobile mesh (ALE method)

The following paragraphs are relevant if the GUI is not used.

SUBROUTINE USALIN
Subroutine called at the start. This subroutine completes cs_user_parameters.f90.

usalin allows to set option for the ale module, and in particular to active the ale module

SUBROUTINE USSTR1

usstrl allows to specify for the structure module the following pieces of information:

- number of structure (nbstru).

- initial value of deplacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:
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e nbstru

the number of structures

e idfstr(i)
index of the structure, where I is the index of the face

e xstr0(i,k)
initial position of a structure, where i is the dimension of space and k the index of the structure

e xstreq(i,k)
position of balance of a structure, where i is the dimension of space and k the index of the
structure

e vstr0(i,k)
initial velicity of a structure, where i is the dimension of space and k the index of the structure

8.11.2 Boundary conditions of velocity mesh

The boundary conditions can be managed with the Graphical User Interface (GUI) or with the sub-
routine usalcl (called at each time step). In the GUI, when the item “Mobile mesh” is activated the
item “Fluid structure interaction” appears under the heading “Boundary conditions”. Two types of
Fluid-structure coupling are offered. The first one is internal, using a simplified structure model and
the second is external with Code_Aster, see figs. 58 and 59.

SUBROUTINE USALCL

When the GUI is not used, the use of usalcl is mandatory to run a calculation using the ale mod-
ule just as it is in cs_user_parameters.f90. The way of using it is the same as the way of using
cs_user_boundary_conditions in the framework of standard calculations, that is to say a loop on the
boundary faces marked out by their colour (or more generally by a property of their family), where
the type of boundary condition of velocity mesh for each variable are defined.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the velocity mesh from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the bound-
ary conditions defined in cs_user_boundary_conditions, or even from their coordinates. To
do so, the array ialtyb(nfabor) gives for each face ifac the velocity mesh boundary con-
dition types marked out by the key words ivimpo, igliss, ibfixe

e If ialtyb=ivimpo: imposed velocity.

— In the case where all the nodes of a face have a imposed displacement, it is not necessary to
fill the tables with boundary conditions velocity mesh for this face, they will be erased. In
the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for every
value of ivar (iuma, ivma and iwma) The other boxes of rcodcl and icodcl are completed
automatically.

The tangential velocity mesh is taken like a tape speed under the boundary conditions
of wall for the fluid, except if wall velocity was specified by the user in the interface or
cs-user_boundary_conditions (in which case it is this speed which is considered).

e if ialtyb(nfac) = ibfixe: fixed wall
— the velocity is null.
o if ialtyb(nfac) = igliss: sliding wall

— the tangential velocity is not used.
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8.11.3 Modification of the viscosity

The user subroutine usvima is used along the ALE (Arbitrary Lagrangian Eulerian Method) module,
it fills mesh viscosity arrays. It is called at each time step. The user can modify mesh viscosity values
to prevent cells and nodes from huge displacements in awkward areas, such as boundary layer for
example. If iortvm = 0, the mesh viscosity modelling is considered as isotropic and therefore only the
viscmx array needs to be filled. If iortvm = 1, mesh viscosity modeling is orthotropic therefore all
arrays viscmy, viscmx, and viscmz need to be filled. Note that viscmx, viscmy and viscmz arrays
are initialized at the first time step with the value 1.

8.11.4 Fluid - Structure internal coupling

In the subroutine usstru the user provides the parameters of two other subroutines. usstri is called at
the beginning of the calculation. It is used to define and initialise the internal structures where Fluid-
Structure coupling occurs. For each boundary face ifac, idfstr(ifac) is the number of the structure
the face belongs to (if idfstr(ifac) = 0, the face ifac doesn’t belong to any structure). When
using internal coupling, structure number necessarily needs to be positive. The number of ”internal”
structures is automatically defined with the maximum value of the idfstr table, meaning that internal
structure numbers must be defined sequentially with positive values, beginning with integer value '1’.

For each internal structure one can define here:

- an initial velocity vstr0

- an initial displacement xstr0 (i.e. xstr0 is the value of the displacement xstr compared to the
initial mesh at time t = 0)

- a displacement compared to equilibrium xstreq (i.e. xstreq is the initial displacement of the
internal structure compared to its position at equilibrium; at each time step t and for a displace-
ment xstr(t), the associated internal structure will undergo a force —k x ((t) + XSTREQ) due
to the spring).

xstr0 and vstrO are initialised with the value 0. When starting a calculation using ALE, or re-starting a
calculation with ALE, based on a first calculation without ALE, an initial iteration 0 is automatically
performed in order to take initial arrays xstr0, vstr0 and xstreq into account. In any other case, add
the following expression ’italin=1’ in subroutine usalin, so that the code can deal with the arrays xstr0,
vstr0 and xstreq.

When ihistr is set to 1, the code writes in the output the history of the displacement, of the structural
velocity, of the structural acceleration anf of the fluid force. The value of structural history output
step is the same as the one for standard variables nthist.

The second subroutine, usstr2, is called at each iteration. One defines in this subroutine structural pa-
rameters (considered as potentially time dependent): i.e., mass m xmstru, friction coefficients ¢ xcstru,
and stiffness k xkstru. forstr array gives fluid stresses acting on each internal structure. Moreover it’s
possible to take external forces (gravity for example ) into account, too.

. xstr array indicates the displacement of the structure compared to it s position in initial mesh,

. xstr0 array gives the displacement of the structures in initial mesh compared to structural equi-
librium,

. vstr array stands for structural velocity.

xstr, xstr0 and vstr are DATA tables that can be used to define arrays Mass, Friction and Stiffness.
Those are not to be modidfied.
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The 3D structural equation that is solved is the following one :
m.Oyz + c.oz+k (z+x0) = [, (3)

where x stands for the structural displacement compared to initial mesh postition xstr, xg represents
the displacement of the structure in initial mesh compared to equilibrium. Note that m,c, and k are
3x3 matrices. Equation (3) is solved using a Newmark HHT algorithm. Note that the time step used
to solve this equation, dtstr, can be different from the one of fluid calculations. The user is free to
define dtstr array. At the beginning of the calculation dtstr is initialised to the value of dtcel (fluid
time step).

8.12 Management of the structure property

The use of usstr2 is mandatory to run a calculation using the ale module with a structure module.
It is called at each time step.

For each structure, the system that will be solved is:
Ma' +Ca" + K. (v —z9=0 (4)
where

- M is the mass stucture (xmstru).

C' is the dumping coefficient of the stucture (xcstru).
- K is the spring constant or force constant of the stucture (xkstru).

- xo is the initial position
Below is a list of the different variables that might be modified:

e xmstru(i,j,k)
the mass stucture of the structure, where i,j is the array of mass structure and k the index of
the structure.

e xcstru(i,j,k)
dumping coeflicient of the stucture, where 1,j is the array of dumping coeflicient and k the index
of the structure.

e xkstru(i,j,k)
spring constant of the stucture, where i,j is the array of spring constant and k the index of the
structure.

e forstr(i,k)
force vector of the stucture, where i is the force vector and k the index of the structure.

8.13 Management of the Atmospheric module
8.13.1 Initialisation of the variables

The initialisation can be done in the Graphical User Interface (GUI) or in the subroutine usativ (called
only during the calculation initialisation). Under the heading “Thermophysical models”, when in the
item “Calculation features” one of the atmospheric flow model is selected, it activates an item under
the same heading: “Atmospheric flows” where the path leading to a file containing meteorological data
must be specified, see fig. 60. In addition is the atmospheric flow model chosen is the “dry atmosphere”,
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an option appear the item “Time step” under the heading “Numerical parameters” plus an additional
variable “PotTemp” in the table of the “Equation parameters” item.

When the GUI is not used, usativ allows to initialise or modify (in case of a restarted calculation) the
calculation variables and the values of the time step. It plays a similar role as cs_user_initialization
for the additional variables introduced with the air-cooling module. The quantities that can be ini-
tialised here in user-selected zones are:

- the air velocity with the array rtp(iel,iu) (with iv and iw for the other components),
- the air temperature with the array rtp(iel,isca(ihumid)),

- turbulent quantities depending on the turbulent model selected.

The example provided in the user file performs the initialisation of the variables from meteorological
profiles using the interpolation routine intprf.

8.13.2 Non standard options

The subroutine usatil initialises non-standard parameters for atmospherical calculations. These pa-
rameters are for instance:

- imeteo,
- irovar for each phase,

- ivivar for each phase.

8.13.3 Management of the boundary conditions

The user subroutine usatcl allows to define the boundary conditions of the variables unknown by
cs_user_boundary_conditions. It is called at each time step. Boundary conditions are applied to
mesh faces selected using the subroutine ’getfbr’ for instance. For each type of boundary condition,
these faces are grouped as physical zones characterised by an arbitrary number izone chosen by the
user. If a boundary condition is retrieved from a meteorological profile, the variable iprofm(izone)
of the zone must be set to 1.

Examples are provided in usatcl.

8.14 Cooling tower modelling
8.14.1 Parameters

Subroutine called only during calculation initialisation? OR AT FACH ITERATION?.

The subroutine usctil contains calculation parameters such as:

- temperature parameters,
- the number of exchange zones at various locations,

- the air properties.

8.14.2 Initialisation of the variables

The subroutine usctiv allows to initialise or modify (in case of a restarted calculation) the calculation
variables and the values of the time step. It is called only during the calculation initialisation. It plays
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a similar role as cs_user_initialization for the additional variables introduced with the air-cooling
module. The quantities that can be initialised here in user-selected zones are:

- the air temperature by filling the array rtp(iel,isca(ihumid)),
- the air humidity by filling the array rtp(iel,isca(itemp4)),

- the air velocity by filling the array rtp(iel,iu) (with iv and iw for the other components),

where iel can be an element found in a list returned by the routine ’getcel’.

8.14.3 Definition of the exchange zones

The subroutine usctdz is used to define the exchange zones of a cooling tower. The user provides the
following parameters:

- imzech: its value is related to the model used:

— 0: no model is used,
— 1. Merkel model is used,

— 2: Poppe model is used,

- 10 exchange zone parameters.

These arguments are passed to the subroutine ’defct’ along with a geometrical selection criterion.

8.14.4 Management of the boundary conditions

The subroutine usctcl, called at each time step, allows to define the boundary conditions of the
variables unknown by cs_user_boundary_conditions. Boundary conditions are applied to mesh faces
selected using the subroutine getfbr for instance. For each type of boundary condition, these faces
are grouped as physical zones characterised by an arbitrary number izone chosen by the user. The
list of boundary conditions offered in this module is given below:

- Dirichlet,

- flux density (velocities, pressure, scalar),
- sliding wall (velocity),

- friction (velocity),

- roughness (velocity),

- free inlet/outlet (velocity),

- symmetry.
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Figure 58: Boundary conditions - internal coupling
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Internal coupling with a simplified structure model
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Figure 59: Boundary conditions - external coupling
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Figure 60: Thermophysical models - atmospheric flows
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9 Key word list

The key words are classified under headings. For each key word of the Kernel of Code_Saturne, the
following data are given:

Variable name Type  Allowed values [Default] 0/C Level
Description
Potential dependences

e Variable name: Name of the variable containing the key word.
e Type: a (Array), i (Integer), r (Real number), ¢ (Character string).
e Allowed values: list or range of allowed values.

e Default: value defined by the code before any user modification (every key word has one). In
some cases, a non-allowed value is given (generally —999 or —10'?), to force the user to specify
a value. If he does not do it, the code may:

- automatically use a recommended value (for instance, automatical choice of the variables
for which chronological records will be generated).

- stop, if the key word is essential (for instance, value of the time step).
e O/C: Optional/Compulsory
- O: optional key word, whose default value may be enough.
- C: key word which must imperatively be specified (for instance, the time step).

e Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 key words are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 key word are all optional.

- L3 (level 3): the developers may have to modify it ; it keeps its default value in any other
case. The L3 key word are all optional.

e Description: key word description, with its potential dependences.
The L1 key words can be modifed through the Graphical Use Interface or in the cs_user_parameters.f90
file. L2 and L3 key words can only be modified through the cs_user_parameters.f90 file, even if they

do not appear in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the key words which do not belong to the L1 level.

The alphabetical key word list is displayed in the index, in the end of this report.

NOTES
e The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
e The notation “grand” (which can be used in the code) corresponds to 102,

9.1 Input-output

NOTES

o Two different files can have neither the same unit number nor the same name.
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9.1.1 ”Calculation” files

GENERAL

impstp

ficstp

i strictly positive integer [12] ) L3
unit of the calculation interactive stop file
always useful (because of the interactive character)

¢ string of 6 characters [ficstp] 0] L3
name of the calculation interactive stop file (see p.17)
always useful (because of the interactive characteristic)

1D WALL THERMAL MODULE

ficmti

ficvtl

c string of 13 characters [t1damo] 0] L3
name of the upstream restart file for the 1D wall thermal module.
useful if and only if isuitl = 1 and nfpt1d>0

¢ string of 13 characters [t1dava] O L3
name of the upstream restart file for the 1D wall thermal module
useful if and only if nfpt1d>0

VORTEX METHOD FOR LES

impmvo

ficmvo

impvvo

ficvvo

impdvo

i strictly positive integer [impmvo] 0 L3
unit of the upstream restart file for the vortex method
useful if and only if isuivo = 1 and ivrtex=1

c string of 13 characters [voramo] 0] L3
name of the upstream restart file for the vortex method

This is always a text file (this file has a different structure from the other restart files)
useful if and only if isuivo = 1 and ivrtex=1

i strictly positive integer [impvvo] O L3
unit of the downstream restart file for the vortex method
useful if and only if ivrtex=1

¢ string of 13 characters [voraval @) L3
name of the upstream restart file for the vortex method

This is always a text file (this file has a different structure from the other restart files)
useful if and only if ivrtex=1

i strictly positive integer [impdvo] O L3
unit of the ficvor data files for the vortex method. These files are text files. Their
number and names are specified by the user in the usvort subroutine.

(Although it corresponds to an “upstream” data file, impdvo is initialized to 20 be-
cause, in case of multiple vortex entries, it is opened at the same time as the ficmvo
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upstream restart file, which already uses unit 11)
useful if and only if ivrtex=1

RADIATION

ficamr ¢ string of 13 characters [rayamo] @) L3
name of the radiation upstream restart file.
useful if and only if isuird = 1

ficavr ¢ string of 13 characters [rayava] O L3
name of the radiation downstream restart file
always useful in case of radiation modeling

THERMOCHEMISTRY

impfpp i strictly positive integer [25] 0] L3
unit of the thermochemical data file
useful in case of gas or pulverised coal combustion or electric arc

ficfpp ¢ string of 6 characters [dp-tch] O L3
name of the thermochemical data file. The launch script is designed to copy the user
specified thermochemical data file in the temporary execution directory under the
name dp_tch, for Code_Saturne to open it properly. Should the value of ficfpp be
changed, the launch script would have to be adapted.
useful in case of gas or pulverised coal combustion

impjnf i strictly positive integer [impfpp] 0 L3
unit of the JANAF data file
useful in case of gas or pulverised coal combustion

ficjnf c string of 5 characters [JANAF] 0] L3
name of the JANAF data file. The launch script is designed to copy the user specified
JANAF data file in the temporary execution directory under the name JANAF, for
Code_Saturne to open it properly. Should the value of ficjnf be changed, the launch
script would have to be adapted.
useful in case of gas or pulverised coal combustion

LAGRANGIAN

ficaml c string of 6 characters [Lagamo] 0] L3
name of the upstream restart file in case of Lagrangian modeling.
useful if and only if isuila = 1

ficmls c string of 13 characters [Lasamo] 0] L3

name of the upstream restart file for the statistics in case of Lagrangian modeling.
useful if and only if isuist = 1
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ficavl c string of 13 characters [lagava] 0] L3
name of the downstream restart file in case of Lagrangian modeling
always useful in case of Lagrangian modeling
ficvls c string of 6 characters [lasava] O L3
name of the downstream restart file for the statistics in case of Lagrangian modeling
useful in case of Lagrangian modeling with statistics
implal i strictly positive integer [50] 0 L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling
impla2 i strictly positive integer [51] ) L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling
impla3 i strictly positive integer [52] @) L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling
implad i strictly positive integer [53] O L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling
implab ia strictly positive integer [54 to 68| O L3

units of files specific Lagrangian modeling, 15-dimension array
useful in case of Lagrangian modeling

9.1.2 Post-processing for EnSight or other tools

NOTES

e The format depends on the user choices, and most options are defined using the GUI or
cs_user_postprocess.c.

e The post-processing files can be of the following formats: Ensight Gold, MED or CGNS. The use
of the two latter formats depends on the installation of the corresponding external libraries.

e For each quantity (problem unknow, preselected numerical variable or preselected physical param-
eter), the user specifies if a post-processing output is wanted. The output frequency can be set.

ichrvr

ia -999, 0 or 1 [-999] O L1
for each quantity defined at the cell centers (physical or numerical variable), indicator
of whether it should be post-processed or not

= -999: not initialised. By default, the post-processed quantities are the
unknowns (pressure, velocity, k, €, Rij, w, ¢, f, scalars), density, turbulent viscosity
and the time step if is not uniform

= 0: not post-processed

= 1: post-processed
useful if and only if the variable is defined at the cell centers: calculation variable,
physical property (time step, density, viscosity, specific heat) or turbulent viscosity if
iturb > 10
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ipstdv i integer > 1: see below [ipstyp*ipstcl*ipstft] O L1

indicates the data to post-process on the boundary mesh (the boundary mesh must
have been activated with ichrbo=1). The value of ipstdv is the product of the
following integers, depending on the variables that should be post-processed:

ipstyp: y* at the boundary

ipstcl: value of the variables at the boundary (using the boundary conditions
but without reconstruction)

ipstft: thermal flux at the boundary (W m™2), if a thermal scalar has been
defined (iscalt)
For instance, with ipstdv=ipstyp*ipstcl, y* and the variables will be post-processed
at the boundaries.
With ipstdv=1, none of these data are post-processed at the boundaries.
always useful if ichrbo=1

9.1.3 Chronological records of the variables on specific points

STANDARD USE THROUGH INTERFACE OR CS_USER_PARAMETERS.F90

For each quantity (problem unknown, preselected numerical variable or preselected physical parame-
ter), the user indicates whether chronological records should be generated, the output period and the
position of the probes. The code produces chronological records at the cell centers located closest to
the geometric points defined by the user by means of their coordinates. For each quantity, the number
of probes and their index-numbers must be specified (it is not mandatory to generate all the variables
at all the probes).

ncapt

Xyzcap

ihisvr

i positive or null integer [0] ) L1
total number of probes (limited to ncaptm=100)
always useful

ra real numbers [0.0] ) L1
3D-coordinates of the probes

the coordinates are written: xyzcap(i,j), with i =1, 2 or 3 and j < ncapt

useful if and only if ncapt > 0

ia -999, -1 or positive or null integer [-999] 0 L1
number ihisvr(n, 1) and index-numbers ihisvr(n, j>1) of the record probes to
be used for each variable, i.e. calculation variable or physical property defined at the
cell centers. With ihisvr(n, 1)=-999 or -1, ihisvr(n, j>1) is useless.
e ihisvr(n, 1): number of record probes to use for the variable N
= -999: by default: chronogical records are generated on all the probes if N
is one of the main variables (pressure, velocity, turbulence, scalars), the local time
step or the turbulent viscosity. For the other quantities, no chronological record is
generated.
= -1: chronological records are produced on all the probes
= 0: no chronological record on any probe
> 0: chronological record on ihisvr(n, 1) probes to be specified with
ihisvr(n, j>1)
always useful, must be inferior or equal to ncapt
e ihisvr(n, j>1): index-numbers of the probes used for the variable n
(with j<ihisvr(n,1)+1)
=-999: by default: if ihisvr(n, 1) # -999, the code stops. Otherwise, refer
to the description of the case ihisvr(an, 1)=-999
useful if and only if ihisvr(n, 1) >0
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The condition ihisvr(n, j) <ncapt must be respected.
For an easier use, it is recommended to simply specify ihisvr(n,1)=-1 for all the
interesting variables.

imphis ia strictly positive integer [30 and 31] O L3
working units for the production of chronological record files by the Kernel
useful if and only if chronological files are produced (i.e. there is n for which ihisvr(n,
1) #0)

emphis ¢ string of less than 80 characters [./] Q) L3
directory in which the potential chronological record files generated by the Kernel will
be written (path related to the execution directory)
it is recommended to keep the default value and, if necessary, to modify the launch
script to copy the files in the alternate destination directory
useful if and only if chronological record files are generated (i.e. there is n for which
ihisvr(n, 1) # 0)

exthis c string of less than 80 characters [hst] 0) L3
extension of the chronological record files
useful if and only if chronological record files are generated (i.e. there is n for which
ihisvr(n, 1) #0)

nthist i -1 or strictly positive integer [1 or-1] ) L1
output period of the chronological record files

= -1: no output
> 0: period (every nthist time step)

The default value is -1 if there is no chronological record file to generate (if there is
no probe, ncapt = 0, or if ihisvr(n, 1)=0 for all the variables) and 1 otherwise
If chronological records are generated, it is usually wise to keep the default value
nthist=1, in order to avoid missing any high frequency evolution (unless the total
number of time steps is much too big)
useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) there is n for which ihisvr(n, 1) # 0)

nthsav i -1 or positive or null integer [0] Q) L3

saving period the chronological record files (they are first stored in a temporary file
and then saved every nthsav time step)

= 0: by default (4 times during a calculation)

= -1: saving at the end of the calculation

> 0: period (every nthsav time step)
During the calculation, the user can read the chronological record files in the ex-
ecution directory when they have been saved, i.e. at the first time step, at the
tenth time step and when the time step number is a multiple of nthsav (multiple
of (ntmabs-ntpabs)/4 if nthsav=0)
Note: using the ficstp file allows to update the value of ntmabs. Hence, if the cal-
culation is at the time step n, the saving of the chronological record files can be forced
by changing ntmabs to ntpabs+4(n+1) using ficstp; after the files have been saved,
ntmabs can be reset to its original value, still using ficstp.
useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) there is n for which ihisvr(n, 1) # 0)

NON-STANDARD USE THROUGH USHIST

(see p.91)
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impush ia strictly positive integer [33 to 324nushmx=49] O L3

units of the user chronological record files
useful if and only if the subroutine ushist is used

ficush ca strings of 13 characters [ush* or ush#*.n_%] 0O L2
names of the user chronological record files. In the case of a non-parallel calculation,
the suffix applied the file name is a three digit number: ush001, ush002, ush003...
In the case of a parallel-running calculation, the processor index-number is added to
the suffix. For instance, for a calculation running on two processors: ush001.n_0001,
ush002.n_0001, ush003.n_0001... and ush001.n_0002, ush002.n_0002, ush003.n_0002...
The opening, closing, format and location of these files must be managed by the user.
useful if and only if the subroutine ushist is used

9.1.4 Time averages

The code allows the calculation of time averages of the type < f1 * fa... * f, >. The variables f;
(defined at the cell centers) which may be taken into account are the followings:

- the solved calculation variables (velocity, pressure ...),

- the auxiliary variables from the array propce (density and physical properties when they are
variable in space).

The averages are treated like auxiliary variables defined at the cell centers and stored in the propce
array. The standard post-processing actions may therefore be activated, like the writing in the listing
or the output of result files (EnSight, MED, ...). However, if the user wants to manipulate the averages
in a more advanced way, it is recommended to refer first to the user subroutines usproj and usvpst
which provide examples. Indeed, the propce array does not contain the time averages directly, but
only the cumulated value of the product fi * fo... % f, of the selected variables f;. The division by the
cumulated duration is done only before the writing of the results. See also page 36.

To calculate p time averages of the type < fi * fa... * fi(imom) >, the user must:

- make sure that p <nbmomx (do not overstep the maximum number of averages),

- make sure that n(imom) <ndgmox for every average imom (do not overstep the maximum degree,
i.e the maximum number of variables which may compose an average),

- define every average imom (1<imom< p, without skipping any index-number) by marking out the
n(imom) variables which form it by means of the array idfmom(ii,imom) (with 1<ii<n(imom)),

- define for each average imom the time step number at which the calculation of the cumulated
value must begin, by means of the array ntdmom(imom).

The total number of averages (p=nbmomt) is automatically determined by the code from the values of
idtmom. The user must not specify specify it.

idfmom ia 0, & variable index-number [0] @) L1
Index-number of the variables composing a time average of the type < f1* fo...x f; >.
For every time average imom to calculate:

- if idfmom(ii,imom) is positive, it refers to the index-number of a solved
variable (stored in the array rtp), like for instance a velocity component (iu, iv, iw)
or the pressure (ipr)

-if idfmom(ii,imom) is negative, it refers to the index-number of an auxiliary
variable (stored in propce), like for instance the density
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(idfmom(ii,imom)=-irom)
useful if and only if the user wants to calculate time averages

ntdmom ia integer [-1] 0) L1
For every average imom to calculate, absolute time step number at which the calculation
should begin. The value -1 means “never”. Every strictly negative value (in particular
-1) will considered an error and cause the calculation to stop (because the user is
supposed to want to calculate the averages he has defined)
useful if and only if the user wants to calculate time averages

imoold ia -2, 1< integer < jbmomt [-2] 0] L1

Correspondence table of the averages in the case of a calculation restart. In this case,
for every average imom in the current calculation (1<imom<nbmomx), imoold (imom)
gives the index-number of the corresponding average in the previous calculation (in
which jbmomt averages were calculated).

- if imoold(imom) = -2, the user lets the code automatically determine the
correspondence. By default, the average ii in the current calculation will correspond
to the average ii in the previous calculation, if it existed. Otherwise, 1i will be a new
average.

- if imoold(imom) = -1, the average is reset to zero.

- if imoold(imom) = kk, the average imom will correspond to the average
kk=imoold(imom) in the previous calculation.
useful if and only if the user wants to calculate averages. Allows to add or suppress
some averages, to reset them, to change their order, ...

Warning: if the calculation is not a restart, imoold must not be specified (its value
must remain -2)

9.1.5 Others

impusr

ficusr

ilisvr

ia strictly positive integer [70 to 69+nusrmx=79] O L3
unit numbers for potential user specified files
useful if and only if the user needs files (therefore always useful, by security)

ca string of 13 characters [usrf* or usrf*.n*] O L1
name of the potential user specified files. In the case of a non-parallel calculation, the
suffix applied the file name is a two digit number: from usrf01 to usrf10. In the case
of a parallel-running calculation, the four digit processor index-number is added to the
suffix. For instance, for a calculation running on two processors: from usrf01.n_0001
to usrf10.n_0001 and from usrf01.n_0002 to usrf10.n_0002. The opening, closing,
format and location of these files must be managed by the user.

useful if and only if the user needs files (therefore always useful, by security)

ia -999, 1 or 0 [-999] O L1
for every quantity (variable, physical or numerical property ...), indicator concerning
the writing in the execution report file

= -999: automatically converted into 1 if the concerned quantity is one of
the main variables (pressure, velocity, turbulence, scalar), the density, the time step if
idtvar # 0 or the turbulent viscosity. Otherwise converted into 0.

= 1: writing in the execution listing.

= 0: no writing.
always useful
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iwarni ia integer [0] @) L1
iwarni(ivar) characterises the level of detail of the outputs for the variable ivar
(from 1 to nvar). The quantity of information increases with its value.
Impose the value 0 or 1 for a reasonable listing size. Impose the value 2 to get a
maximum quantity of information, in case of problem during the execution.
always useful
nomvar ca string of less than 80 characters [“7] @) L1
name of the variables (unknowns, physical properties ...): used in the execution listing,
in the post-processing files, etc.
“7: not initialised (the code chooses the manes by default)
It is recommended not to define variable names of more than 8 characters, to get a
clear execution listing (some advanced writing levels take into account only the first 8
characters).
always useful
ntlist i -1 or strictly positive integer [1] O L1
writing period in the execution report file
= -1: no writing
> 0: period (every ntlist time step)
The value of ntlist must be adapted according to the number of iterations carried
out in the calculation. Keeping ntlist to 1 will indeed provide a maximum volume
of information, but if the number of time steps is too large, the execution report file
might become too big and unusable (problems with disk space, memory problems
while opening the file with a text editor, problems finding the desired information in
the file, ...).
always useful
ntsuit i -1, 0 or positive or null integer [0] 0] L3

saving period of the restart files
= -2: no restart at all
= -1: only at the end of the calculation
= 0: by default (four times during the calculation)
> 0: period
always useful

9.2 Numerical options

9.2.1 Calculation management

iecaux

ileaux

inpdt0

i Oorl [1] Q) L2
indicates the writing (=1) or not (=0) of the auxiliary calculation restart file
always useful

i Oor 1 1] 0 L2
indicates the reading (=1) or not (=0) of the auxiliary calculation restart file
useful only in the case of a calculation restart

i Oorl [0] O L1
indicates the calculation mode: 1 for a zero time step control calculation, i.e. without
solving the transport equations, and 0 for a standard calculation.
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In case of a calculation using the control mode (inpdt0=1), when the calculation is not
a restart, the equations are not solved, but the physical properties and the boundary
conditions are calculated. When the calculation is a restart, the physical properties
and the boundary conditions are those read from the restart file (note: in the case of
a second-order time scheme, the mass flow is modified as if a normal time step was
realised: the mass flow generated in an potential post-processing is therefore not the
mass flow read from the restart file).
In the control mode (inpdt0=1), the variable ntmabs is not used.
In the standard mode (inpdt0=0), the code solves the equations at least once, even
if ntmabs=0.
always useful

isuite i Oor1 [0] C L1
indicator of a calculation restart (=1) or not (=0)
always useful. This value is set automatically be the code, depending on whether a
restart directory is present, and should not be modified by the user

ntcabs i integer [ntpabs] O L3
current time step number
always useful
ntcabs is initialised and updated automatically by the code, its value is not to be
modified by the user

ntmabs i integer > ntpabs [10] C L1
number of the last time step after which the calculation stops. It is an absolute
number: for the restart calculations, ntmabs takes into account the number of time
steps of the previous calculations. For instance, after a first calculation of 3 time steps,
a restart file of 2 time steps is realised by setting ntmabs=3+2=>5
always useful

ntpabs i integer [0, read] 0 L3
number of the last time step in the previous calculation. In the case of a restart
calculation, ntpabs is read from the restart file. Otherwhise it is initialised to 0
always useful
ntpabs is initialised automatically by the code, its value is not to be modified by the
user

tmarus r -1 or strictly positive real [-1] O L3
margin in seconds on the remaining CPU time which is necessary to allow the calcula-
tion to stop automatically and write all the required results (for the machines having
a queue manager)

= -1: calculated automatically
> 0: margin defined by the user

always useful, but the default value should not be changed unless absolutely necessary.

ttcabs r positive or null real number [ttpabs] O L3

physical simulation time at the current time step. For the restart calculations, ttcabs
takes into account the physical time of the previous calculations.

If the time step is uniform (idtvar=0 or 1), ttcabs increases of dt (value of the time
step) at each iteration. If the time step is non-uniform (idtvar=2), ttcabs increases
of dtref at each time step.

always useful
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ttcabs is initialised and updated automatically by the code, its value is not to be
modified by the user
ttpabs r positive or null real number [0, read] 0] L3

simulation physical time at the last time step of the previous calculation. In the case
of a restart calculation, ttpabs is read from the restart file. Otherwhise it is initialised
to 0.

always useful

ttcabs is initialised automatically by the code, its value is not to be modified by the
user

9.2.2 Scalar unknowns

iscold

nscaus

iscavr

iscalt

iscsth

ia -999, 1< integer < jscal [-999] 0) L1
correspondence table of the scalars in the case of a calculation restart. For a calcu-
lation restart with nscal scalars, iscold(iscal) gives, for every scalar iscal of the
current calculation (1<iscal<nscal), the index-number of the corresponding scalar
in the previous calculation (in which jscal scalars were taken into account).
iscold(iscal) = -999: the code automatically determines the correspon-
dence. By default, the following rules are applied:
- the user scalar ii of the current calculation is initialised by the the
user scalar ii of the previous calculation, if this scalar existed already (otherwise, ii
is a new scalar).
- the particular physics scalar jj is initialised by the particular physics
scalar jj of the previous calculation if this scalar existed already (otherwise, jj is a
new scalar).
iscold(iscal) = kk: the scalar iscal (user or particular physics scalar) is
initialised by the scalar kk=iscold(iscal) of the previous calculation.
always useful. Allows to add or remove some scalars, to change the solving order, to
change the physics, ...

i 0< integer < nscmax [0] 0) L1
number of user scalars solutions of an advection equation
always useful

ia 0, 1 < integer < nscal [0] ) L1
if the scalar iscal is the average of the square of the fluctuations of a scalar kk, then
iscavr(iscal)=kk. Otherwise iscavr(iscal)=0. For iscal and kk, the user can
only use index-numbers refering to user scalars (< nscaus).

always useful

ia -1 or integer > 0 [-1] @) L1
iscalt is the index-number of the scalar representing the temperature or the enthalpy.
If iscalt=-1, no scalar represents the temperature nor the enthalpy. When a specific
physics module is activated (gas combustion, pulverised coal, electricity or compress-
ible), the user must not modify iscalt (the choice is made automatically)33.

useful if and only if nscal > 1

ia -1,0,1,20r 3 [-10] O L1
type of scalar

33in the case of the compressible module, iscalt does not correspond to the temperature nor enthalpy but to the total

energy
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iclvfl

itbrrb

icpsyr

= -10: not specified. By default, the code chooses iscsth(iscal)=0 for the
scalars apart from iscalt

= -1: temperature in degrees Celsius (use only in case of radiation modeling)

= (: passive scalar

= 1: temperature (in Kelvin if the radiation modeling is activated)

= 2: enthalpy

= 3: total energy (this value is automatically chosen by the code when using
the compressible module, it must never be used otherwise and must never be specified
by the user)
useful if and only if nscal > 1. The distinction between iscsth(iscal) = -1 or 1
(respectively degrees Celsius or Kelvin) is useful only in case of radiation modeling.
For calculations without radiation modeling, use iscsth(iscal)=1 for the tempera-
ture. When a particular physics module is activated (gas combustion, pulverised coal,
electricity or compressible), the user must not modify iscsth (the choice is made au-
tomatically: the solved variable is the enthalpy or the total energy).
It is also reminded that, in the case of a coupling with SYRTHES, the solved thermal
variable should be the temperature (iscsth(iscalt)=1 or -1). More precisely, ev-
erything is designed in the code to allow for the running of a calculation coupled with
SYRTHES with the enthalpy as thermal variable (the correspondence and conversion
is then specified by the user in the subroutine usthht). However this case has never
been used in practice and has therefore not been tested. With the compressible model,
it is possible to carry out calculations coupled with SYRTHES, although the thermal
scalar represents the total energy and not the temperature.

ia -1,0,1o0r 2 [-1] 0 L3
for every scalar iscal representing the average of the square of the fluctuations of
another scalar ii=iscavr(iscal) (noted f), indicator of the clipping method

= -1: no clipping because the scalar does not represent the average of the
square of the fluctuations of another scalar

= 0: clipping to 0 for lower values

= 1: clipping to 0 for lower values and to (f — fimin)(fmaxz — f) for higher
values, where f is the associated scalar, f,;, and fie; its minimum and maximum
values specified by the user (i.e. scamin(ii) and scamax(ii))

= 2: clipping tomax (0, scamin(iscal)) for lower values and to scamax (iscal)
for higher values. scamin and scamax are limits specified by the user
useful for the scalars iscal for which iscavr(iscal)>0.

i Oor1 [0] 0 L3
Reconstruction (=1) or not (=0) of the temperature, enthalpy or total energy value in
the boundary cells. Useful in the case of coupling with SYRTHES and with radiation.

ia -999,0,1 [-999] O L3
For each scalar iscal, icpsyr(iscal) indicates if it is coupled with SYRTHES (=1)
or not (=0). There can be only one coupled scalar per calculation.
=-999: by default
e icpsyr(iscal)=1 for the thermal scalar iscal=(iscalt) when a
coupling with SYRTHES has been specified in the Interface or the launch script
e icpsyr(iscal)=0 otherwise
= 0: the scalar iscal is not coupled with SYRTHES
= 1: the scalar iscal is coupled with SYRTHES
useful in case of coupling with SYRTHES
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9.2.3 Definition of the equations

istat ia Oorl [1 or 0] 0) L2
for each unknown ivar to calculate, indicates if non-stationary terms are present
(istat(ivar)=1) or not (0) in the matrices.
By default, istat is set to 0 for the pressure (variable ivar=ipr) or f in v2f modeling
(variable ivar=ifb) and set to 1 for the other unknowns.
useful for all the unknowns

iconv ia Oorl [1 or 0] 0] L2
for each unknown ivar to calculate, indicates if the convection is taken into account
(iconv(ivar)=1) or not (0).
By default, iconv is set to 0 for the pressure (variable ivar=ipr) or f in v2f modeling
(variable ivar=ifb) and set to 1 for the other unknowns.
useful for all the unknowns

idiff ia Oorl [1] @) L2
for each unknown ivar to calculate, indicates if the diffusion is taken into account
(idiff (ivar)=1) or not (0)
useful for all the unknowns

idifft ia Oor1l [1] 0 L3
for each unknown ivar to calculate, when diffusion is taken into account (idiff (ivar)=1),
idifft (ivar) indicates if the turbulent diffusion is taken into account (idifft(ivar)=1)
or not (0)
useful for all the unknowns

idircl ia Oorl [1 or 0] 0 L3
for each unknown ivar to calculate, indicates whether the diagonal of the matrix
should be slightly shifted (idircl(ivar)=1) or not (0) if there is no Dirichlet bound-
ary condition and if istat=0. Indeed, in such a case, the matrix for the general
advection/diffusion equation is singular. A slight shift in the diagonal will make it
invertable again.
By default, idircl is set to 1 for all the unknowns, except f in v2f modeling, since
its equation contains another diagonal term that ensures the regularity of the matrix.
useful for all the unknowns

ivisse ia Oorl [1] 0 L3

indicates whether the source terms in transposed gradient and velocity divergence
should be taken into account in the momentum equation. In the compressible module,
these terms also account for the volume viscosity (cf. viscv0 and iviscv):
9: (k= 2/3 (1 + 1)) O] + 0 [(1 + 1)U

= 0: not taken into account

= 1: taken into account
always useful

9.2.4 Definition of the time advancement

idtvar i 1,0, 1,2 [0] o) L1
type of time step
= 0: constant in time and spatially uniform
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= 1: variable in time and spatially uniform
= 2: variable in time and in space
= -1: steady-state algorithm
If the numerical scheme is a second-order in time, only the option 0 is allowed.
always useful
iptlro i Oorl [0] @) L2
when density gradients and gravity are present, a local thermal time step can be cal-
culated, based on the Brunt-Vaissala frequency. In numerical simulations, it is usually
wise for the time step to be lower than this limit, otherwise numerical instabilities
may appear
iptlro indicates whether the time step should be limited to the local thermal time
step (=1) or not (=0)
when iptlro=1, the listing shows the number of cells where the time step has been
clipped due to the thermal criterium, as well as the maximum ratio between the time
step and the maximum thermal time step. If idtvar=0, since the time step is fixed
and cannot be clipped, this ratio can be larger than 134, When idtvar>0, this ratio
will be smaller than 1, except if the constraint dtmin has prevented the code from
reaching a sufficiently low value for dt
useful when density gradients and gravity are present
cdtvar ra strictly positive real number [1] 0) L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity /pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar (isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly unrecommended
useful if and only if nscal > 1
coumax r strictly positive real number [1] 0) L1
target local or maximum Courant number in case of non-constant time step
useful if idtvar # 0
foumax r strictly positive real number [10] ] L1
target local or maximum Fourier number in case of non-constant time step
useful if idtvar # 0
dtref r strictly positive real number [-grand*10] C L1
reference time step
always useful.
It is the time step value used in the case of a calculation run with a uniform and
constant time step, i.e. idtvar=0 (restart calculation or not). It is the value used to
initialise the time step in the case of an initial calculation run with a non-constant time
step (idtvar=1 or 2). It is also the value used to initialise the time step in the case
of a restart calculation in which the type of time step has been changed (for instance,
idtvar=1 in the new calculation and idtvar=0 or 2 in the previous calculation): see
usiniv
dtmin r positive or null real number [0.1*dtref] 0] L2

lower limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0

34it is then the user’s choice to decide whether he should diminish DTREF or not
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dtmax r strictly positive real number [1000*dtref] O L2
upper limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0

varrdt r strictly positive real number [0.1] o) L3
maximum allowed relative increase in the calculated time step value between two
succesive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)
useful if idtvar # 0

relxst r 0 <real <1 [0.9] ) L2
relaxation coefficient for the steady algorithm (relaxp(iphas)=1: no relaxation)
useful if idtvar=-1

relaxv ra 0<real <1 [0.7 or 1] 0) L3

for each variable ivar, relaxation coefficient of the variable. This relaxation parameter
is only useful for the pressure with the unsteady algorithm (so as to improve the con-
vergence in case of meshes of insufficient quality or and for some of the turbulent mod-
els (iturb(iphas) = 20, 21, 50 or 60 and ikecou(iphas)=0; if ikecou(iphas)=1,
relaxv(ivar) is not used, whatever its value may be). Default values are 0.7 for
turbulent variables and 1. for pressure.

It also stores the value of the relaxation coefficient when using the steady algorithm,
deduced from the value of relxst (defaulting to relaxv(ivar eq 1. - relxst)

useful only for the pressure and for turbulent variables if and only if (k — e, v2f or
k — w models without coupling) with the usteady algorithm

always useful with the steady algorithm

NON-CONSTANT TIME STEP

The calculation of the time step uses a reference time step DTREF (at the calculation beginning).
Later, every time step, the time step value is calculated by taking into account the different existing
limits, in the following order:

e coumax, foumax: the more restrictive limit between both is used (in the compressible module,
the acoustic limitation is added),

e varrdt: progressive increase and immediate decrease in the time step,

e iptlro: limitation by the thermal time step,

e dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

9.2.5 Turbulence

iturb

ia 0, 10, 20, 21, 30, 31, 40, 41, 42, 50, 60, [7099)] 0 L1
indicator of the turbulence model iturb

= -999: not initalised. This value is not allowed and must be modified by the
user

= 0: laminar

= 10: mixing length (not valided)

=20: k—¢

= 21: k — e with linear production (Laurence & Guimet)

= 30: R;; — ¢ “standard” LRR (Launder, Reece & Rodi)

= 31: R;; — e SSG (Speziale, Sarkar & Gatski)

= 40: LES (Smagorinsky model)

= 41: LES (dynamic model)
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= 42: LES (WALE model)

= 50: v2-f, p-model version

= 60: k — w, SST version

= 70: Spalart-Allmaras
always useful

The k — ¢ (standard and linear production) and R;; — e (LRR and SSG) turbulence models imple-
mented in Code_Saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sublayer (at
the wall, y™ > 2.5 is required as a minimum, and preferably between 30 and 100)3°. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. key word ideuch) may help avoiding this problem.

The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sublayer (y* < 1).
The k — w SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the key word icdpar for more details about the potential limitations.

The k — € model with linear production allows to correct the known flaw of the standard k& — ¢ model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).

With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sublayer, where the
boundary conditions are simple natural no-slip conditions.

Concerning the LES model, the user may refer to the subroutine ussmag for complements about the
dynamic model. Its usage and the interpretation of its results require particular attention. In addi-
tion, the user must pay further attention when using the dynamic model with the least squares method
based on a partial extended neighborhood (imrgra=3). Indeed, the results may be degraded if the
user does not implement his own way of averaging the dynamic constant in ussmag (i.e. if the user
keeps the local average based on the extended neighborhood).

ideuch ia 0,1or2 [0 or 1] 0) L2

indicates the type of wall function is used for the velocity boundary conditions on a
frictional wall.

= 0: one-scale model

= 1: two-scale model

= 2: scalable wall function
ideuch is initialised to 0 for iturb=0, 10, 40 or 41 (laminar, mixing length, LES).
ideuch is initialised to 1 for iturb=20, 21, 30, 31 or 60 (k — ¢, R;; —¢ LRR, R;; — ¢
SSG and k —w SST models).
The v2f model (iturb=50) is not designed to use wall functions (the mesh must be
“low Reynolds”).
The value ideuch=1 is not compatible with iturb=0, 10, 40 or 41 (laminar, mixing
length and LES).
Concerning the k£ — ¢ and R;; — € models, the two-scales model is usually at least as
satisfactory as the one-scale model.
The scalable wall function allows to virtually “shift” the wall when necessary in order
to be always in a logarithmic layer. It is used to make up for the problems related to
the use of High-Reynolds models on very refined meshes.
useful if iturb is different from 50

ilogpo ia Oorl [1] 0 L3
type of wall function used for the velocity: power law (ilogpo=0) or logarithmic law

35While creating the mesh, y* = % is generally unknown. It can be roughly estimated as %, where U is the

characteristic velocity, v is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.
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(ilogpo=1)
always useful
ypluli ra real number > 0 [1/xkappa, 10.88] 0] L3

limit value of ' for the viscous sublayer

ypluli depends on the chosen wall function: it is initialised to 10.88 for the scalable
wall function (ideuch=2), otherwise it is initialised to 1/x =~ 2, 38

In LES, ypluli is taken by default to be 10.88

always useful

k — e, k — & WITH LINEAR PRODUCTION, V2-F AND k —w SST

igrake

igrhok

ikecou

iclkep

ia Oorl [1] 0] L1
indicates if the terms related to gravity in the equations of k£ and € or w are taken into
account (igrake=1) or not (0)

useful if and only if iturb = 20, 21, 50 or 60, (gx, gy, gz) # (0,0,0) and the density
is not uniform

ia Oorl [0] 0] L2
indicates if the term %Zpk is taken into account

(igrhok=1) or not (0) in the velocity equation

useful if and only if iturb = 20, 21, 50 or 60.

This term may generate non-physical velocities at the wall. When it is not explicitely
taken into account, it is implicitely included into the pressure.

ia Oorl [0 or 1] 0] L3
indicates if the coupling of the source terms of k£ and € or k and w is taken into account
(ikecou=1) or not (0)

if ikecou=0 in k£ — € model, the term in € in the equation of k£ in made implicit
ikecou is initialised to 0 if iturb = 21 or 60, and to 1 if

iturb= 20

ikecou=1 is forbidden when using the v2f model (iturb=>50)

useful if and only if iturb = 20, 21 or 60 (k — ¢ and k — w models)

ia Oorl [0] O L3
indicates the clipping method used for k and ¢, for the & — € and v2f models

= 0: clipping in absolute value

= 1: clipping from physical relations
useful if and only if iturb = 20, 21 or 50 (k — e and v2f models). The results obtained
with the method corresponding to iclkep=1 showed in some cases a substantial sen-
sitivity to the values of the length scale almax.
The option iclkep=1 is therefore not recommended, and, if chosen, must be used
cautiously.

R;; —e (LRR AND SSG)

iclptr

ia Oorl [0] o) L3
indicates if R;; is made partially implicit (iclptr=1) or not (0) in the wall boundary
conditions.

useful if and only if iturb = 30 or 31 (R;; — ¢ model)




Code_Saturne
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 156/205
iclsyr ia Oorl [0] ) L3
indicates if R;; is made partially implicit (iclsyr=1) or not (0) in the symmetry
boundary conditions.
useful if and only if iturb = 30 or 31 (R;; — ¢ model)
idifre ia Oorl [1] @) L3
complete (idifre=1) or simplified (0) taking into account of the diagonals of the
diffusion tensors of R;; and ¢, for the LLR model.
useful if and only if iturb = 30 (LLR R;; — ¢ model)
igrari ia Oorl [1] 0] L1
indicates if the terms related to gravity are taken into account (igrari=1) or not (0)
in the equations of R;; — e.
useful if and only if iturb = 30 or 31 and (gx, gy, gz) # (0,0,0) (R;; — e model with
gravity) and the density is not uniform
irijec ia Oorl [0] @) L2
indicates if the wall echo terms in R;;—e LRR model are taken into account (irijec=1)
or not (0).
useful if and only if iturb = 30 (R;; — ¢ LRR).
It is not recommended to take these terms into account: they have an influence only
near the walls, their expression is hardly justifiable according to some authors and, in
the configurations studied with Code_Saturne, they did not bring any improvement in
the results.
In addition, their use induces an increase in the calculation time.
The wall echo terms imply the calculation of the distance to the wall for every cell in
the domain. See icdpar for potential restrictions due to this.
irijnu ia Oorl [0] 0] L3
addition (irijnu=1) or not (0) of a turbulent viscosity in the matrix of the incer-
mental system solved for the velocity in R;; — ¢ models. The goal is to improve the
stability of the calculation. The usefulness of irijnu=1 has however not been clearly
demonstrated.
Since the system is solved in incremental form, this extra turbulent viscosity does not
change the final solution for steady flows. However, for unsteady flows, the parameter
nswrsm should be increased.
useful if and only if iturb = 30 or 31 (R;; — ¢ model).
irijrb ia Oorl [0] 0] L3
reconstruction (irijrb=1) or not (0) of the boundary conditions at the walls for R;;
and e.
useful if and only if iturb = 30 or 31 (R;; — ¢ model)
LES
ivrtex i Oorl [0] @) L1

activates (=1) or not (=0) the generation of synthetic turbulence at the different inlet
boundaries with the LES model (generation of unsteady synthetic eddies)

useful if iturb=40 or 41

this key word requires the completion of the routine usvort
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isuivo i Oorl [isuite] 0] L1
for the vortex method, indicates whether the synthetic vortices at the inlet should be
initialised (=0) or read form the restart file ficmvo.
useful if iturb=40 or 41 and ivrtex=1

idries ia Oorl [0,1] 0] L2
idries activates (1) or not (0) the van Driest wall-damping for the Smagorinsky con-
stant (the Smagorinsky constant is multiplied by the damping function 1—e~¥" /cdries,
where yT designates the adimensional distance to the nearest wall). The default value
is 1 for the Smagorinsky model and 0 for the dynamic model.
the van Driest wall-damping requires the knowledge of the distance to the nearest wall
for each cell in the domain. Refer to key word icdpar for potential limitations
useful if and only if iturb = 40 or 41

cdries ra real number > 0 [26] Q) L3
cdries is the constant appearing in the van Driest damping function applied to the
Smagorinsky constant: 1 — e~¥ ' /cdries
useful if and only if iturb = 40 or 41

csmago ra real number > 0 [0.065] ) L2
csmago is the Smagorinsky constant used in the Smagorinsky model for LES
the sub-grid scale viscosity is calculated by psq = pC’fmagOAQ\ / 25}-]- S”ij where A is the
width of the filter and S'Z-j the filtered strain rate
useful if and only if iturb = 40

smagmx ra real number > 0 [10*csmago] 0 L3
smagmx? is the maximum allowed value for the variable C' appearing in the LES dy-
namic model (the “square” comes from the fact that the variable of the dynamic model
corresponds to the square of the constant of the Smagorinsky model). Any larger value
yielded by the calculation procedure of the dynamic model will be clipped to smagmx?
useful if and only if iturb = 41

xlesfl ra real number > 0 [2] 0] L3
xlesfl is a constant used to define, for each cell §2;, the width of the (implicit) filter:
A = zlesfl(ales x |Q;])btes
useful if and only if iturb = 40 or 41

ales ra real number > 0 [1] 0] L3
ales is a constant used to define, for each cell ;, the width of the (implicit) filter:
A = zlesfl(ales x |Q;])btes
useful if and only if iturb = 40 or 41

bles ra real number > 0 [1/3] 0) L3
bles is a constant used to define, for each cell €2;, the width of the (implicit) filter:
A = zlesfl(ales * |Q;])bes
useful if and only if iturb = 40 or 41

xlesfd ra real number > 0 [1.5] 0] L3

xlesfd is the constant used to define, for each cell €2;, the width of the explicit filter
used in the framework of the LES dynamic model:

A = zlesfdA

useful if and only if iturb = 41




EDF R&D

Code_Saturne
Code_Saturne version 2.2.3 practical user’s documentation
guide Page 158/205

9.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modeling. On the other hand, when “specific physics” (gas combustion, pulverised coal,
compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modeling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

ischtp

istmpf

isno2t

ia 1 or 2 [1 or 2] 0] L2
ischtp indicates the order of the activated time scheme (this indicator allows the code
to automatically complete the other indicators related to the time scheme)

= 1: first-order

= 2: second-order
when ischtp=2, the physical properties are by default not second-order. It it possible
to modify this by means of the following indicators.
due to specific coupling between certain variables, the source terms in the turbulence
equations (except convection and diffusion) cannot be second order, except with the
R;; models (cf. key word isto2t)
by default, ischtp is initialised to 2 with the LES model and 1 otherwise
always useful

ia 0,1or2 [0 or 1] @) L3
istmpf specifies the time scheme activated for the mass flow. The chosen value for
istmpf will automatically determine the value given to the variable thetfl

= 0: 7explicit” first-order: the mass flow calculated at the previous time step
(“n”) is used in the convective terms of all the equations (momentum, turbulence and
scalars

= 1: “standard” first-order: the mass flow calculated at the previous time
step (“n”) is used in the convective terms of the momentum equation, and the up-
dated mass flow (time “n+17) is used in the equations of turbulence and scalars

= 2: second-order: the mass flow used in the momentum equations is ex-
trapolated at “n+thetfl” (=n+1/2) from the values at the two former time steps
(Adams Bashforth); the mass flow used in the equations for turbulence and scalars is
interpolated at time “n+thetfl” (=n+1/2) from the values at the former time step
and at the newly calculated “n+1” time step.
by default, istmpf=2 is used in the case of a second-order time scheme (if ischtp=2)
and istmpf=1 otherwise
always useful

ia 0,1 or2 [0 or 1] 0] L3
isno2t specifies the time scheme activated for the source terms of the momentum
equation, apart from convection and diffusion (for instance: head loss, transposed
gradient, ...).

= (0: ”standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)" % = SP[(1 — 0)¢™ + 0¢™ 1], § being given by the value of thetav
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isto2t

isso2t

iroext

associated with the variable ¢) ; the other terms S, are expressed as second-order
terms by extrapolation (according to the formula (S.)"T? = [(1 + 6)S? — 0S?71], 0
being given by the value of thetsn=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isno2t=1; the
other terms S, are extrapolated according to the same formula as when isno2t=1,
but with §=thetsn=1
by default, isno2t is initialised to 1 (second-order) when the selected time scheme is
second-order (ischtp=2), otherwise to 0.
always useful

ia 0,1or2 [0] O L3
isto2t specifies the time scheme activated for the source terms of the turbulence
equations (related to k, R;j, €, w, ¢, f), apart from convection and diffusion.

= (0: ”standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)" % = SP[(1 — 0)¢" + 0¢" 1], § being given by the value of thetav
associated with the variable ¢); the other terms S, are expressed as second-order terms
by extrapolation (according to the formula (S.)"*? = [(1 + 6)S? — 0S77'], § being
given by the value of thetst=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isto2t=1; the
other terms S, are extrapolated according to the same formula as when isto2t=1,
but with §=thetst=1
due to certain specific couplings between the turbulence equations, isto2t is allowed
the value 1 or 2 only for the R;; models (iturb=30 or 31); hence, it is always initialised
to 0.
always useful

ia 0,1o0r2 [0 or 1] o) L3
for each scalar iscal, isso2t(iscal) specifies the time scheme activated for the
source terms of the equation for the scalar, apart from convection and diffusion (for
instance: variance production, user-specified terms, ...).

= 0: “standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)"+? = SP[(1 — 0)¢™ + 6¢™ 1], § being given by the value of thetav
associated with the variable ¢) ; the other terms S, are expressed as second-order
terms by extrapolation (according to the formula (S.)"T? = [(1 + 6)S? — 0S?71], 0
being given by the value of thetss(iscal)=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isso2t=1; the
other terms S, are extrapolated according to the same formula as when isso2t=1,
but with §=thetss(iscal)=1
by default, isso2t(iscal) is initialised to 1 (second-order) when the selected time
scheme is second-order (ischtp=2), otherwise to 0.
always useful

ia 0,1o0r2 [0] 0 L3
iroext specifies the time scheme activated for the physical property ¢ “density”.

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
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iviext

icpext

ivsext

thetav

thetfl

formula ¢" % = [(1 + 0)¢™ — 06"~ ],  being given by the value of thetro=0.5

= 2: first-order: the physical property ¢ is extrapolated at n 4+ 1 according to
the same formula as when iroext=1 but with f§=thetro=1
always useful

ia 0,1o0r2 [0] O L3
iviext specifies the time scheme activated for the physical property ¢ “total viscosity”
(molecular+turbulent or sub-grid viscosities).

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" % = [(1 + 0)¢™ — 04"~ ], 6 being given by the value of thetvi=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when iviext=1, but with §=thetvi=1
always useful

ia 0,1o0r2 [0] 0 L3
icpext specifies the time scheme activated for the physical property ¢ “specific heat”.

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" % = [(1 + 0)¢™ — 06"~ ], 6 being given by the value of thetcp=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when icpext=1, but with §=thetcp=1
always useful

ia 0,1or2 [0] 0 L3
for each scalar iscal, ivsext(iscal) specifies the time scheme activated for the
physical property ¢ “diffusivity”.

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" ¢ = [(1+60)¢"™ —0¢™ 1], § being given by the value of thetvs (iscal)=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when ivsext=1, but with 6=thetvs(iscal)=1
always useful

ra 0 <real <1 [1 or 0.5 O L3
for each variable ivar, thetav(ivar) is the value of 6 used to express at the second-
order the terms of convection, diffusion and the source terms which are linear functions
of the solved variable (according to the formula ¢"? = (1—80)¢" +60¢"*+1). Generally,
only the values 1 and 0.5 are used. The user is not allowed to modify this variable.
= 1: first-order
= 0.5: second-order
Concerning the pressure, the value of thetav is always 1. Concerning the other vari-
ables, the value thetav=0.5 is used when the second-order time scheme is activated
by ischtp=2 (standard value for LES calculations), otherwise thetav is set to 1.
always useful

ra 0 <real <1 [0 or 0.5 0] L3
thetfl is the value of 6 used to interpolate the convective fluxes of the variables when
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a second-order time scheme has been activated for the mass flow (see istmpf)
generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0.0: “explicit” first-order (corresponds to istmpf=0 or 1)
= 0.5: second-order (corresponds to istmpf=2). The mass flux will be inter-
polated according to the formula Q"™ = H-Q" ! + ;—:ZQ”‘H_Q).
always useful
thetsn ra 0 < real <1 [0, 0.5 or 1] 0) L3
thetsn is the value of § used to extrapolate the non linear explicit source terms S, of
the momentum equation, when the source term extrapolation has been activated (see
isno2t), following the formula
(Se)" 0 = (1 +6)S? —0SP—1
the value of §=thetsn is deduced from the value chosen for isno2t. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isno2t=0)
= 0.5: second-order (used when isno2t=1)
= 1: first-order (used when isno2t=2)
always useful
thetst ra 0 <real <1 [0, 0.5 or 1] 0] L3
thetst is the value of 6 used to extrapolate the non linear explicit source terms S, of
the turbulence equations, when the source term extrapolation has been activated (see
isto2t), following the formula
(Se)"t0 = (1+0)Sr —g5r!
the value of f=thetsn is deduced from the value chosen for isto2t. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isto2t=0)
= 0.5: second-order (used when isto2t=1)
= 1: first-order (used when isto2t=2)
always useful
thetss ra 0 <real <1 [0, 0.5 or 1] O L3
for each scalar iscal, thetss(iscal) is the value of # used to extrapolate the non
linear explicit source terms S, of the scalar equation, when the source term extrapo-
lation has been activated (see isso2t), following the formula
(S0 = (1+0)Sz — 6521
the value of f=thetss(iscal) is deduced from the value chosen for isso2t(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isso2t (iscal)=0)
= 0.5: second-order (used when isso2t(iscal)=1)
= 1: first-order (used when isso2t(iscal)=2)
useful if nscal>1
thetro ra 0 < real <1 [0, 0.5 or 1] 0) L3

thetro is the value of 6 used to extrapolate the physical property ¢ “density” when
the extrapolation has been activated (see iroext),according to the formula ¢"*+? =
(1+0)¢" — 0"~
the value of §=thetro is deduced from the value chosen for iroext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.

= 0: first-order (unused, corresponds to iroext=0)

= 0.5: second-order (corresponds to iroext=1)

= 1: first-order (corresponds to iroext=2)
always useful
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thetvi ra 0 <real <1 [0, 0.5 or 1] O L3

thetvi is the value of 6 used to extrapolate the physical property ¢ “total viscos-
ity” when the extrapolation has been activated (see iviext),according to the formula
¢n+9 — (1 + 9)¢n _ 9¢n—1
the value of f=thetvi is deduced from the value chosen for iviext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.

= 0: first-order (unused, corresponds to iviext=0)

= 0.5: second-order (corresponds to iviext=1)

= 1: first-order (corresponds to iviext=2)
always useful

thetcp ra 0 < real <1 [0, 0.5 or 1] 0] L3

thetcp is the value of 6 used to extrapolate the physical property ¢ “specific heat”
when the extrapolation has been activated (see icpext),according to the formula
¢n+0 _ (1 4 9)¢n _ '9(15”71
the value of =thetcp is deduced from the value chosen for icpext. Generally, only
the value 0.5 is used. The user is not allowed to modify this variable.

= 0: first-order (unused, corresponds to icpext=0)

= 0.5: second-order (corresponds to icpext=1)

= 1: first-order (corresponds to icpext=2)
always useful

thetvs ra 0 < real <1 [0, 0.5 or 1] ] L3

for each scalar iscal, thetvs(iscal) is the value of 6 used to extrapolate the physical
property ¢ “diffusivity” when the extrapolation has been activated (see ivsext),according
to the formula ¢" % = (14 6)¢™ — fpn 1
the value of f=thetvs(iscal) is deduced from the value chosen for ivsext(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.

= 0: first-order (unused, corresponds to ivsext(iscal)=0)

= 0.5: second-order (corresponds to ivsext(iscal)=1)

= 1: first-order (corresponds to ivsext(iscal)=2)
useful if nscal>1

9.2.7 Gradient reconstruction

imrgra i 0,1,2,30r4 [0] 0] L2

indicates the type of gradient reconstruction (one method for all the variables)

= 0: iterative reconstruction of the non-orthogonalities

= 1: least squares method based on the first neighbor cells (cells which share
a face with the treated cell)

= 2: least squares method based on the extended neighborhood (cells which
share a node with the treated cell)

= 3: least squares method based on a partial extended neighborhood (all first
neighbors plus the extended neighborhood cells that are connected to a face where the
non-orthogonality angle is larger than parameter anomax)

= 4: iterative reconstruction with initialisation using the least squares method
(first neighbors)
if imrgra fails due to probable mesh quality problems, it is usually effective to use
imrgra=3. Moreover, imrgra=3 is usually faster than imrgra=0 (but with less feed-
back on its use).
it should be noted that imrgra=1, 2 or 3 automatically triggers a gradient limitation
procedure. See imligr.
useful if and only if there is n so that nswrgr(n) > 1
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nswrgr ia positive integer [100] 0] L3
for each unknown ivar, nswrgr(ivar) < 1 indicates that the gradients are not recon-
structed
if imrgra = 0 or 4, nswrgr (ivar) is the number of iterations for the gradient
reconstruction

if imrgra = 1, 2 or 3, nswrgr(ivar) > 1 indicates that the gradients are
reconstructed (but the method is not iterative, so any value larger than 1 for nswrgr
yields the same result)
useful for all the unknowns

epsrgr ra real number > 0 [1075] 0) L3
for each unknown ivar, relative precision for the iterative gradient reconstruction:
epsrgr(ivar)

useful for all the unknowns when imrgra = 0 or 4

imligr ia -1,00r1 [-1 or 1] @) L3
for each unknown ivar, indicates the type of gradient limitation: imligr(ivar)
=-1: no limitation
= 0: based on the neighbors
= 1: superior order
for all the unknowns, imligr is initialised to -1 if imrgra=0or 4 and to 1 if imrgra =1, 2 or 3
useful for all the unknowns

climgr ra real number > 0 [1.5] 0] L3
for each unknown ivar, factor of gradient limitation: climgr(ivar) (high value means
little limitation)
useful for all the unknowns ivar for which imligr(ivar) # -1

extrag ra 0,05 0r 1 [0] 0] L3

for the variable “pressure” ivar=ipr, extrapolation coefficient of the gradients at the
boundaries. It affects only the Neumann conditions. The only possible values of
extrag(ipr) are:

= 0: homogeneous Neumann calculated at first-order

= 0.5: improved homogeneous Neumann, calculated at second-order in the
case of an orthogonal mesh and at first-order otherwise

= 1: gradient extrapolation (gradient at the boundary face equal to the gra-
dient in the neighbor cell), calculated at second-order in the case of an orthogonal
mesh and at first-order otherwise
extrag often allows to correct the non-physical velocities that appear on horizontal
walls when density is variable and there is gravity. It is strongly advised to keep
extrag=0 for the variables apart from pressure. See also iphydr.
In practice, only the values 0 and 1 are allowed. The value 0.5 isn’t allowed by default
(but the lock can be overridden if necessary, contact the development team).
always useful

anomax r 0 < real < 7/2 [m/4] @) L3
limit non-orthogonality angle used to restrict the extended neighborhood for the gra-
dient calculation with imrgra=3.
anomax=0 will yield the same result as imrgra=2 (full extended neighborhood). anomax=m/2
will yield the same result as imrgra=1 (first neighbors only)36
useful if and only if imrgra=3

36except for pathological cases where the non-orthogonality angle of a face would be larger than /2
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9.2.8 Solution of the linear systems

iresol

nitmax

epsilo

imgr

ncegrm

ncymax

ia -1, ipo1*1000+j [-1] 0) L3
for each unknown ivar, iresol(ivar) determines the method used for the solution
of the linear system
= -1: automatically managed by the code (conjugate gradient for the pres-
sure ivar=ipr or any variable which is not convected, Jacobi for the others. Diagonal
preconditioning with conjugate gradient).
= ipol*1000+j with j= 0: conjugate gradient
j= 1: Jacobi
j= 2: stabilised bi-conjugate gradient (BI-CGSTAB)
ipol is the degree of the Neumann polynomial used for the preconditioning®’.
ipol is necessarily 0 with the Jacobi algorithm.
Concerning the computational time, the performance depends on the case. If a precon-
ditioning method different from the diagonal preconditioning is to be used, it seems to
be better to restrict to a first-order preconditioning (ipol=1). This preconditioning
may slightly increase performance in some cases but may decrease it in others.
always useful

ia integer > 0 [10000] 0] L3
for each unknown ivar, maximum number of iterations for the solution of the linear
systems: nitmax(ivar)

when the algebraic multigrid option is activated for the variable ivar (imgr (ivar)=1),
nitmax(ivar) is the maximum number of iterations for the solution on the coarsest
mesh

always useful

ra real number > 0 [10-8,1075] 0) L3
for each unknown ivar, relative precision for the solution of the linear system. The
default value is epsilo(ivar)=10"8. This value is set low on purpose. When there
are enough iterations on the reconstruction of the right-hand side of the equation, the
value may be increased (by default, in case of second-order in time, with nswrsm = 5
or 10, epsilo is increased to 1077).

always useful

ia Oorl [0] 0] L3
for each unknown ivar, indicates the use (imgr (ivar)=1) or not (=0) of the algebraic
multigrid method for the solution of the linear systems

imgr(ivar) can be set independently for every variable

always useful. Generally, its use is designed for the variable “pressure” in case of
meshes with strongly stretched cells. It is recommended not to modify imgr

i integer > 0 [30] 0 L3
for the multigrid method, maximum number of cells on the coarsest grid
useful if and only if imgr(ivar) = 1 for at least one variable ivar

ia integer > 0 [100] 0 L3
for each unknown ivar, ncymax(ivar) is the maximum number of cycles when using

37D being the diagonal part of A and X its extra-diagonal part, it can be written A = D(Id + D~1X). There-
fore A1 = (Id+ D~1X)~1D~1. A series development of Id + D~1X can then be used which yields, symbolically,

IPOL

Id+ Y. (-Dp7'x).
I=1
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the multigrid method.
useful if and only if imgr (ivar) =1
ngrmax i 1< integer <ngrmmx [ngrmmx| 0] L3
when using the multigrid method, maximum number of grid levels
useful if and only if imgr(ivar) = 1 for at least one variable ivar
ncymax ia integer > 0 [10] 0) L3
for each unknown ivar, ncymax(ivar) is the maximum number of multigrid cycles.
useful if and only if imgr(ivar) =1
nitmgf ia integer > 0 [10] 0 L3
for each unknown ivar, nitmgf (ivar) is the maximum number of iterations on all
grids except for the coarsest when the multigrid method is used; the resolution on the
coarsest grid uses nitmax.
useful if and only if imgr (ivar) =1
WARNING

The algebraic multigrid method has only been tested for the “pressure” variable (imgr (ipr)=1).

9.2.9 Convective scheme

blencv

ischcv

isstpc

ra 0 <real <1 [0 or 1] ) L1
for each unknown ivar to calculate, blencv(ivar) indicates the proportion of second-
order convective scheme (0 corresponds to an “upwind” first-order scheme) ; in case
of LES calculation, a second-order scheme is recommended and activated by default
(blencv=1)

useful for all the unknowns ivar for which iconv(ivar) =1

ia Oorl [1] @) L2
for each unknown ivar to calculate, ischcv(ivar) indicates the type of second-order
convective scheme

= 0: Second Order Linear Upwind

= 1: Centered
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0)

ia Oor1l [0] ) L2
for each unknown ivar to calculate, isstpc(ivar) indicates whether a “slope test”
should be used to switch from a second-order to an “upwind” convective scheme under
certain conditions, to ensure stability.

= 0: “slope test” activated for the considered unknown

= 1: “slope test” deactivated for the considered unknown
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0).
the use of the “slope test” stabilises the calculation but may bring the order in space
to decrease quickly.
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9.2.10 Pressure-continuity step

iprco

arak

irevmc

iphydr

icalhy

i Oorl [1] 0) L3
indicates if the pressure-continuity step is taken into account (1) or not (0)
always useful

ra 0 <real <1 [1] 0] L3
arak is the Arakawa coefficient before the Rhie& Chow filter
always useful

ia 0,1o0r2 [0] 0O L3
method used to update the velocity after the pressure correction:
- standard gradient of pressure increment (irevmc=0)
- least squares on the pressure increment (irevmc=1)
-“rt0” i.e. least squares on the updated mass flux (irevmc=2)
the method irevmc=2 is generally not recommended
always useful

i Oorl [0] 0] L2
method for taking into account the balance between the pressure gradient and the
source terms (gravity and head losses): by extension it will be referenced as “taking
into account of the hydrostatic pressure”

= 0: standard algorithm

= 1: improved algorithm
always useful
When the density effects are important, the choice of iphydr=1 allows to improve the
interpolation of the pressure and correct the non-physical velocities which may appear
in highly stratified areas or near horizontal walls (thus avoiding the use of extrag if
the non-physical velocities are due only to gravity effects).
The improved algorithm also allows to eradicate the velocity oscillations which tend
to appear at the frontiers of areas with high head losses.
In the case of a stratified flow, the calculation cost is higher when the improved
algorithm is used (about 30% depending on the case) because the hydrostatic pressure
must be recalculated at the outlet boundary conditions: see icalhy.
On meshes of insufficient quality, in order to improve the convergence, it may be useful
to increase the number of iterations for the reconstruction of the pressure right-hand
member, i.e. nswrsm(ipr).
If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities.

i Oorl [0 or 1] @) L3
activates the calculation of hydrostatic pressure boundary conditions at outlet bound-
aries

= 0: no calculation of the hydrostatic pressure at the outlet boundary

= 1: calculation of the hydrostatic pressure at the outlet boundary
always useful
This option is automatically specified depending on the choice of iphydr and the
value of gravity (icalhy=1 if iphydr=1 and gravity is different from 0; otherwise
icalhy=0). The activation of this option generates an additional calculation cost

(about 30% depending on the case).

If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities
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9.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each®®. These scalars indicate the areas (cells) in which some error types may be
important. They are stored in the array propce containing the properties at the cells (see iestim).
For each estimator, the code writes the minimum and maximum values in the listing and generates
post-processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates
an additional cost of 15 to 20 % on the CPU time3? ; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding u*),
the estimator n? fd(g*), local variable calculated at every cell ;, is created from RP"*?(u*), which

represents the residual of the equation solved during this step:

R (u*) = p”% +p"u" - grad(u®) — div ((u + ut)"gmd(ﬂ*)) +V(P")
— rest of the right-hand member (u", P", other variables™)
By definition:
red/ x k—2)/2 *
Nl () = 19 5 R W) |2

e The first family, k¥ = 1, suppresses the volume |Q;| which intrinsicly appears with the norm
IL2 ().

e The second family, k = 2, exactly represents the norm IL? (€2;). The size of the cell therefore
appears in its calculation and induces a weighting effect.
nﬁ zed(@*) is ideally equal to zero when the reconstruction methods are perfect and the associated

system is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator nfﬁj(g "+1) is based on the following

quantity (intrinsic to the code):

nf‘;c’(u L =y (k_Q)/QHdiv(corrected mass flow after the pressure step) — I'[|z2(q,)

()

|€2;] (1_k)/2|div(corrected mass flow after the pressure step) — T|

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.

corr

iest = iescor: correction (default name: EsCor). The estimator 7 i (u™t1) comes directly from
the mass flow calculated with the updated velocity field:

niE (W) =[] 2 |div(p"u" ) = T

The velocities u™t! are taken at the cell centers, the divergence is calculated after projection on the
faces.
09, represents the Kronecker symbol.

e The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the
mass source term.

e The second family, k = 2, represents a physical property and allows to evaluate the difference in
kg.s 1.
Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

38choice made by the user
3%indeed, all the first-order in space differential terms have to be recalculated at the time ¢t™+1
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iest = iestot: total (default name: EsTot). The estimator 7{% (u"*"), local variable calculated at

every cell €, is based on the quantity R ** (u™*t1), which represents the residual of the equation using
the updated values of u and P:

n+l _ ., n
RtOt(Qn+l) — pn% +pn@n+1 'gTad(@nJrl) — div ((H—Fut)ngrad(unJﬂ)) +2(Pn+1)

— rest of the right-hand member (u" ™!, P! other variables™)

By definition:
o n k—2)/2 o n
i@t = 192, CT2 IR (w2 e

The mass flux in the convective term is recalculated from u™*! expressed at the cell centers (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

e The first family, & = 1, suppresses the volume |Q;| which intrinsicly appears with the norm
L2 ().

e The second family, k = 2, exactly represents the norm IL? (€;). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

iescal ia 0,1or2 [0] 0] L1
iescal(iest) indicates the calculation mode for the error estimator iest (iespre,
iesder, iescor or iestot), for the Navier-Stokes equation:
iescal = 0: estimator not calculated,
iescal = 1: the estimator n;, is calculated, without contribution of the volume,
iescal = 2: the estimator 7}, is calculated, with contribution of the volume ("norm

L?”), except for iescor, for which |Q;| 7§ is calculated.

The name of the estimators appearing in the listing and the post-processing is made up of the default
name (given before), followed by the value of iescal. For instance, EsPre2 is the estimator iespre
calculated with iescal=2.

always useful

9.2.12 Calculation of the distance to the wall

icdpar i -1,1,-20r 2 [-1] 0 L2

specifies the method used to calculate the distance to the wall y and the adimensional
distance y* for all the cells of the calculation domain (when necessary):

= 1: standard algorithm (based on a Poisson equation for y and convection
equation for y™), with reading of the distance to the wall from the restart file if pos-
sible

=-1: standard algorithm (based on a Poisson equation for y and convection
equation for yT), with systematic recalculation of the distance to the wall in case of
calculation restart

= 2: former algorithm (based on geometrical considerations), with reading of
the distance to the wall from the restart file if possible

=-2: former algorithm (based on geometrical considerations) with systematic
recalculation of the distance to the wall in case of calculation restart
In case of restart calculation, if the position of the walls haven’t changed, reading the
distance to the wall from the restart file can save a fair amount of CPU time.
Useful in R;; — ¢ model with wall echo (iturb=30 and irijec=1), in LES with van
Driest damping (iturb=40 and idries=1) and in k¥ — w SST (iturb=60).
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By default, icdpar is initialised to -1, in case there has been a change in the definition
of the boundary conditions between two computations (change in the number or the
positions of the walls). Yet, with the k¥ — w SST model, the distance to the wall is
needed to calculate the turbulent viscosity, which is done before the calculation of the
distance to the wall. Hence, when this model is used (and only in that case), icdpar
is set to 1 by default, to ensure total continuity of the calculation at restart.

As a consequence, with the k — w SST model, if the number and positions
of the walls are changed at a calculation restart, it is mandatory for the
user to set icdpar explicitly to -1, otherwise the distance to the wall used will not
correspond to the actual position of the walls.

The former algorithm is not compatible with parallelism nor periodicity. Also, what-
ever the value chosen for icdpar, the calculation of the distance to the wall is made at
the most once for all a the beginning of the calculation. It is therefore not compatible
with moving walls. Please contact the development team if you need to override this
limitation.

The following options are related to icdpar=1 or -1. The options of level 2 are described first. Some
options are used only in the case of the calculation of the adimensional distance to the wall y™ (LES
model with van Driest damping). Most of these key words are simple copies of the key words for
the numerical options of the general equations, with a potentially specific value in the case of the
calculation of the distance to the wall.

iwarny i integer [0] 0] L2
specifies the level of the output writing concerning the calculation of the distance to
the wall with icdpar=1 or -1. The higher the value, the more detailled the outputs
useful when icdpar=1 or -1

ntemxy i positive integer [1000] 0] L2
number of pseudo-time iterations for the calculation of the adimensional distance to
the wall yT

useful when icdpar=1 or -1 for the calculation of y*

nitmay i integer > 0 [10000] O L3
maximum number of iterations for the solution of the linear systems
useful when icdpar=1 or -1

nswrsy i positive integer [1] o) L3
number of iterations for the reconstruction of the right-hand members: corresponds
to nswrsm

useful when icdpar=1 or -1

nswrgy i positive integer [100] 0] L3
number of iterations for the gradient reconstruction: corresponds to nswrgr
useful when icdpar=1 or -1

imligy i -1,00r1 [-1 or 1] @) L3
type of gradient limitation: corresponds to imligr
useful when icdpar=1 or -1

ircfly i Oor1l 1] 0O L3
indicates the reconstruction of the convective and diffusive fluxes at the faces: corre-
sponds to ircflu
useful when icdpar=1 or -1
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ischcey i Oorl [1] @) L3
type of second-order convective scheme: corresponds to ischcv
useful when icdpar=1 or -1 for the calculation of y*

isstpy i Oorl [0] 0] L3
indicates if a “slope test” should be used for a second-order convective scheme: corre-
sponds to isstpc
useful when icdpar=1 or -1 for the calculation of y*

imgrpy i Oorl [0] 0] L3
indicates whether the algebraic multigrid method should be used (imgr(ivar)=1) or
not (0): corresponds to imgr
useful when icdpar=1 or -1

blency T 0<real <1 [0] 0 L3
proportion of second-order convective scheme: corresponds to blencv
useful when icdpar=1 or -1 for the calculation of y*

epsily r real number > 0 [1078] 0] L3
relative precision for the solution of the linear systems: corresponds to epsilo
useful when icdpar=1 or -1

epsrgy r real number > 0 [1079] 0 L3
relative precision for the iterative gradient reconstruction: corresponds to epsrgr
useful when icdpar=1 or -1

climgy r real number > 0 [1.5] 0) L3
limitation factor of the gradients: corresponds to climgr
useful when icdpar=1 or -1

extray r 0,0.50r1 [0] 0 L3
extrapolation coefficient of the gradients at the boundaries: corresponds to extrag
useful when icdpar=1 or -1

coumxy r strictly positive real number [5000] @) L3
Target Courant number for the calculation of the adimensional distance to the wall
useful when icdpar=1 or -1 for the calculation of y*

epscvy r strictly positive real number [1078] O L3
relative precision for the convergence of the pseudo-transient regime for the calculation
of the adimensional distance to the wall
useful when icdpar=1 or -1 for the calculation of y*

yplmxy r real number [200] 0 L3

value of the adimensional distance to the wall above which the calculation of the
distance is not necessary (for the damping)
useful when icdpar=1 or -1 for the calculation of y*
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9.2.13 Others

iccvfg

ipucou

isuitl

imvisf

ircflu

nswrsm

epsrsm

i Oorl [0] 0) L1
indicates whether the dynamic field should be frozen (1) or not (0)

in such a case, the values of velocity, pressure and the variables related to the potential
turbulence model (k, R;j, €, ¢, f, w, turbulent viscosity) are kept constant over time
and only the equations for the scalars are solved

also, if iccvfg=1, the physical properties modified in usphyv will keep being updated.
Beware of non-consistencies if these properties would normally affect the dynamic field
(modification of density for instance)

useful if and only if nscal > 0 and the calculation is a restart

i Oorl [0] @) L1
indicates the algorithm for velocity/pressure coupling

= 0: standard algorithm

= 1: reinforced coupling in case calculation with long time steps
always useful (it is seldom advised, but it can prove very useful, for instance, in case
of flows with weak convection effects and highly variable viscosity)

i Oorl [0] 0] L1
for the 1D wall thermal module, activation (1) or not(0) of the reading of the mesh
and of the wall temperature from the ficmt1 restart file

useful if nfpt1d>0.

i Oorl [0] 0] L3
indicates the interpolation method used to project variables from the cell centers to
the faces

= 0: linear
= 1: harmonic
always useful

ia Oorl [1] 0] L2
for each unknown ivar, ircflu(ivar) indicates whether the convective and diffusive
fluxes at the faces should be reconstructed:

= 0: no reconstruction

= 1: reconstruction
deactivating the reconstruction of the fluxes can have a stabilising effect on the calcula-
tion. It is sometimes useful with the k—e model, if the mesh is strongly non-orthogonal
in the near-wall region, where the gradients of k£ and ¢ are strong. In such a case, set-
ting ircflu(ik) =0 and ircflu(iep) =0 will probably help (switching to a first order
convective scheme, blencv=0, for k and £ might also help in that case)
always useful

ia positive integer [1, 2, 5 or 10] 0] L3
for each unknown ivar, nswrsm(ivar) indicates the number of iterations for the
reconstruction of the right-hand members of the equations

with a first-order scheme in time (standard case), the default values are 2 for pressure
and 1 for the other variables. With a second-order scheme in time (ischtp=2) or
LES, the default values are 5 for pressure and 10 for the other variables.

useful for all the unknowns

ra real number > 0 [1078,1075] 0] L3
for each unknown ivar, relative precision on the reconstruction of the right hand-side.
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The default value is epsrsm(ivar)=10"8. This value is set low on purpose. When
there are enough iterations on the reconstruction of the right-hand side of the equation,
the value may be increased (by default, in case of second-order in time, with nswrsm
=5 or 10, epsrsm is increased to 107°).

always useful

9.3 Numerical, physical and modeling parameters
9.3.1 Numeric Parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

zero T 0 [0] @) L3
Parameter containing the value 0

epzero r 10-12 [10712] 0] L3
“Small” real parameter, used for the comparisons of real numbers (absolute value of
the difference lower than epzero)

pi r 3.141592653589793 [3.141592653589793] Q) L3
Parameter containing an approximate value of 7

grand r 1012 [1012] ] L3
“Large” real parameter, generally used by default as a non physical value for the
initialisations of variables which have to be modified by the user

rinfin T 1030 (1039 0] L3
Real parameter used to represent “infinity”

9.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

tkelvi T 273.15 [273.15] O L3
Temperature in Kelvin correponding to 0 degrees Celsius.

tkelvn r -273.15 [-273.15] O L3
Temperature in degrees Celsius corresponding to 0 Kelvin.

rr r 8.31434 [8.31434] O L3
Perfect gas constant in J/mol/K

trefth r 25 + tkelvi [25 + tkelvi] o) L3
Reference temperature for the specific physics, in K

prefth r 101325 [101325] O L3
Reference pressure for the specific physics, in Pa
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volmol T 22.41.1073 [22.41.1073] O L3
Molar volume under normal pressure and temperature conditions (1 atmosphere, 0°C)
in m~3

stephn r 5.6703.10~8 [5.6703.10~%] O L3
Stephan constant for the radiative module o in W.m 2. K4

permvi T 1.2566.1076 [1.2566.10~°] O L3
Vacuum magnetic permeability po (=47.1077) in kg.m.A=2.5s72

epszer r 8.854.10712 [8.854.10712] 0 L3

Vacuum permittivity ¢ in F.m~!

9.3.3 Physical variables

gXx,8Y,82

irovar

ivivar

ro0

r 3 real numbers [0,0,0] 0) L1
gravity components
always useful

ia Oorl [-1] C L1
irovar=0 indicates that the density is constant. Its value is the reference density ro0.
irovar=1 indicates that the density is variable: its variation law must be given in the
user subroutine usphyv

negative value: not initialised

always useful

ia Oorl [-1] C L1
ivivar=0 indicates that the molecular dynamic viscosity is constant. Its value is the
reference molecular dynamic viscosity visclO.

ivivar=1 indicates that the molecular dynamic viscosity is variable: its variation law
must be given in the user subroutine usphyv

negative value: not initialised

always useful

ra real number > 0 [-grand*10] C L1
ro0 is the reference density

negative value: not initialised

its value is not used in gas or coal combustion modeling (it will be calculated following
the perfect gas law, with PO and 70). With the compressible module, it is also not
used by the code, but it may be (and often is) referenced by the user in user subrou-
tines; it is therefore better to specify its value.

always useful otherwise, even if a law defining the density is given by the user subrou-
tine usphyv or uselph

indeed, except with the compressible module, Code_Saturne does not use the total pres-
sure P when solving the Navier-Stokes equation, but a reduced pressure
P*:P—pog.(g—go)-i-PS‘—Po

where xg is a reference point (see xyzp0) and P and Py are reference values (see predo
and p0). Hence, the term —V P + pg in the equation is treated as —VP* + (p — po)g.
The closer ro0 is to the value of p, the more P* will tend to represent only the dynamic
part of the pressure and the faster and more precise its solution will be. Whatever the
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value of ro0, both P and P* appear in the listing and the post-processing outputs.
with the compressible module, the calculation is made directly on the total pressure
visclO ra real number > 0 [~grand*10] C L1
visclO is the reference molecular dynamic viscosity
negative value: not initialised
always useful, it is the used value unless the user specifies the viscosity in the subroutine
usphyv
srrom r 0<réel <1 [-grand or 0] corO
With gas combustion, pulversied coal or the electric module, srrom is the sub-relaxation
coefficient for the density, following the formula:
p" 1 =srrom p"+(1-srrom) pnt1
hence, with a zero value, there is no sub-relaxation. With combustion and pulversied
coal, srrom is initialised to —grand and the user must specify a proper value through
the Interface or the initialisation subroutines (usd3pl, usebul, uslwcl, uscpil or
uscpll).With the electric module, srrom is initialised in to 0 and may be modified by
the user in uselil.
With gas combustion, pulverised coal or electric arc, ssrom is automatically used after
the second time-step. With Joule effect, the user decides whether or not it will be
used in uselph from the coding law giving the density.
always useful with gas combustion, pulversized coal or the electric module.
p0 ra real number [1.013e — 5] @) L1
pO is the reference pressure for the total pressure
except with the compressible module, the total pressure P is evaluated from the re-
duced pressure P* so that P is equal to pO at the reference position z, (given by
xyzp0)
with the compressible module, the total pressure is solved directly
always useful
predo ra real number [0] 0] L3
predO is the reference value for the reduced pressure P* (see ro0)
it is especially used to initialise the reduced pressure and as a reference value for the
outlet boundary conditions
for an optimised precision in the resolution of P*, it is wiser to keep pred0 to 0
with the compressible module, the “pressure” variable appearing in the equations
directly represents the total pressure. It is therefore initialised to pO and not pred0
(see ro0)
always useful, except with the compressible module
xyzp0 ra 3 real numbers [0,0,0] 0] L1

xyzp0(ii) isthe ii coordinate (1<II<3) of the reference point z, for the total pressure
when there are no Dirichlet conditions for the pressure (closed domain), xyzpO does
not need to be specified (unless the total pressure has a clear physical meaning in the
configuration treated)

when Dirichlet conditions on the pressure are specified but only through stantard
outlet conditions (as it is in most configurations), xyzp0 does not need to be specified
by the user, since it will be set to the coordinates of the reference outlet face (i.e. the
code will automatically select a reference outlet boundary face and set xyzpO so that
P equals pO at this face). Nontheless, if xyzp0 is pecified by the user, the calculation
will remain correct

when direct Dirichlet conditions are specified by the user (specific value set on specific

L1
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boundary faces), it is better to specify the corresponding reference point (i.e. specifiy
where the total pressure is p0). This way, the boundary conditions for the reduced
pressure will be close to pred0, ensuring an optimal precision in the resolution. If
xyzpO is not specified, the reduced pressure will be shifted, but the calculations will
remain correct.
with the compressible module, the “pressure” variable appearing in the equations
directly represents the total pressure. xyzpO is therefore not used.
always useful, except with the compressible module

t0 ra real number [0] 0) L1
t0 is the reference temperature
useful for the specific physics gas or coal combustion (initialisation of the density), for
the electricity modules to initialise the domain temperature and for the comperssible
module (initialisations). It must be given in Kelvin.

cp0 ra real number > 0 [-grand*10] 0] L1
cpO is the reference specific heat
useful if there is 1<n<nscaus?® so that iscsth(n)=1 (there is a scalar “temperature”),
unless the user specifies the specific heat in the user subroutine usphyv*' (icp > 0)
with the compressible module or coal combustion, cp0 is also needed even when there
is no user scalar

icp ia Oorl [0] 0) L1
indicates if the specific heat C), is variable (icp=1) or not (0)
When gas or coal combustion is activated, icp is automatically set to 0 (constant
Cp). With the electric module, it is automatically set to 1. The user is not allowed to
modify these default choices.
When icp=1 is specified, the code automatically modifies this value to make icp
designate the effective index-number of the property “specific heat”. For each cell iel,
the value of C), is then specified by the user in the appropriate subroutine (usphyv for
the standard physics) and stored in the array
propce(iel,ipproc(icp)) (see p.78 for specific conditions of use)
useful if there is 1<N<nscal so that iscsth(n)=1 (there is a scalar “temperature”)
or with the compressible module for non perfect gases

vislsO ra real number > 0 [-grand*10] C L1

vis1ls0(j): reference molecular diffusivity related to the scalar J (kg.m~t.s71)
negative value: not initialised

useful if 1<J< nscal, unless the user specifies the molecular diffusivity in the appro-
priate user subroutine (usphyv for the standard physics) (ivisls(iscal) > 0)
Warning: vislsO corresponds to the diffusivity. For the temperature, it is therefore
defined as A\/C, where A and C,, are the conductivity and specific heat. When using
the Graphical Inteface, A\ and C, are specified separately, and vislsO is calculated
automatically

With the compressible module, visls0 (given in uscfzi2) is directly the thermal con-
ductivity Wom— ' K1

With gas or coal combustion, the molecular diffusivity of the enthalpy (kg.m=t.s71)
must be specified by the user in the variable diftl0 (usebul, usd3pl, uslwel, uscpil,
uscpll)

With the electric module, for the Joule effect, the diffusivity is specified by the user in

40

none of the scalars from the specific physics is a temperature

4lwhen using the Graphical Interface, cp0 is also used to calculate the diffusivity of the thermal scalars, based on their
conductivity; it is therefore needed, unless the diffusivity is also specified in usphyv
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uselph (even if it is constant). For the electric arc, it is calculated from the thermo-
chemical data file

ivisls ia positive or zero integer [0] @) L1
indicates if the viscosity related to the scalar iscal is variable (ivisls(iscal)=1) or
not (0). The user must specify ivisls only for the user scalars (iscal < nscaus).
When ivisls(iscal)=1 is specified, the code automatically modifies this value to
make ivisls(iscal) designate the effective index-number of the property “diffusivity
of the scalar iscal”. For each cell iel, the value is then specified by the user in the
appropriate subroutine (usphyv for the standard physics) and stored in the array
propce(iel,ipproc(ivisls)) (see p.78 for specific conditions of use)
useful if 1<n<anscal

diftlo r real number > 0 [-grand] C L1
molecular diffusivity for the enthalpy (kg.m~'.s~1) for gas or coal combustion (the
code then automatically sets vislsO to diftlO for the scalar representing the en-
thalpy)
always useflu for gas or coal combustion

scamin ra real number [grand] @) L1
scamin(iscal) is the lower limit value for the scalar iscal. At each time step,
in every cell where the calculated value for rtp(iel,isca(iscal)) is lower than
scamin(iscal), rtp(iel,isca(iscal)) will be reset to scamin(iscal)
there is no limitation if scamin(iscal) >scamax(iscal)
scamin shall not be specified for non-user scalars (specific physics) or for scalar vari-
ances
useful if and only if 1<iscal< nscaus

scamax ra real number [-grand] O L1
scamax (iscal) is the higher limit value for the scalar iscal. At each time step,
in every cell where the calculated value for rtp(iel,isca(iscal)) is higher than
scamax(iscal), rtp(iel,isca(iscal)) will be reset to scamax(iscal)
there is no limitation if scamin(iscal) >scamax(iscal)
scamax shall not be specified for non-user scalars (specific physics) or for scalar vari-
ances
useful if and only if 1<iscal< nscaus

sigmas ra real number > 0 [1] 0) L2
sigmas(iscal): turbulent Prandtl (or Schmidt) number for the scalar iscal
useful if and only if 1<iscal< nscaus

rvarfl ra real number > 0 [0.8] 0] L2
when iscavr(iscal) >0, rvarfl(iscal) is the coefficient R in the dissipation term

p €

A of the equation concerning the scalar iscal, which represents the root mean
f

square of the fluctuations of the scalar iscavr(iscal)

useful if and only if there is 1<iscal< nscal such as iscavr(iscal)>0

9.3.4 Modeling parameters

xlomlg

ra real number > 0 [-grand*10] @) L1
xlomlg is the mixing length
useful if and only if iturb= 10 (mixing length)
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almax ra -grand, real number > 0 [-grand*10] O L2
almax is a characteristic macroscopic length of the domain, used for the initialisation
of the turbulence and the potential clipping (with iclkep=1)
negative value: not initialised (the code then uses the cubic root of the domain volume)
useful if and only if turb= 20, 21, 30, 31, 50 or 60 (RANS models)
uref ra real number > 0 [~grand*10] C L1

uref is the characteristic flow velocity, used for the initialisation of the turbulence
negative value: not initialised

useful if and only if iturb= 20, 21, 30, 31, 50 or 60 (RANS model) and the turbulence
is not initialised somewhere else (restart file or subroutine usiniv)

BASIC CONSTANTS OF THE k — & AND THE OTHER RANS MODELS

xkappa

cstlog

cmu

cel

ce2

ced

sigmak

sigmae

r real number > 0 [0.42] @) L3
Karman constant
useful if and only if iturb>10 (mixing length, k — ¢, R;; — ¢, LES, v2f or k — w)

r real number > 0 [5.2] 0] L3
constant of the logarithmic wall function
useful if and only if iturb>10 (mixing length, k — ¢, R;; — ¢, LES, v2f or k — w)

r real number > 0 [0.09] 0] L3
constant C), for all the RANS turbulence models except for the v2f model (see cv2fmu
for the value of C), in case of v2f modeling)
useful if and only if iturb= 20, 21, 30, 31 or 60 (k — ¢, R;; —c or k — w)

r real number > 0 [1.44] 0] L3
constant C.1 for all the RANS turbulence models except for the v2f and the k — w
models

useful if and only if iturb= 20, 21, 30 or 31 (k — ¢ or R;; —¢)

r real number > 0 [1.92] 0] L3
constant C.o for the £ — ¢ and R;; — ¢ LRR models
useful if and only if iturb= 20, 21 or 30 (k — ¢ or R;; —e LRR)

r real number > 0 [1.2] 0] L3
constant C¢4 for the interfacial term (Lagrangian module) in case of two-way coupling
useful in case of Lagrangian modeling, in k — ¢ and R;; — € with two-way coupling

r real number > 0 [1.0] 0] L3
Prandtl number for k with £ — ¢ and v2f models
useful if and only if iturb=20, 21 or 50 (k — € or v2f)

r real number > 0 [1.3] 0] L3
Prandtl number for ¢
useful if and only if iturb= 20, 21, 30, 31 or 50 (k — ¢, R;; — ¢ or v2f)

CONSTANTS SPECIFIC TO THE R;; —¢ LRR MODEL (iturb=30)




Code_Saturne
documentation

EDF R&D Code_Saturne version 2.2.3 practical user’s
guide Page 178/205

criji r real number > 0 [1.8] 0] L3
constant C for the R;; — e LRR model
useful if and only if iturb=30 (R;; — e LRR)

crij2 r real number > 0 [0.6] 0) L3
constant Cy for the R;; — e LRR model
useful if and only if iturb=30 (R;; — ¢ LRR)

crij3 r real number > 0 [0.55] 0] L3
constant Cs for the R;; — e LRR model
useful if and only if iturb=30 (R;; — ¢ LRR)

crijep r real number > 0 [0.18] 0] L3
constant C for the R;; — e LRR model
useful if and only if iturb=30 (R;; — e LRR)

csrij r real number > 0 [0.22] @) L3
constant C for the R;; — ¢ LRR model
useful if and only if iturb=30 (R;; — ¢ LRR)

crijpl r real number > 0 [0.5] 0] L3
constant C] for the R;; — e LRR model, corresponding to the wall echo terms
useful if and only if iturb=30 and irijec=1 (R;; — ¢ LRR)

crijp2 r real number > 0 [0.3] 0] L3
constant C% for the R;; — ¢ LRR model, corresponding to the wall echo terms
useful if and only if iturb=30 and irijec=1 (R;; — ¢ LRR)

CONSTANTS SPECIFIC TO THE R;; — ¢ SSG MODEL

cssgsl r real number > 0 [1.7] 0] L3
constant Cs; for the R;; — e SSG model
useful if and only if iturb=31 (R;; — e SSG)

cssgs2 r real number > 0 [-1.05] 0) L3
constant Cyo for the R;; — e SSG model
useful if and only if iturb=31 (R;; — & SSG)

cssgrl r real number > 0 [0.9] 0] L3
constant C,, for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgr2 r real number > 0 [0.8] 0] L3
constant Co for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

cssgr3 r real number > 0 [0.65] O L3

constant C3 for the R;; — e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)
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cssgr4

cssgrb

cssge?2

r real number > 0
constant Cy4 for the R;; —e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

r real number > 0
constant Cyq for the R;; — e SSG model
useful if and only if iturb=31 (R;; — e SSG)

r real number > 0
constant C,o for the R;; — e SSG model
useful if and only if iturb=31 (R;; — ¢ SSG)

CONSTANTS SPECIFIC TO THE V2F ©-MODEL

cv2fal

cv2fe2

cv2fmu

cv2fcl

cv2fc2

cv2fct

cv2fcl

cv2fet

T real number > 0
constant a; for the v2f p-model
useful if and only if iturb=>50 (v2f ¢-model)

r real number > 0
constant C.o for the v2f p-model
useful if and only if iturb=>50 (v2f ¢-model)

r real number > 0
constant C), for the v2f p-model
useful if and only if iturb=>50 (v2f ¢-model)

r real number > 0
constant C7 for the v2f p-model
useful if and only if iturb=>50 (v2f p-model)

T real number > 0
constant Cy for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

r real number > 0
constant Cr for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

r real number > 0
constant Cp, for the v2f p-model
useful if and only if iturb=50 (v2f p-model)

T real number > 0
constant C,, for the v2f ¢-model
useful if and only if iturb=50 (v2f p-model)

CONSTANTS SPECIFIC TO THE k —w SST MODEL

[0.625)]

[1.83]

[0.05]

[1.85]

[0.22]

[0.25]

[110]

0)

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3

L3
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ckwskl r real number > 0 [1/0.85] 0] L3
constant oy for the K — w SST model
useful if and only if iturb=60 (k —w SST)

ckwsk?2 r real number > 0 [2] 0] L3
constant oo for the £k — w SST model
useful if and only if iturb=60 (k —w SST)

ckwswl r real number > 0 2] 0] L3
constant o, for the K — w SST model
useful if and only if iturb=60 (k —w SST)

ckwsw2 r real number > 0 [1/0.856] 0] L3
constant o9 for the K — w SST model
useful if and only if iturb=60 (k —w SST)

ckwbt1 r real number > 0 [0.075] 0] L3
constant 3 for the k — w SST model
useful if and only if iturb=60 (k —w SST)

ckwbt2 r real number > 0 [0.0828] 0] L3
constant By for the k — w SST model
useful if and only if iturb=60 (k —w SST)

B _ __w

ckwgml r real number > 0 [CM o 0] L3
constant ~y; for the kK — w SST model
useful if and only if iturb=60 (k —w SST)
Warning: v1 is calculated before the call to usinil. Hence, if b1, Cyu, Kk or 0wy is
modified in usinil, CKWGM1I1 must also be modified in accordance

ckwgm?2 r real number > 0 [gz S Q) L3

I3 C“Uwg

constant 7y for the kK — w SST model
useful if and only if iturb=60 (k —w SST)
Warning: 2 is calculated before the call to usinil. Hence, if B2, Cpu, Kk or oug is
modified in usinil, ckwgm2 must also be modified in accordance

ckwal r real number > 0 [0.31] ) L3
constant a; for the k — w SST model
useful if and only if iturb=60 (k —w SST)

ckwcl r real number > 0 [10] 0] L3
constant ¢ for the k — w SST model
useful if and only if iturb=60 (k —w SST)

94 ALE

iale i Oor1l [C] 0) L1

activates (=1) or not (=0), activate the ALE module
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nalinf i 0 or positive integer [0] C L2
The number of sub-iterations of initialization of the fluid

nbstr i 0 or positive integer [0] C L1
number of structures

alpnmk r real [0] C L3
alpha newmark’s method

betnmk r real [~grand] C L3
beta newmark’s method

gamnmk r real [-grand] C L3
gamma newmark’s method

nalimx i positive integer [15] C L2
maximum number of imlicitation iterations of of the structure displacement

epalim r positive real [1.1077] C L2

Relative precision of implicitation of the structure displacement

9.5 Thermal radiative transfers: global settings

All the following key words may be modified in the user subroutines usray* (or, for some of them, by
through the thermochemical data files). It is however not recommended to modify those which do not
belong to level L1.

iirayo

imodak

isuird

nfreqr

ia 0,1,2 [0] O L1
iirayo activates (> 0) or deactivates (=0) the radiation module
The different values correspond to the following modelings:

= 1 discrete ordinates (standard option for radiation in semi-transparent
media)

= 2 “P-1” model
Warning: the P-1 model allows faster computations, but it may only be applied to media
with uniform large optical thickness, such as some cases of pulverised coal combustion

i Oorl [0] O L3
when gas or coal combustion is activated, imodak indicates whether the absorption
coefficient shall be calculated “automatically” (=1) or read from the data file (=0)
useful if the radiation module is activated

i Oorl [isuite] C L1
indicates whether the radiation variables should be initialised (=0) or read from a
restart file (=1)

useful if and only if the radiation module is activated (in this case, a restart file rayamo
must be available)

i strictly positive integer [1] O L1
period of the radiation module
the radiation module is called every nfreqr time steps (more precisely, every time
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ntcabs is a multiple of nfreqr). Also, in order to have proper initialisation of the
variables, whatever the value of nfreqr, the radiation module is called at the first
time step of a calculation (restart or not)
useful if and only if the radiation module is activated
ndirec i 32 or 128 [32] @) L1
number of directions for the angular discretisation of the radiation propagation with
the DOM model (iirayo=1)
no other possible value, because of the way the directions are calculated
the calculation with 32 directions may break the symmetry of physically axisymmetric
cases (but the cost in CPU time is much lower than with 128 directions)
useful if and only if the radiation module is activated with the DOM method
xnplmx r real number [10] O L3
with the P-1 model (iirayo=2), xnpimx is the percentage of cells of the calculation
domain for which it is acceptable that the optical thickness is lower than unity*?,
although it is not to be desired
useful if and only if the radiation module is activated with the P-1 method
idiver i 0,1or2 2] C L1
indicates the method used to calculate the radiative source term:
= 0: semi-analytic calculation (compulsory with transparent media)
= 1: conservative calculation
= 2: semi-analytic calculation corrected in order to be globally consevative
useful if and only if the radiation module is activated
Note: if the medium is transparent, the choice has no effect on the calculation
iimpar i 0,1or2 [1] 0) L1
choice of the display level in the listing concerning the calculation of the wall temper-
atures:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated
iimlum i 0,1or2 [1] 0] L1
choice of the display level in the listing concerning the solution of the radiative transfer
equation:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated
nbrvaf ca string of less than 80 characters [name] @) L1

name associated for the post-processing to each of the following variables, defined at
the boundary faces (see [6] for more details concerning their definitions):
nbrvaf (itparp): wall temperature at the boundary faces (K)
nbrvaf (igincp): radiative incident flux density (W/m?)
nbrvaf (ixlamp): thermal conductivity of the boundary faces (W/m/K)
nbrvaf (iepap): wall thickness (m)

42

more precisely, where K L is lower than 1, where K is the absorption coefficient of the medium and L is a characteristic

length of the domain
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nbrvaf (iepsp): wall emissivity

nbrvaf (ifnetp): net radiative flux density (W/m?)

nbrvaf (ifconp): convective flux density (W/m?)

nbrvaf (ihconp): convective exchange coefficient (W/m?/K)
The default values are:

nbrvaf (itparp) = Wall_temp

nbrvaf (igincp) = Incident_flux

nbrvaf (ixlamp) = Th_conductivity

nbrvaf (iepap) = Thickness

nbrvaf (iepsp) = Emissivity

nbrvaf (ifnetp) = Net_flux

nbrvaf (ifconp) = Convective flux

nbrvaf (ihconp) = Convective_exch_coef
useful if and only if the radiation module is activated

irayvf ia -lorl [-1] o) L1
activates (=1) or deactivates (=-1) the post-processing for each of the followiing vari-
ables defined at the boundary faces:
irayvf (itparp): wall temperature at the boundary faces (K)
irayvf (iqincp): radiative incident flux density (W/m?)
irayvf (ixlamp): thermal conductivity of the boundary faces (W/m/K)
irayvf (iepap): wall thickness (m)
irayvf (iepsp): wall emissivity
irayvf (ifnetp): net radiative flux density (W/m?)
irayvf (ifconp): convective flux density (W/m?)
irayvf (ihconp): convective exchange coefficient (W/m?/K)
useful if and only if the radiation module is activated

tmin r real number positif [0] 0) L3
minimum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

tmax r real number positif [grand + 273.15] Q) L3
maximum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

9.6 Electric module (Joule effect and electric arc): specificities

The electric module is composed of a Joule effect module (ippmod(ieljou)) and an electric arc module
(ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impluse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arc module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The key words used in the global settings are quite few. They are found in the subroutine uselil (see

the description of this user subroutine §8.8.4).

ielcor i 0,1 [0] 0] L1
when ielcor=1, the boundary conditions for the potential will be tuned at each time
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couimp

puisim

dpot

coejou

step in order to reach a user-specified target dissipated power puisim (Joule effect) or
a user-specified target current intensity couimp (electric arc)

the boundary condition tuning is controlled by the subroutine uselrc

alway useful

r real number > 0 [0] 0] L1
with the electric arc module, couimp is the target current intensity (A) for the calcu-
lations with boundary condition tuning for the potential
the target intensity will be reached if the boundary conditions are expressed using
the variable dpot or if the initial boundary conditions are multiplied by the variable
coejou
useful with the electric arc module if ielcor=1

r real number > 0 [0] ) L1
with the Joule effect module, puisim is the target dissipated power (W) for the cal-
culations with boundary condition tuning for the potential
the target power will be reached if the boundary conditions are expressed using the
variable dpot or if the initial boundary conditions are multiplied by the variable coejou
useful with the Joule effect module if ielcor=1

r real number > 0 [0] 0] L1
dpot is the potential difference (V) which generates the current (and the Joule effect)
for the calculations with boundary conditions tuning for the potential. This value is
initialised set by the user (uselil). It is then automatically tuned depending on the
value of dissipated power (Joule effect module) or the intensity of current (electric
arc module). In order for the correct power or intensity to be reached, the boundary
conditions for the potential must be expressed with dpot (uselcl). The tuning can
be controlled in uselrc
useful if ielcor=1

r real number > 0 [1] 0] L2
only with the Joule effect, coejou can be used if the user does not wish to use dpot;
coejou is the coefficient to be applied to the initial potential difference to reach the
target dissipated power. Its value is automatically initialised to 1 and is updated
during the calculation. In order for the correct power to be reached, the boundary
conditions for the potential must be expressed with coejou (uselcl). The tuning can
be controlled in uselrc

Useful if ielcor=1

9.7 Compressible module: specificities

The key words used in the global settings are quite few. They are found in the subroutines uscfx1
and uscfx2 (see the description of these user subroutines, §8.7.1).

icfgrp

ia Oorl [1] C L1
icfgrp indicates if the boundary conditions should take into account (=1) or not (=0)
the hydrostatic balance.

always useful.

In the cases where gravity is predominant, taking into account the hydrostatic pressure
allows to get rid of the disturbances which may appear near the horizontal walls when
the flow is little convective.

Otherwise, when icfgrp=0, the pressure condition is calculated from the solution of
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the unidimensional Euler equations for a perfect gas near a wall, for the variables
“normal velocity”, “density” and “pressure”:

Case of an expansion (M < 0):

—1
P,=0 if 14+ 15=M <0
2y

-1 A-1
P, =P <1 VT > otherwise

Case of a shock (M > 0):

with M = =

1 e
P, =P, <1+7(7:)M2+7M 1+(71+6)M2>

U; * N
t — internal Mach number calculated with the variables taken in the cell adjacent

c
to the wall.

iviscv

viscv0

igrdpp

ia Oorl [0] C L1
iviscv=0 indicates that the volume viscosity is constant and equal to the reference
volume viscosity viscvO.

iviscv=1 indicates that the volume viscosity is variable: its variation law must be
specified in the user subroutine uscfpv.

always useful

The volume viscosity x is defined by the formula expressing the stress:

2
g=—-PIld+ p(Vu+ ‘grad u)+ (rk — 3#) div (u) Id

ra real number > 0 [0] 0) L1
viscvO is the reference volume viscosity (noted x in the equation expressing ¢ in the
paragraph dedicated to iviscv) N
always useful, it is the used value, unless the user specifies the volume viscosity in the
user subroutine uscfpv

i Oorl [0] O L3
indicates whether the pressure should be updated (=1) or not (=0) after the solution
of the acoustic equation
always useful

9.8 Lagrangian multiphase flows

Most of these key words may be modified in the user subroutines uslagl, uslag2, uslabo, uslaen,
uslast and uslaed. It is however strongly recommended not to modify those belonging to the level

L3.

First of all, it should be noted that the Lagrangian module is compliant with all the RANS turbulence
models and with laminar flows. However, the particule turbulent diffusion is not specially adapted to
the second order R;; — ¢ models. The same isotropic model is used as in the £ — € models, with k
calculated from the trace of R;;. Also, two-way coupling is not compatible with the £ —w SST model.
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9.8.1 Global settings

iilagr

isuila

isuist

nbpmax

nbpart

nvls

isttio

I 0,1,2,3 [0] C L1
activates (>0) or deactivates (=0) the Lagrangian module
the different values correspond to the following modelings:

= 1 Lagrangian two-phase flow in one-way coupling (no influence of the par-
ticles on the continuous phase)

= 2 Lagrangian two-phase flow with two-way coupling (influence of the par-
ticles on the dynamics of the continuous phase). It must be noted that the two-way
coupling is taken into account only for the first eulerian phase. Dynamics, temperature
and mass may be coupled independently

= 3 Lagrangian two-phase flow on frozen continuous phase. This option can
only be used in case of a calculation restart. All the eulerian fields are frozen (includ-
ing the scalar fields). This option automatically implies iccvig = 1
always useful

i 0,1 0] C L1
activation (=1) or not (=0) of a Lagrangian calculation restart. The calculation restart
file read when this option is activated (ficaml) only contains the data related to the
particles (see also isuist)
the global calculation must also be a restart calculation
always useful

i 0,1 [0] C L1
during a Lagrangian calculation restart, indicates whether the particle statistics (vol-
ume and boundary) and two-way coupling terms are to be read from a restart file (=1)
or reinitialised (=0). The file to be read is ficmls
useful if isuila =1

i positive or null integer [1000] C L1
maximum number of particles allowed simultaneously in the calculation domain. It
must be reminded that the required memory evolves accordingly

i positive or null integer [0] 0] L3
number of particles treated during one Lagrangian time step

nbpart must always be lower than nbpmax

always useful, but initialised and updated without intervention of the user

i integer between 0 and 10 [0] 0] L2
number of additional variables related to the particles

the additional variables can be accessed in the arrays ettp and ettpa by means of
the pointer jvls: ettp(abpt,jvls(ii)) and ettpa(nbpt,jvls(ii)) (nbpt is the
index-number of the treated particle, and ii an integer between 1 and nvls)

i 0, 1 [0] C L1
indicates the steady (=1) or unsteady (=0) state of the continuous phase flow
in particular, isttio = 1 is needed in order to:

calculate stationary statistics in the volume or at the boundaries (starting re-
spectively from the Lagrangian iterations nstist and nstbor)

calculate time-averaged two-way coupling source terms (from the Lagrangian
iteration nstits)
useful if iilagr=1 or iilagr=2 (if iilagr=3, then isttio=1 automatically)




EDF R&D

Code_Saturne

Code_Saturne version 2.2.3 practical user’s documentation
guide Page 187/205

injcon

iroule

isuivi

ttclag

iplas

i 0,1 [0] 0O L1
activates (=1) or not (=0) the continuous injection of particles

this option allows to inject particles continuously during the duration of the Lagrangian
time step dtp rather than only once at the beginning of the Lagrangian iteration. It
helps avoiding the fractioning of the particle cloud close to the injection areas

i 0,1 0] 0 L1
activates (=1) or not (=0) of the particle cloning/fusion technique (option also called
“Russian roulette”)

when iroule = 1, the importance function must be specified via the array croule in
the user subroutine uslaru

i 0,1 [0 or 1] 0] L2
specifies if a particle should be followed (=1) or will disappear from the domain (=0)
after an interaction with a boundary:

= 0: the particle must not be followed in the calculation domain after an
iteraction between its trajectory and a boundary face, for instance entry (ientrl),
outlet (isortl), definitive deposition on a wall (idepol, idepo2)

= 1: the particle must still be followed in the calculation domain after an
iteraction between its trajectory and a boundary face, for instance rebound (irebol),
deposition with potential resuspension (idepo3)
the value of isuivi (isuivi = 0 or isuivi = 1) for a type of interaction can be
defined as a function of the particle behaviour or properties. It is for example the
default case for the fouling interaction type (iencrl)
always useful

r positive real number [0] @) L3
physical time of the Lagrangian simulation
always useful

i integer > 0 1] ) L3
absolute iteration number (including the restarts) in the Lagrangian module (i.e. La-
grangian time step number)
always useful

9.8.2 Specific physics models associated with the particles

iphyla

idpvar

i 0,1,2 [0] C L1
activates (>0) or deactivates (=0) the physical models associated to the particles:

= 1: allows to associate with the particles evolution equations on their tem-
perature (in degrees Celsius), their diameter and their mass

= 2: the particles are pulverised coal particles. Evolution equations on tem-
perature (in degree Celsius), mass of reactive coal, mass of char and diameter of the
shrinking core are associated with the particles. This option is available only if the
continuous phase represents a pulverised coal flame
always useful

i 0,1 [0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle diameter
useful if iphyla =1
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itpvar i 0,1 [0] @) L1
activation (=1) or not (=0) of an evolution equation on the particle temperature (in
degrees Celsius)
useful if iphyla = 1 and if there is a thermal scalar associated with the continuous
phase

impvar i 0,1 [0] Q) L1
activation (=1) or not (=0) of an evolution equation on the particle mass
useful if si iphyla =1

tpart r real number > tkelvn [700] 0] L1
initialisation temperature (in degree Celsius) for the particles already present in the
calculation domain when an evolution equation on the particle temperature is activated
during a calculation (iphyla = 1 and itpvar = 1)
useful if isuila = 1 and itpvar = 0 in the previous calculation

cppart r positive real number [5200] O L1
initialisation value for the specific heat (J.kg~!.K~1!) of the particles already present
in the calculation domain when an evolution equation on the particle temperature is
activated during a calculation (iphyla = 1 and itpvar = 1)
useful if isuila = 1 and itpvar = 0 in the previous calculation

iencra i 0,1 [0] @) L1
activates (=1) or not (=0) the option of coal particle fouling. It then is necessary to
specify the domain boundaries on which fouling may take place.
useful if iphyla = 2

tprenc r real number > tkelvn [600] 0) L1
limit temperature (in degree Celsius) below which the coal particles do not cause any
fouling (if the fouling model is activated)
useful if iphyla = 2 and iencra =1

visref r positive real number [10000] 0] L1

ash critical viscosity in kg.m~'.s7!, in the fouling model 43

useful if iphyla = 2 and iencra =1

9.8.3 Options for two-way coupling

nstits

i strictly positive integer [1] 0] L1
number of absolute Lagrangian iterations (including the restarts) after which a time-
average of the two-way coupling source terms is calculated
indeed, if the flow is steady (isttio=1), the average quantities that appear in the
two-way coupling source terms can be calculated over different time steps, in order to
get a better precision
if the number of absolute Lagrangian iterations is strictly inferior to nstits, the code
considers that the flow has not yet reached its steady state (transition period) and the
averages appearing in the source terms are reinitialised at each time step, as it is the
case for unsteady flows (isttio=0)
useful if iilagr = 2 and isttio =1

431.D. Watt et T. Fereday (J.Inst. Fuel, Vol.42-p99)
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Itsdyn i 0,1 [0] @) L1
activation (=1) or not (=0) of the two-way coupling on the dynamics of the continuous
phase
useful if iilagr = 2 and iccvig =0
Itsmas i 0,1 [0] 0] L1
activation (=1) or not (=0) of the two-way coupling on the mass
useful if iilagr = 2, iphyla = 1 and impvar = 1
Itsthe i 0,1 [0] @) L1

if iphyla =1 and itpvar = 1, 1tsthe activates (=1) or not (=0) the two-way coupling
on temperature

if iphyla = 2, 1tsthe activates (=1) or not (=0) the two-way coupling on the eulerian
variables related to pulverised coal combustion

useful if iilagr = 2

9.8.4 Numerical modeling

nordre

ilapoi

idistu

idiffl

modcpl

idirla

i 1,2 2] O L2
order of integration for the stochastic differential equations

= 1 integration using a first-order scheme

= 2 integration using a second-order scheme
always useful

i 0,1 [0] 0] L3
activation (=1) or not (=0) of the solution of a Poisson’s equation for the correction
of the particle instantaneous velocities (in order to obtain a null divergence)

this option is not validated and reserved to the development team. Do not change the
default value

i 0,1 1] 0 L3
activation (=1) or not (=0) of the particle turbulent dispersion

the turbulent dispersion is compatible only with the RANS turbulent models (k — ¢,
Rij — &, v2f or k — w)

(iturb=20, 21, 30, 31, 50 or 60)

always useful

i 0,1 [0] 0 L3
idiff1=1 suppresses the crossing trajectory effect, making turbulent dispersion for
the particles identical to the turbulent diffusion of fluid particles

useful if idistu=1

i positive integer [0] Q) L1
activates (>0) or not (=0) the complete turbulent dispersion model

when modcpl is strictly positive, its value is interpreted as the absolute Lagrangian
time step number (including restarts) after which the complete model is applied
since the complete model uses volume statistics, modcpl must either be 0 or be larger
than idstnt

useful if istala =1

i 1,2, 3 [1] O L1
x, y or z direction of the complete model
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it corresponds to the main directions of the flow
useful if modecpl > 0

9.8.5 Volume statistics

istala

seuil

idstnt

nstist

nomlag

nvlsts

i 0,1 [0] C L1
activation (=1) or not (=0) of the calculation of the volume statistics related to the
dispersed phase
if istala = 1, the calculation of the statistics is activated starting from the absolute
iteration (including the restarts) idstnt
by default, the statistics are not stationary (reset to zero at every Lagrangian itera-
tion). But if isttio=1, since the flow is steady, the statistics will be averaged overt
he different time steps
the statistics represent the significant results on the particle cloud
always useful

r positive real number [0] 0) L1
every cell of the calculation domain contains a certain quantity of particles, repre-
senting a certain statistical weight (sum of the statistical weights of all the particles
present in the cell). seuil is the limit statistical weight value, below which the contri-
bution of the cell in term of statistical weight is not taken into account in the volume
statistics (for the complete turbulent dispersion model, in the Poisson’s equation used
to correct the mean velocities or in the listing and post-processing outputs)
useful if istala =1

i strictly positive integer [1] C L1
absolute Lagrangian iteration number (includings the restarts) after which the calcu-
lation of the volume statistics is activated
useful if istala =1

i integer > idstnt [idstnt] @) L1
absolute Lagrangian iteration number (includings the restarts) after which the volume
statistics are cumulated over time (they are then said to be stationary)
if the absolute Lagrangian iteration number is lower than nstist, or if the flow is
unsteady (isttio=0), the statistics are reset to zero at every Lagrangian iteration
(the volume statistics are then said to be non-stationary)
useful if istala=1 and isttio=1

ca string of less than 50 characters [VarLagXXXX] 0) L1
name of the volumetric statistics, displayed in the listing and the post-processing files.
The default value is given above, with “XXXX” representing a four digit number (for
instance 0001, 0011 ...)

useful if istala =1

Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, it will not be possible to
read its value from the restart file

i 0 < integer < nussta=20 [0] 0] L1
number of additional user volume statistics

the additional statistics (or their cumulated value in the stationary case) can be ac-
cessed in the array statis by means of the pointer ilvu: statis(iel,ilvu(ii))
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(iel is the cell index-number and ii an integer between 1 and nvlsts)
useful if istala =1

npst i positive integer [0] 0] L3
number of iterations during which stationary volume statistics have been cumulated
useful if istala=1, isttio=1 and if nstist is inferior or equal to the current La-
grangian iteration
npst is initialised and updated automatically by the code, its value is not to be mod-
ified by the user

npstt i positive integer [0] @) L3
number of iterations during which volume statistics have been calculated (the potential
iterations during which non-stationary statistics have been calculated are counted in
npstt)
useful if istala=1
npstt is initialised and updated automatically by the code, its value is not to be
modified by the user

tstat r positive real number [dtp] o) L3

if the volume statistics are calculated in a stationary way, tstat represents the physical
time during which the statistics have been cumulated

if the volume statistics are calculated in a non-stationary way, then tstat=dtp (it is
the Lagrangian time step, because the statistics are reset to zero at every iteration)
useful if istala=1

tstat is initialised and updated automatically by the code, its value is not to be
modified by the user

9.8.6 Display of trajectories and particle movements

iensil

iensi2

nbvis

i 0,1 [0] 0] L1
activation (=1) or not (=0) of the post-processing in trajectory mode

this option generates files allowing to display the trajectory of some pre-selected par-
ticles in the EnSight6 format

always useful

Warning: this option very expensive with regards to CPU time and may generate very
large files

i 0, 1 [0] 0 L1
activation (=1) or not (=0) of the post-processing in movement mode

This option generates files allowing to display the movement of some pre-selected
particles in the EnSight6 format

always useful

Warning: this option very expensive with regards to CPU time and may generate very
large files

i positive integer [nliste] @) L1
number of particles selected for post-processing display in trajectory or movement
mode

nbvis must be lower than nbpmax and nliste (set to 500 in lagpar and not to be
modified)

useful if iensil = 1 or iensi2 =1
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nvisla i strictly positive integer [1] @) L1
output period for the post-processing in trajectory or movement mode
may be useful to diminish the size of the post-processing files
useful if iensil =1 or iensi2 =1

liste ia positive integers [between 1 and 500] 0] L1
contains the index-numbers of the particles selected for the display in trajectory or
movement mode
useful if iensil =1 or iensi2 =1

ivisvl i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “velocity of the locally undisturbed fluid flow
field” with the display in trajectory or movement mode
useful if iensil =1 or iensi2 =1

ivisv2 i 0,1 [0] 0 L1
associates (=1) or not (=0) the variable “particle velocity” with the display in trajec-
tory or movement mode
useful if iensil =1 or iensi2 =1

ivistp i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “residence time” with the display in trajectory
or movement mode
useful if iensil =1 or iensi2 =1

ivisdm i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “particle diameter” with the display in tra-
jectory or movement mode
useful if iensil =1 or iensi2 =1

iviste i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “particle temperature” with the display in
trajectory or movement mode
useful if iensil = 1 or iensi2 =1

ivismp i 0,1 [0] ) L1
associates (=1) or not (=0) the variable “particle mass” with the display in trajectory
or movement mode
useful if iensil = 1 or iensi2 =1

ivishp i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “temperature of the coal particles” with the
display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

ivisdk i 0,1 [0] 0) L1
associates (=1) or not (=0) the variable “shrinking core diameter of the coal particles”
with the display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

ivisch i 0,1 [0] 0) L1

associates (=1) or not (=0) the variable “mass of reactive coal of the coal particles”




Code_Saturne
EDF R&D Code_Saturne version 2.2.3 practical user’s documentation
guide Page 193/205
with the display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2
ivisck i 0,1 [0] 0) L1

associates (=1) or not (=0) the variable “mass of char of the coal particles” with the
display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

9.8.7 Display of the particle’/boundary interactions and the statistics at the

boundaries

iensi3 i 0,1 [0] C L1
activation (=1) or not (=0) of the recording of the particle/boundary interactions in
parbor, and of the calculation of the statistics at the corresponding boundaries, for
post-processing (EnSight6 format)
By default, the statistics are non-stationary (reset to zero at every Lagrangian itera-
tion). They may be stationary if isttio=1 (i.e. calculation of a cumulated value over
time, and then calculation of an average over time or over the number of interactions
with the boundary)
always useful

nstbor i strictly positive integer [1] O L1
number of absolute Lagrangian iterations (including the restarts) after which the
statistics at the boundaries are considered stationary and are averaged (over time
or over the number of interactions)
If the number of absolute Lagrangian iterations is lower than nstbor, or if isttio=0,
the statistics are reset to zero at every Lagrangian iteration (non-stationary statistics)
useful if iensi3=1 and isttio=1

seuilf T positive real number [0] 0 L1
every boundary face of the mesh undergoes a certain number of interactions with
particles, expressed in term of statistical weight (sum of the statistical weights of
all the particles which have interacted with the boundary face). seuilf is the limit
statistical weight value, below which the contribution of the face is not taken into
account in the statistics at the boundaries for post-processing
useful if iensi3=1

inbrbd i 0,1 [1] O L1
activation (=1) or not (=0) of the recording of the number of particle/boundary
interactions, and of the calculation of the associated boundary statistics.
inbrd = 1 is a compulsory condition to use the particulate average imoybr = 2
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
useful if iensi3=1

iflmbd i 0,1 [0] O L1

activation (=1) or not (=0) of the recording of the particulate mass flow related to
the particle/boundary interactions, and of the calculation of the associated boundary
statistics

the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
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inbrd = 1 is a compulsory condition to use iflmbd=1
useful if iensi3=1 and inbrbd=1

iangbd i 0,1 [0] 0] L1
activation (=1) or not (=0) of the recording of the angle between a particle trajectory
and a boundary face involved in a particle/boundary interaction, and of the calculation
of the associated boundary statistics
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
useful if iensi3=1

ivitbd i 0,1 [0] 0O L1
activation (=1) or not (=0) of the recording of the velocity of a particle involved in
a particle/boundary interaction, and of the calculation of the associated boundary
statistics
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
useful if iensi3=1

iencbd i 0,1 [0] 0] L1
activation (=1) or not (=0) of the recording of the mass of coal particles stuck to the
wall due to fouling, on the boundary faces of the iencrl interaction type
useful if iensi3=1, iphyla=2, iencra=1, and if there is at least one boundary face
of the iencrl interaction type

nusbor i positive integer [0] 0 L1
number additional user data to record for the calculation of additional boundary statis-
tics in parbor
useful if iensi3=1

nombrd ca string of less than 50 characters [see uslagi] O L1
name of the boundary statistics, displayed in the listing and the post-processing files
useful if iensi3=1
Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, it will not be possible to
read its value from the restart file

imoybr ia 0,1,2 [0,1or 2] 0] L1

the recordings in parbor at every particle/boundary interaction are cumulated values
(possibly reset to zero at every iteration in the non-stationary case). They must there-
fore be divided by a quantity to get boundary statistics. The user can choose between
two average types:

= 0: no average is applied to the recorded cumulated values

= 1: a time-average is calculated. The cumulated value is divided by the
physical duration in the case of stationary averages (isttio=1). The cumulated value
is divided by the value of the last time step in the case of non-stationary averages
(isttio=0), and also in the case of stationary averages while the absolute Lagrangian
iteration number is inferior to nstbor

= 2: a particulate average is calculated. The cumulated value is divided by
the number of particle/boundary interactions (in terms of statistical weight) recorded
in parbor (nfabor,inbr). This average can only be calculated when inbrbd=1. The
average is calculated if the number of interactions (in statistical weight) of the consid-
ered boundary face is strictly higher than seuilf, otherwise the average at the face is
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set to zero
only the cumulated value is recorded in the restart file
useful if iensi3=1
npstf i positive integer [0] O L3
number of iterations during which stationary boundary statistics have been cumulated
useful if iensi3=1, isttio=1 and nstbor inferior or equal to the current Lagrangian
iteration
npstf is initialised and updated automatically by the code, its value is not to be
modified by the user
npstft i positive integer [0] @) L3
number of iterations during which boundary statistics have been calculated (the poten-
tial iterations during which non-stationary statistics have been calculated are counted
in npstft)
useful if iensi3=1
npstft is initialised and updated automatically by the code, its value is not to be
modified by the user
tstatp T positive real number [dtp] O L3

if the recording of the boundary statistics is stationary, tstatp contains the cumulated
physical duration of the recording of the boundary statistics

if the recording of the boundary statisticss is non-stationary, then tstat=dtp (it is
the Lagrangian time step, because the statistics are reset to zero at every time step)
useful if iensi3=1
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