EDF R&D RN

FLuib DyNAMICS, POWER GENERATION AND ENVIRONMENT DEPARTMENT
SINGLE PHASE THERMAL-HYDRAULICS GROUP

6, QUAT WATIER
F-78401 Cuatrou CEDEX

TeL: 33 1 30 87 75 40
Fax: 331308779 16 JUNE 2010

Code_Saturne documentation

Code_Saturne version 2.0.0-rc2 practical user’s
guide

contact: saturne-support@edf.fr

http://www.code-saturne.org/ © EDF 2010

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 2/186
ABSTRACT

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym-
metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and
turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred
to as “specific physics”, for the treatment of lagrangian particle tracking, semi-transparent radiative
transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs)
and compressible flows. The code also includes an engineering module, Matisse, for the simulation of
nuclear waste surface storage.

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

The present document is a practical user’s guide for Code_Saturne version 2.0.0-rc2. It is the result of
the joint effort of all the members in the development team. It presents all the necessary elements
to run a calculation with Code_Saturne version 2.0.0-rc2. It then lists all the variables of the code
which may be useful for more advanced utilisation. The user subroutines of all the modules within
the code are then documented. Eventually, for each key word and user-modifiable parameter in the
code, their definition, allowed values, default values and conditions for use are given. These key words
and parameters are grouped under headings based on their function. An alphabetical index list is also
given at the end of the document for easier consultation.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 3/186

TABLE OF CONTENTS

1 Introduction o o i i i i i e e e e e e e e e e e e e e 9
2 Practical information about Code Saturne 10
2.1 SYSTEM ENVIRONMENT FOR Code_Saturne 10
2.1.1 Preliminary settings e e 10
2.1.2 Standard directory hierarchy 10
2.1.8 Code_Saturne Kernel library files 13
2.2 SETTING UP AND RUNNING OF A CALCULATION« o v v v i i et e e 13
2.2.1 Step by step calculation 13
2.2.2 Temporary execution directory e e e e 15
2.2.3 Execution modes 16
2.2.4 Interactive modification of the target time step 16
2.3 CASE PREPARER« o v vttt e et e e e e 16
2.4 SUPPORTED MESH AND POST-PROCESSING OUTPUT FORMATS 17
2.4.1 Formats supported for input L 18
2.4.2 Formats supported for input or outputo 21
2.4.8 Mesh meta-files e 24
2.4.4 Meshing tools and associated formats 24
2.4.5 Meshing remarkso 25
2.5 PREPROCESSOR COMMAND LINE OPTIONS v v v vt e e e 25
2.6 KERNEL COMMAND LINE OPTIONS v v v vttt it et e e e 26
2.7 PARAMETERS IN THE LAUNCH SCRIPT o v v vttt e et 27
2.8 GRAPHICAL USER INTERFACE ittt ittt e 30
2.9 FACE AND CELL MESH-DEFINED PROPERTIES AND SELECTION 31
3 Preprocessing ittt it e 33
3.1 PREPROCESSOR OPTIONS AND SUB-OPTIONS 34
8.1.1 Option files e 34
3.1.2 Mesh selection L 34
3.1.8 Post-processing outputo e e e e 35
3.1.4 Faces selection e e e 35
3.1.5 Joining of non-conforming mesheso 36
3.1.6 Periodictty e 37
3.1.7 Element orientation correction 38
3.2 ENVIRONMENT VARIABLES ot ittt it et e e 38
3.2.1 System environment variables 39

3.3 OPTIONAL FUNCTIONALITY . © v v v v v v v e e e e e e e e e e e e e s s 39

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 4/186
3.4 GENERAL REMARKS v v v v v v e e e e e e e e e e e e e e e 39
3.5 FILES PASSED TO THE KERNEL o o it i e i e e e e e 39
4 Partitioning for parallel runs L0 L0 e e 40
4.1 OPTIONS . . ot e e e e e e e e e e e e e 40
4.1.1 Ignore periodicity e 40
4.1.2 Partitioner choice e e e e e 40
4.1.3 Simulation mode L 40
4.1.4 Environment variables 40
5 Main variables L L e 41
5.1 ARRAY SIZES . .+ © v v v v e i e e e e e e e e 41
5.2 GEOMETRIC VARIABLES v v v v v e e e e et e e e e e e e e e e e e 43
5.3 PHYSICAL VARIABLES« v v v et e e e e e e e e e e e e e e e e s 44
5.4 VARIABLES RELATED TO THE NUMERICAL METHODS v v v v v v v v v v v 49
5.5 USER ARRAYS . . .« . i i i it e e e e e e e e e 52
5.6 DEVELOPER ARRAYS« v v v vt it e e e e e e e e e s e e e 52
5.7 PARALLELISM AND PERIODICITY + . v v v vt et i e e e e e e e e e e e e 53
5.8 GEOMETRY AND PARTICULE ARRAYS RELATED TO LAGRANGIAN MODELING 56
5.9 VARIABLES SAVED TO ALLOW CALCULATION RESTARTS« v v v v v v v v v o 59
6 User subroutines i i i i i i i e et e e e e e e e e e e e e e e e e e e 61
6.1 PRELIMINARY COMMENTS v v v v v e e et e e e e e e e e e e e e e e 61
6.2 USING SELECTION CRITERIA IN USER SUBROUTINES v v v v v v v v v v v 61
6.3 INITIALISATION OF THE MAIN KEY WORDS: USINI1 63
6.4 MANAGEMENT OF BOUNDARY CONDITIONS: USCLIM . . . « « + v v v v v e i e e oo e o 63
6.4.1 Coding of standard boundary conditions 64
6.4.2 Coding of non-standard boundary conditions 66
6.4.3 Checking of the boundary conditions 68
6.4.4 Sorting of the boundary faces 68
6.5 MANAGEMENT OF THE BOUNDARY CONDITIONS WITH LES: usvorT. 68
6.6 MANAGEMENT OF THE VARIABLE PHYSICAL PROPERTIES: USPHYV 70
6.7 NON-DEFAULT VARIABLES INITIALISATION: USINIV « « © v v v v e e i e e oo e o 71
6.8 NON-STANDARD MANAGEMENT OF THE CHRONOLOGICAL RECORD FILES: USHIST 72
6.9 USER SOURCE TERMS IN NAVIER-STOKES: USTSNS . . . + « v v v v v v e e e e e oo o 73
6.10 USER SOURCE TERMS FOR k AND €: USTSKE « « v v v v v vttt i e e e 74
6.11 USER SOURCE TERMS FOR R;j AND €: USTSRI o v v oo 74
6.12 USER SOURCE TERMS FOR (0 AND f: USTSV2 v\ v v vt i e e 75
6.13 USER SOURCE TERMS FOR k AND w: USTSKW . . . « « « v o e v v vttt e e e 75
6.14 USER SOURCE TERMS FOR THE USER SCALARS: USTSSC . . . « v v v v v« v v v v v v v 75

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 5/186

6.15 MANAGEMENT OF THE PRESSURE DROPS: USKPDC v + « v v v vt e e i e oo
6.16 MANAGEMENT OF THE MASS SOURCES: USTSMA + « v v v v v e e e e e e
6.17 THERMAL MODULE IN A 1D WALL o o e e e e e e e

6.18 INITIALIZATION OF THE OPTIONS OF THE VARIABLES RELATED TO THE ALE MODULE:
USALIN AND USSTR1L o e e e e e e e e e e e e e e e

6.19 MANAGEMENT OF THE BOUNDARY CONDITIONS OF VELOCITY MESH RELATED TO THE
ALE MODULE: USALCL« « v v v v vt e e e e e e e e e e e s e e e e e e e

6.20 MANAGEMENT OF THE STRUCTURE PROPERTY: USSTR2 « v « « v o o v v v v v ..
6.21 MODIFICATION OF THE TURBULENT VISCOSITY: USVIST . . . « v v « « v v v v v v v v ou
6.22 MODIFICATION OF THE VARIABLE C' OF THE DYNAMIC LES MODEL: ussMaG
6.23 TEMPERATURE-ENTHALPY AND ENTHALPY-TEMPERATURE CONVERSIONS: USTHHT
6.24 MODIFICATION OF THE MESH GEOMETRY: USMODG . . . « « « + v« v v v e e e e oo
6.25 MANAGEMENT OF THE POST-PROCESSING INTERMEDIATE OUTPUTS: USNPST
6.26 DEFINITION OF POST-PROCESSING AND MESH ZONES: USDPST « « « « « o . . .
6.27 MODIFICATION OF THE MESH ZONES TO POST-PROCESS: USMPST
6.28 DEFINITION OF THE VARIABLES TO POST-PROCESS: USVPST « « « v o o o o . .
6.29 MODIFICATION OF THE VARIABLES AT THE END OF A TIME STEP: USPROJ
6.30 RADIATIVE THERMAL TRANSFERS IN SEMI-TRANSPARENT GRAY MEDIA

6.30.1 Initialisation of the radiation main key words: wsrayl

6.30.2 Management of the radiation boundary conditions: usray2

6.30.3 Absorption coefficient of the medium, boundary conditions for the luminance and cal-
cualtion of the net radiative flux: usray3.

6.30.4 Encapsulation of the temperature-enthalpy conversion: usray4d
6.31 UTILISATION OF A SPECIFIC PHYSICS: USPPMO« « « u v v v o it

6.32 MANAGEMENT OF THE BOUNDARY CONDITIONS RELATED TO PULVERISED COAL AND
GAS COMBUSTION: USEBUC, USD3PC, USLWCC, USCPCL AND USCPLC

6.33 INITIALISATION OF THE VARIABLES RELATED TO PULVERISED COAL AND GAS COMBUS-
TION: USEBUI, USD3PI, USLWCI AND USCPIV« o v v v v v v v v e v v e

6.34 INITIALISATION OF THE OPTIONS OF THE VARIABLES RELATED TO PULVERISED COAL
AND GAS COMBUSTION: USEBU1l, uUsD3Pl, USLWCl, USCPI1 AND USCPL1l

6.35 MANAGEMENT OF BOUNDARY CONDITIONS OF THE ELECTRIC ARC: USELCL
6.36 INITIALISATION OF THE VARIABLES IN THE ELECTRIC MODULE
6.37 INITIALISATION OF THE VARIABLE OPTIONS IN THE ELECTRIC MODULE
6.38 MANAGEMENT OF VARIABLE PHYSICAL PROPERTIES IN THE ELECTRIC MODULE
6.39 MANAGEMENT OF THE EnSight OUTPUT IN THE ELECTRIC MODULE: USELEN
6.40 COMPRESSIBLE MODULE . . + v v v v v v v e e e e e e e e e e e e e e e e e

6.40.1 Initialisation of the options of the variables related to the compressible module: uscfz1
and WSCFT2 e e

6.40.2 Management of the boundary conditions related to the compressible module: uscfcl

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 6/186
6.40.3 Ininitialisation of the variables related to the compressible module: uscfzs 103
6.40.4 Compressible module thermodynamics: uscfth 103
6.40.5 Management of the variable physical properties in the compressible module: uscfpv . . 103
6.41 LAGRANGIAN MODELING OF MULTIPHASIC FLOWS WITH DIPERSED INCLUSIONS 104
6.41.1 Initialisation of the main key words in the Lagrangian modeling: uslagl 104
6.41.2 Management of the boundary conditions related to the particles: uslag2 and uslatn . 105
6.41.3 Treatment of the particle/boundary interaction: uslabo 108
6.41.4 Option for particle cloning/merging: wslaru v vt 109

6.41.5 Manipulation of particulate variables at the end of an iteration and user volumetric
statistics: uslast and uslaen 110
6.41.6 User stochastic differential equations: uslaed 110
6.41.7 Particle relazation time: uslatpo 111
6.41.8 Particle thermal characteristic time: uslatc 111
7 Keyword list o 0 0 0 i i i i e e e e e e e e e e e e 112
7.1 INPUT-OUTPUT o ottt ottt e e e e e e e s s 112
7.1.1 7Calculation” files 113
7.1.2 Post-processing for EnSight or other tools 116
7.1.8 Chronological records of the variables on specific points 117
7.1.4 Time averages 119
7.1.5 Others e 121
7.2 NUMERICAL OPTIONS it ittt i it e e e e s e e s 122
7.2.1 Calculation management 122
7.2.2 Scalar unknowns L 123
7.2.8 Definition of the equations 125
7.2.4 Definition of the time advancement 126
7.2.5 Turbulence e 128
7.2.6 Time scheme e e 132
7.2.7 Gradient reconstructiono e 137
7.2.8 Solution of the linear systems 139
7.2.9 Convective scheme 140
7.2.10 Pressure-continuity step e e e e 141
7.2.11 Error estimators for Navier-Stokes 142
7.2.12 Calculation of the distance to the wall 143
7.2.13 Others 146
7.3 NUMERICAL, PHYSICAL AND MODELING PARAMETERS o o v v v oo oo 147
7.3.1 Numeric Parameters e 147
7.3.2 Physical parameters e e e e e e e 147

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 7/186
7.3.3 Physical variableso 148
7.8.4 Modeling parameterso 152
7.4 ALE e 156
7.5 THERMAL RADIATIVE TRANSFERS: GLOBAL SETTINGS 157
7.6 ELECTRIC MODULE (JOULE EFFECT AND ELECTRIC ARC): SPECIFICITIES 160
7.7 COMPRESSIBLE MODULE: SPECIFICITIES ¢ . v v i it et e e 161
7.8 LAGRANGIAN MULTIPHASE FLOWS o vt i ettt e e e 162
7.8.1 Global settings e e e e 162
7.8.2 Specific physics models associated with the particles 164
7.8.8 Options for two-way coupling 165
7.8.4 Numerical modeling 165
7.8.5 Volume statistics e e e 166
7.8.6 Display of trajectories and particle movements 168
7.8.7 Display of the particle/boundary interactions and the statistics at the boundaries . . . 169
8 Bibliography L e e e e e e e e e e e e e e 173
9 Appendix 1 : automatic validation procedure. 175
9.1 INTRODUCTION vttt ettt e e e e e e s e 175
9.2 PRACTICAL INFORMATIONS ON THE PROCEDURE 175
9.3 DIRECTORIES ARCHITECTUREo v vttt it 175
9.4 VALIDATION BASE it ittt e e e e 175
9.4.1 Elementary tests : gradient calculations 176
9.4.2 Laplacien calculation e e e e e e e 176
9.5 ARCHITECTURE DESCRIPTION« o vt vttt it et e e e e e 176
9.5.1 Python files in the modules directory 176
9.5.2 XML file description 177
9.5.8 Toadd a new study 178
9.5.4 Report files 178

Index of the main variables and keywords 179

EDF R&D

Code_Saturne version 2.0.0-rc2 practical
user’s guide

Code_Saturne
documentation
Page 8/186

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 9/186
1 Introduction

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisym-
metric or 3D flows. Its main module is designed for the simulation of flows which may be steady or
unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and
turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred
to as “specific physics”, for the treatment of Lagrangian particle tracking, semi-transparent radiative
transfer, gas combustion, pulverised coal combustion, electricity effects (Joule effect and electric arcs)
and compressible flows. The code also includes an engineering module, Matisse, for the simulation of
nuclear waste surface storage.

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version. Code_Saturne is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.!

Code_Saturne relies on a finite volume discretisation and allows the use of various mesh types which may
be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging
nodes).

Code_Saturne is composed of three main elements and an optional GUI, as shown on figure 1:

e the Kernel module is the numerical solver

e the Preprocessor module is in charge of mesh import, mesh joining (arbitrary interfaces), and
definition of periodicity boundary conditions (translation and/or rotation)

e the Partitioner is in charge of optimizing domain decomposition for parallel computing (optional,
but highly recommended for parallel performance)

Simulation
options
(XML)
Preprocessor D
- —
N MR Y Read and append meshes Mesh modification Checkpoint
Mesh and data setup and restart
Meshes
Descending connectivity S~
~_ Verification output - Navier—Stokes resolution
v User—defined functions P
D Intermediate Turbulence ~——
N— Mesh Specific physics .
Verification strueture processing
Visualization ‘ Post—processing output \/
S~ MPI communication

Figure 1: Code_Saturne elements

Code_Saturne also relies on two libraries (by the same team, under LGPL licence), which can also be
used independently:

e BFT (Base Functions and Types) for the management of memory and input/output as well as
specific utilities (estimation of time and memory usage for instance)

e FVM (Finite Volume Mesh) for the post-processing output and the management of code coupling

You should have received a copy of the GNU General Public License along with Code_Saturne; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 10/186

The present document is a practical user’s guide for Code_Saturne version 2.0.0-rc2. It is the result of
the joint effort of all the members in the development team.

The aim of this document is to give practical information to the users of Code_Saturne. It is therefore
strictly oriented towards the usage of the code. For more details about the algorithms and their
numerical implementation, please refer to the reports [10] and [3], and to the theoretical documentation
[11], which is newer and more detailed (the latest updated version of this document is available on-line
with the version of Code_Saturne and accessible through the command cs_info --guide theory).

The present document first presents all the necessary elements to run a calculation with Code_Saturne
version 2.0.0-rc2. It then lists all the variables of the code which may be useful for more advanced
utilisation. The user subroutines of all the modules within the code are then documented. Eventually,
for each key word and user-modifiable parameter in the code, their definition, allowed values, default
values and conditions for use are given. These key words and parameters are grouped under headings
based on their function. An alphabetical index list is also given at the end of the document for easier
consultation.

2 Practical information about Code Saturne
2.1 System Environment for Code Saturne
2.1.1 Preliminary settings

In order to use Code_Saturne, every user must add the following line (in their .profile, or equivalent,
depending on the environment):

export PATH={prefix}/bin:$PATH

or define the following alias (in their .bashrc, or equivalent, or .alias file, depending on the environ-
ment):

alias cs=’{prefix}/bin/cs’
where prefix is the base directory where Code_Saturne and its components have been installed?.

2.1.2 Standard directory hierarchy

The standard architecture for the simulation studies is:

A study directory containing;:

e A directory MESH containing the mesh(es) necessary for the study
e A directory POST for the potential post-processing routines (not used directly by the code)

e One or several calculation directories
Every calculation directory contains:

e A directory SRC for the potential user subroutines necessary for the calculation

e A directory DATA for the calculation data (data file from the interface, input profiles, thermo-
chemical data, ...)

e A directory SCRIPTS for the launch script

2At EDF R&D, /home/saturne/Code_Saturne/2.0.0-rc2 is used

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 11/186

e A directory RESU for the results
To improve the calculation traceability, the files and directories sent to RESU after a calculation
are given a suffix identifying the calculation start date and time by an eight-digit number (two
digits for each month, day, hour and minute; the result of a calculation started at 14h03 on
December 315 will therefore be indexed 12311403)

In the standard cases, RESU contains a directory CHR.ENSIGHT.mmddhhmm with the post-processing
files in EnSight format, a directory RESTART .mmddhhmm for the calculation restart files, a directory
HIST.mmddhhmm for the files of chronological record of the results at specific locations (probes),
listpre.mmddhhmm and listing.mmddhhmm files reporting the Preprocessor and the Kernel execution.
For an easier follow-up of the modifications in former calculations, the user-subroutines used in a
calculation are stored in a directory SRC.mmddhhmm in the directory RESU. The Xml Interface data file,
thermo-chemical data files and launch script are also copied into the directory RESU with the appropriate
suffix (whatever its name, the launch script appears in the directory RESU as runcase.mmddhhmm).
compil.log.mmddhhmm and summary.mmddhhmm are respectively reports of the compilation phase and
general information on the calculation (which kind of machine, which user, which version of the code,
...). Eventually, when the user subroutines produce specific result files (extraction of 1D profiles for
instance), a directory RES_USERS .mmddhhmm is created in the directory RESU for these files3.

During calculations coupled with SYRTHES (option specified in the launch script of Code_Saturne or
via the Interface) the same organisation is used for the files related to Code_Saturne. For the files
related to SYRTHES, the location of the upstream files is specified in the syrthes.env file. Yet, the
launch script is built presuming that the following organisation is applied:

e a directory SRC_SYR for the potential SYRTHES user subroutines

e a directory DATA_SYR containing the configuration file syrthes.env (location of files specific
to SYRTHES). The file defining the SYRTHES calculation options (syrthes.data) and the
potential restart files can also be placed in this directory.

The SYRTHES result files (geometry file, chronological result files, calculation restart files and the
historic file) are placed in a sub-directory RESU_SYR.mmddhhmm of the RESU directory, where mmddhhmm
corresponds to the calculation identification suffix.

The SYRTHES execution report file is placed in the RESU directory (same as for the Code_Saturne
review) under the name listsyr.mmddhhmm and the compilation report file is under the name
compil _syrthes.log.mmddhhmm. For an easier follow-up of the modifications in former calcula-
tions, the potential SYRTHES user-subroutines used in a calculation are stored in a directory
SRC_SYR.mmddhhmm in the directory RESU.

3in order for the script to copy them properly, their names have to be given in the variable USER_OUTPUT_FILES of the
launch script, see §2.7

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 12/186

Below are typical contents of a case directory CASE1 in a study STUDY
(Code_Saturne calculation coupled with SYRTHES):

STUDY/CASE1/DATA:
SaturneGUI
study.xml
THCH

STUDY/CASE1/DATA_SYR:
syrthes.data
syrthes.env

STUDY/CASE1/SRC:
REFERENCE
usclim.£90
usinil.f90

STUDY/CASE1/RESU:
CHR.ENSIGHT.08211921

SRC.08211921

SRC_SYR.08211921
HIST.08211921
RES_USERS.08211921
RESTART. 08211921
compile.log.08211921
study.xml.08211921

runcase.08211921

listpre.08211921
listing.08211921
listsyr.08211921
summary.08211921
RESU_SYR.08211921:

geoms

histosl

resusl

resuscl

STUDY/CASE1/SCRIPTS:
runcase

Code_Saturne data

Graphical User Interface launch script

Graphical User Interface parameter file

example of thermochemical files (used with the specific
physics modules for gas combustion, pulverised coal
or electric arcs)

SYRTHES data

SYRTHES data file

SYRTHES configuration file

Code_Saturne user subroutines

examples of a user subroutines

user subroutines used for the present the calculation

results

directory containing the Code_Saturne post-processing results
in the EnSight format for the calculation 08211921

(contains both volume and boundary results;

the contents of the directory are user modifiable)

Code_Saturne user subroutines used for the

calculation 08211921

SYRTHES user subroutines used in the calculation 08211921
directory containing the chronological records for Code_Saturne
optional directory containing the user results files

directory containing the Code_Saturne restart files

compilation report

Graphical User Interface parameter file used for the
calculation 08211921

launch script used for the calculation 08211921

(whatever the name given to the file in the SCRIPT directory,
the file will be referred as “runcase.*” in the RESU directory)
execution report for the Preprocessor module of Code_Saturne
execution report for the Kernel module of Code_Saturne
execution report for SYRTHES

general information (machine, user, version, ...)

SYRTHES results (file names given in the syrthes.env file)
SYRTHES solid geometry file

SYRTHES chronological records at specified probes
SYRTHES calculation restart file (1 time step)

SYRTHES chronological solid post-processing file (may be transformed
into the EnSight format with the syrthes2ensight utility)
launch script

launch script (compliant with all architectures on which
Code_Saturne has been ported)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 13/186

2.1.3 Code_Saturne Kernel library files

Information about the content of the Code_Saturne base directories is given below. It is not of vital
interest for the user, but given only as general information. Indeed, the case preparer command
code_saturne create automatically extracts the necessary files and prepares the launch script without
the user having to go directly into the Code_Saturne base directories (see §2.3). The code_saturne info
command gives direct access to the most needed information (especially the user and programmer’s
guides and the tutorial) without the user having to look for them in the Code_Saturne directories.

The subdirectories {prefix}/1ib and {prefix}/bin contain the libraries and compiled executables
respectively.

The data files (for instance thermochemical data) are located in the directory data.

The user subroutines are available in the directory users, under subdirectories corresponding to each
module: base (general routines), cfbl (compressible flows), cogz (gas combustion), cplv (pulverised
coal combustion), ctwr (cooling towers modelling), elec (electric module), fuel (heavy fuel oil com-
bustion module), lagr (Lagrangian module, mati (Matisse module), pprt (general specific physics
routines) and rayt (radiative heat transfer). The case preparer command code_saturne create
copies all these files in the user directory SRC/REFERENCE during the case preparation.

The “include” files are available in the directory include, under similar subdirectories corresponding
to each module: base, cfbl, cogz, cplv, elec, fuel, lagr, mati, pprt and rayt.

The directory bin contains an example of the launch script, the compilation parameter files and various
utility programs.

2.2 Setting up and running of a calculation
2.2.1 Step by step calculation

This paragraph summarises the different steps which are necessary to prepare and run a standard case:

e Check the version of Code_Saturne set for use in the environment variables (code_saturne info
--version). If it does not correspond to the desired version, update the .profile file to set the
environment variables correctly. Log out of the session and log in again to take the modifications
into account properly (cf. §2.1.1).

e Prepare the different directories using the code_saturne create command (see §2.3) and, when
needed, add the directories DATA_SYR and SRC_SYR which are required to accomodate the SYRTHES
files.

e Place the mesh(es) in the directory MESH. Make sure they are in a format compliant with
Code_Saturne (see §2.4.5). There can be several meshes in case of mesh joining or coupling
with SYRTHES *.

e Go to the directory DATA and launch the Graphical User Interface using the command . /SaturneGUI
(see §77).

e Place the necessary user subroutines in the directory SRC (see §6). When not using the Interface,
some subroutines are compulsory.

For the standard physics:

compulsory without Graphical User Interface:
- usinil to specify the calculation parameters
- usclim to manage the boundary conditions

4SYRTHES uses meshes composed of 10-node tetrahedra (vertices and centers of edges)

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 14/186

very useful:
- usphyv to manage the variable physical properties (fluid density, viscosity ...)
- usiniv to manage the non-standard initialisations

For the specific physics “gas combustion”:

(not accessible through the Graphical User Interface in version 2.0.0-rc2)

compulsory:
- usinil to specify the calculation parameters
- usppmo to select a specific physics module and combustion model

- usebuc, usd3pc or uslwce (depending on the selected combustion model) to manage
the boundary conditions of all variables (i.e. mnot only the ones related to the
combustion model)

very useful:

- usebul, usd3pl or uslwcl (depending on the selected combustion model) to specify
the calculation options for the variables corresponding to combustion model

- usebui, usd3pi or uslwci (depending on the selected combustion model) to manage
the initialisation of the variables corresponding to the combustion model
For the specific physics “coal combustion”:

compulsory without Graphical User Interface:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

- uscpcl or uscplc (depending on the specific physics module) to manage the bound-
ary conditions of all variables (i.e. not only the ones related to the specific physics
module)

very useful:

- uscpil to specify the calculation options for the variables corresponding to the
specific physics module

- uscpiv to manage the initialisation of the variables corresponding to the specific
physics module
For the specific physics “electric module” (Joule effect and electric arcs):
(not accessible through the Graphical User Interface in version 2.0.0-rc2)

compulsory:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

- uselcl to manage the boundary conditions of all variables (i.e. not only the ones
related to the electric module)

- useliv to initialise the enthalpy in case of Joule effect
- uselph to define the physical properties in case of Joule effect
very useful:

- uselil to manage the options related to the variables corresponding to the electric
module

- useliv to manage the initialisation of the variables corresponding to the electric
module
For the specific physics “heavy fuel oil combustion module”:
(not accessible through the Graphical User Interface in version 2.0.0-rc2)
compulsory:
- usinil to specify the calculation parameters
- usppmo to select the specific physics module

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 15/186

- usfucl to manage the boundary conditions of all variables (i.e. not only the ones
related to the specific physics module)

very useful:

- usfuil to specify the calculation options for the variables corresponding to the
specific physics module

- usfuiv to manage the initialisation of the variables corresponding to the specific
physics module
For the Lagrangian module (dispersed phase):
(the continuous phase is managed in the same way as for a case of standard physics)
(the Lagrangian module is not accessible through the Graphical User Interface in version
2.0.0-rc2)
compulsory:
- uslagl to manage the calculation conditions
- uslag2 to manage the boundary conditions for the dispersed phase
very useful:
- uslabo to manage potential specific treatments at the boundaries (rebound condi-
tions, specific statistics, ...)
For the compressible module:

(not accessible through the Graphical User Interface in version 2.0.0-rc2)

compulsory:
- uscfxl and uscfx2 to manage the calculation parameters
- uscfcl to manage the boundary conditions
- uscfth to define the thermodynamics.

very useful:

- uscfxi to manage non-standard initialisations of the variables

The comprehensive list of the user subroutines and their instructions for use are given in §6.

If necessary, place in the directory DATA the different external data (input profiles, thermochemical
data files, ...)

Prepare the launch script runcase, directly or through the Graphical Interface (see §2.7)

e Run the calculation and analyse the results

Purge the temporary files (in the directory RUN defined in the launch script, see §2.7)

2.2.2 Temporary execution directory

During a calculation, Code_Saturne uses a temporary directory for the compilation and the execution,
the result files being only copied at the end in the directory RESU. This temporary directory is defined
in the variable RUN of the launch script. This variable is set top a default value in the non-user section
of the launch script, depending on the architecture:

RUN=$HOME/tmp_Saturne/$STUDY/$CASE .mmddhhmm for stand-alone workstations or for the Chatou
cluster

RUN=$SCRATCHDIR/tmp_Saturne/$STUDY/$CASE.mmddhhmm for Platine at the CCRT

where $STUDY and $CASE are the names of the study and the case. The usual suffix with the date and
time is added so that successive calculations will not get mixed-up.

This default value might not always be the optimal choice. Indeed, on a stand-alone machine, it might
be useful to take advantage of large sized local disks on a machine when the $HOME account is on an
NFS disk.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 16/186

For this matter, the variable CS_TMP_PREFIX of the launch script (see §2.7) allows the user to change
this directory. If the variable is empty, the default RUN directory will be used. If it is not empty, the
launch script will set the RUN directory to $CS_TMP_PREFIX/tmp_Saturne/$STUDY/$CASE. mmddhhmm.

WARNING: in most cases, the temporary directories are not deleted after a calculation. They will
accumulate and may hinder the correct running of the machine.
It is therefore essential to remove them regularly.

2.2.3 Execution modes

As explained before, Code_Saturne is composed of two main modules, the Preprocessor and the Kernel,
and an optional Partitioner. The Preprocessor reads the meshes and performs the necessary joinings.
The Partitioner optimizes domain decomposition for parallel runs. The resulting data is transfered
to the Kernel through specific files, named preprocessor_output and domain number_*, where * is
the number of processors used. In a standard calculation, the files are not copied from the temporary
execution directory to the results directory, as they have no interest for data analysis, and are consid-
ered “internal” files, whose format or contents is not guaranteed not to change between Code_Saturne
versions.

Yet, the Preprocessor and Partitioner do not work in parallel and may require a large amount of
memory. Hence it is sometimes useful to run them separately, on a machine or in batch queues with
extended memory, and to run the proper parallel calculation on another machine or in another batch
queue. The launch scripts therefore allows specifically choosing which modules to run, using the
variables EXEC_PREPROCESS, EXEC_PARTITION, and EXEC_KERNEL (see §2.7).

If EXEC_PREPROCESS=no, the Partitioner and Kernel will copy or link the file defined by the
PREPROCESSOR_OUTPUT_IN variable to preprocessor_output.

If EXEC_PARTITION=no, the Kernel will search for a corresponding domain number_* file in the
directory defined by PARTITION_OUTPUT_IN.

If EXEC_KERNEL=no, the Preprocessor and Partitioner output will be saved respectively to a
$RESU/preprocessor_output . $SUFFIX file and to a $RESU/PARTITION_QUTPUT.$SUFFIX directory. In
this case, the number of processors for which partitioning is required is given by the PARTITION_LIST
variable of the launch script (multiple partitionings may be done in one run).

2.2.4 Interactive modification of the target time step

During a calculation, it is possible to change the limit time step number (ntmabs) specified through
the Interface or in usinil. To do so, a file named ficstp must be placed in the temporary execution
directory (see §2.2.2). This file must contain a blank first line and the second line indicating the value
of the new limit number of time steps.

If this new limit has already been passed in the calculation, Code_Saturne will stop properly at the end
of the current time step (the results and restart files will be written correctly).

This procedure allows the user to stop a calculation in a clean and interactive way whenever they wish.

2.3 Case preparer
The case preparer command code_saturne create automatically creates a study directory according
to the typical architecture and copies and pre-fills an example of calculation launch script.
The syntax of code_saturne create is as follows:

code_saturne create --study STUDY CASE_NAME1 CASE_NAME2...
creates a study directory STUDY with case subdirectories CASE_NAME1 and CASE_NAME2... If no case
name is given, a default case directory called CASE1 is created.

code_saturne create --case DEBIT3 --case DEBIT4

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 17/186

executed in the directory STUDY adds the case directories DEBIT3 and DEBIT4.

An option --nogui is available for the use of Code_Saturne without Graphic Interface (see §77). This
option must be either the first or the last argument and appear only once.

In the directory DATA, the code_saturne create command places a subdirectory THCH containing ex-
amples of thermochemical data files used for pulverised coal combustion, gas combustion or electric
arc. The file to be used for the calculation must be copied directly in the DATA directory and its name
must be referenced in the launch script in the variable THERMOCHEMISTRY _DATA. All other files
in the DATA or in the THCH will be ignored.

The code_saturne create command also places in the directory DATA the launch script for the Graph-
ical User Interface: SaturneGUI.

In the directory SRC, the code_saturne create command creates a subdirectory REFERENCE containing
all the user subroutines, classified by module type: base, cfbl, cogz, cplv, elec, fuel, lagr, pprt
and rayt. Only the user subroutines placed directly under the directory SRC will be considered. The
others will be ignored.

In the directory SCRIPTS, the code_saturne create command copies and pre-fills an example of the
launch script: runcase. The study, case and user name are filled automatically in the launch script,
as are the paths leading to the different directories. Other parameters must be specified in the script
(see §2.7), especially the mesh file(s) to use, but everything can be specified through the Graphical
Interface.

2.4 Supported mesh and post-processing output formats

Code_Saturne supports multiple mesh formats, all of these having been requested at some time by users
or projects based on their meshing or post-processing tools. All of these formats have advantages and
disadvantages (in terms of simplicity, functionality, longevity, and popularity) when compared to each
other. The following formats are currently supported by Code_Saturne:

- SIMAIL (NOPO)

- I-deas universal

- NUMECA IGG/Hexa

- MED

- CGNS

- EnSight 6

- EnSight Gold

- GAMBIT neutral

- Gmsh

- pro-STAR/STAR4

- STAR-CCM+
These formats are described in greater detail in the following sections. Unless a specific option is used,
the Preprocessor determines the mesh format directly from the file suffix: “. case” for EnSight (6 or

Gold), “. cem” for STAR-CCM+, “.cgns” for CGNS, “.des” for SIMAIL, “.med” for MED, “.msh”
for Gmsh, “.neu” for GAMBIT neutral, “.ngeom” for pro-STAR/STAR4, “.unv” for I-deas universal.

Note that the preprocessor can read gzipped mesh files directly (for Formats other than MED or
CGNS, which use specific external libraries) on most machines.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 18/186

2.4.1 Formats supported for input
2.4.1.1 NOPO/SIMAIL (INRIA/SIMULOG)

This format output by SIMAIL is still heavily used at EDF. We do not currently handle cylindrical
or spherical coordinates, but it seems that SIMAIL always outputs meshes in Cartesian coordinates,
even if points have been defined in another system. Most “classical” element types are usable, except
for pyramids.

Note that depending on the architecture on which a file was produced by SIMAIL,?, it may not be

directly readable by SIMAIL on a different machine, while this is not a problem for the Preprocessor,
which automatically detects the byte ordering and the 32/64 bit variant and adjusts accordingly.

Default extension: .des

File type: semi-portable “Fortran” binary (IEEE integer and floating-point
numbers on 4 or 8 bytes, depending on 32 or 64 bit SIMAIL
version, bytes also ordered based on the architecture)

Surface elements: triangles, quadrangles (+ volume element face references)

Volume elements: tetrahedra, prisms, hexahedra

Zone selection: element face references and volume sub-domains
(interpreted as numbered colors)

Compatibility: all files of this type as long as the coordinate system used is
Cartesian and not cylindrical or spherical

Documentation: Simail user documentation and release notes or MODULEF
documentation: http://www-rocq.inria.fr/modulef
Especially:
http:
//www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

2.4.1.2 I|-deas universal file

This format was very popular in the 1990’s and early 2000’s, and though the I-deas tool has not focused
on the CFD (or even meshing) market since many years, it is handled (at least in part) by many tools,
and may be considered as a major “legacy” format. It may contain many different datasets, relative
to CAD, meshing, materials, calculation results, or part representation. Most of these datasets are
ignored by Code_Saturne, and only those relative to vertex, element, group, and coordinate system
definitions are handled.

This format’s definition evolves with I-deas versions, albeit in a limited manner: some datasets are
declared obsolete, and are replaced by others, but the definition of a given dataset type is never
modified. Element and Vertex definitions have not changed for many years, but group definitions have
gone through several dataset variants through the same period, usually adding minor additional group
types not relevant to meshing. If one were to read a file generated with a more recent version of I-deas
for which this definitions would have changed with no update in the Preprocessor, as the new dataset
would be unknown, it would simply be ignored.

Note that this is a text format. Most element types are handled, except for pyramids.

54ittle endian” on Intel or AMD processors, or “big endian” on most others, and starting with SIMAIL 7, 32-bit or
64-bit integer and floating-point numbers depending on architecture

http://www-rocq.inria.fr/modulef
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html
http://www-rocq.inria.fr/modulef/Doc/FR/Guide2-14/node49.html

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 19/186
Default extension: .unv
File type: text
Surface elements: triangles, quadrangles
Volume elements: tetrahedra, prisms, hexahedra
Zone selection: colors (systematic) and named groups
Compatibility: I-deas (Master Series 5 to 9, NX Series 10 to 12) at least
Documentation: Online I-deas NX Series documentation

2.4.1.3 GAMBIT neutral

This format may be produced by Ansys FLUENT’s GAMBIT meshing tool. As this tool does not
export meshes to other formats directly handled by the Preprocessor (though FLUENT itself may
export files to the CGNS or I-deas universal formats), it was deemed useful to enable the Preprocessor
to directly read files in GAMBIT neutral format.

Note that this is a text format. “Classical” element types are usable.

Default extension: .neu

File type: text

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra

Zone selection: boundary conditions for faces, element groups for cells
(interpreted as named groups)

Documentation: GAMBIT on-line documentation

2.4.1.4 pro-STAR

This polyhedral format from CD-Adapco seems to be usable both with the STAR-CD and STAR-
CCM+ tools, and the pro-STAR. tool should be able to generate it. The test meshes we have
were generated by the Comet-Design tool, which has since been replaced by other CD-Adapco tools,
especially STAR-CD V4 and STAR-CCM-+. The available test cases are thus not extensive in terms
of functionality (especially when considering definition of descriptions), so support for this format is
lightly tested.

Currently, geometric entity numbers are converted to “color” numbers. This tends to lead to a large
number of colors.

Default extension: .ngeom

File type: binary file using portable XDR encoding.

Surface elements: polygons

Volume elements: polyhedra

Zone selection: face and cell sets
(interpreted as numbered colors)

Compatibility: all files of this type ? (tested on purely polyhedral meshes)

Documentation: documentation accompanying and source code provided by
CD-adapco in the context of a collaboration with UMIST (now
University of Manchester) and EDF R&D/MFEE

24.1.5 STAR-CCM+

This polyhedral format is the current CD-Adapco format, and is based on CD-Adapco’s libecemio,
which is based on ADF (the low-level file format used by CGNS prior to the shift to HDF-5). libccmio
comes with a version of ADF modified for performance, but also works with a standard version from
CGNS.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 20/186

Currently, geometric entity numbers are converted to “color” numbers, with the corresponding names
printed to the Preprocessor log. Depending on whether the names were generated automatically or
set by the user, it would be preferable to interpret such sets as named “groups” rather than numbered
“colors”.

The CCMIO library is distributed freely by CD-Adapco upon demand.

Default extension: .ccm
File type: binary file using modified ADF library.
Surface elements: polygons
Volume elements: polyhedra
Zone selection: named face and cell sets
(interpreted as numbered colors, with names appearing in log)
Compatibility: all files of this type ? (tested on purely polyhedral meshes)
Documentation: documentation and source code provided by CD-adapco

2.4.1.6 EnSight 6

This format is used for output by the Harpoon meshing tool, developed by Sharc Ltd (also the distrib-
utor of EnSight for the United Kingdom). This format may represent all “classical” element types.

Designed for post processing, it does not explicitely handle the definition of surface patches or volume
zones, but allows the use of many parts (i.e. groups of elements) which use a common vertex list.
A possible convention (used at least by Harpoon) is to add surface elements to the volume mesh,
using one part per group. The volume mesh may also be separated into several parts so as to identify
different zones. As part names may contain up to 80 characters, we do not transform them into groups
(whose names could be unwieldy), so we simply interpret their number as a color.

Also note that files produced by Harpoon may contain badly oriented prisms, so the Preprocessor
orientation correction option (--reorient)may need to be used. Meshes built by this tool also con-
tain hanging nodes, with non-conforming elements sharing some vertices. The --join --semi-conf
preprocessor option must thus be used. This option is not set automatically, as the user may prefer to
specify which surfaces should be joined, and which ones should not (i.e. to conserve thin walls).

Default extension: .case

File type: text file (extension .case), and text, binary, or Fortran binary file
with (.geo extension), describing the integers describing integers
and floats in the IEEE format, using 32 bits

Surface elements: triangles, quadrangles

Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: part numbers interpreted as color numbers
Compatibility: All files of this type

Documentation: online documentation, also available at:

http://www.ensight.com/downloads/cat_view-5.html

2.4.1.7 Gmsh

This format is used by the free Gmsh tool. This tool has both meshing and post-processing function-
ality, but Code_Saturne only imports meshes.

Note that some meshes produced byGmsh man contain some badly oriented elements, so the Prepro-
cessor’s —reorient option may be necessary.

The Preprocessor handles versions 1 and 2 of this array. In version 1, two labels are associated with
each element: the first defines the element’s physical entity number, the second defines it’ elementary
entity number. Using version 2, it is possible to associate an arbitrary number of labels with each
element, but files produced by Gmsh use 2 labels, with the same meanings as with version 1.

http://www.ensight.com/downloads/cat_view-5.html
http://www.geuz.org/gmsh

Code_Saturne
documentation
Page 21/186

EDF R&D Code_Saturne version 2.0.0-rc2 practical

user’s guide

We chose to convert physical entity numbers to colors. It is possible to build a mesh using Gmsh
without defining any physical entities (in which case all elements will have the same color, but the
Gmsh documentation clearly says that geometric entities are to be used so as to group elementary
entities having similar “physical” meanings.

So as to obtain distinct colors with a mesh generated by Gmsh, it is thus necessary for the user to
define physical entities. This requires an extra step, but allows for fine-grained control over the colors
associated with the mesh, while using only elementary entities could lead to a high number of colors.

Default extension: .msh

File type:

text or binary file

Surface elements:

triangles, quadrangles

Volume elements:

tetrahedra, pyramids, prisms, hexahedra

Zone selection:

physical entity numbers interpreted as color numbers

Compatibility:

all files of this type

Documentation: included documentation, also available at:

http://www.geuz.org/gmsh

2.4.1.8 1GG/Hexa (NUMECA)

This format is quite peculiar in the sense that it defines a hierarchical mesh built exclusively of
hexahedra, of quadrangular faces, and of edges, in which edges may be split in 2, faces in 2 or 4,
and cells in 2, 4, or 8. Two neighboring elements are thus not always conforming. The Preprocessor
only keeps the finest mesh level, and uses the hierarchical information so as to automatically build the
appropriate conformal joining. CAD face information is transformed into color numbers.

Remark: The reader is based on the IGG/Hexa format as it was defined at the end of 2001.
Since that time, the mesher seems to have been renamed HEXPRESS™ and we do
not have any recent documentation or test file. For this reason, support for this format
is not directly included in the main Preprocessor executable, but requires conversion
using the igghexa_to_med tool.

Default extension: .hex

File type: portable binary by default (4-byte integers, 8-byte IEEE
double-precision reals, big-endian), or text

Surface elements: quadrangles

Volume elements: hexahedra

Zone selection:

no volume selection, CAD surface numbers interpreted as colors

Compatibility:

unknown (at least files from late 2001 are readable)

Documentation:

elements provided by NUMECA (http://www.numeca.be) in 2001.

2.4.2 Formats supported for input or output

2.4.21 EnSight Gold

This format may represent all “classical” element types, as well as arbitrary polygons and convex
polyhedra.

This format evolves slightly from one EnSight version to another, keeping backwards compatibility.
For example, polygons could not be used in the same part as other element types prior to version
7.4, which removed this restriction and added support for polyhedra. Version 7.6 added support for
material type definitions.

This format offers many possibilities not used by Code_Saturne, such as defining values on part of
a mesh only (using “undefined” marker values or partial values), assigning materials to elements,
defining rigid motion, or defining per-processor mesh parts with ghost cells for parallel runs. Note

http://www.geuz.org/gmsh
http://www.numeca.be

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 22/186

that some libraries allowing direct EnSight Gold support do not necessarily support the whole format
specification. Especially, VTK does not support material types, and has only recently added support for
polyhedral elements in EnSight Gold files (interpreted as convex point sets, and not true polyhedra, but
at least usable). Also, both EnSight Gold (8.2 and above) and VTK allow for automatic distribution,
reducing the usefulness of pre-distributed meshes with per-processor files.

This format may be used as an input format, similar to EnSight 6. Compared to the latter, each part
has its own coordinates and vertex connectivity, so as a convention, we consider that surface or volume
zones may only be considered to be part of the same mesh if the file defines vertex IDs (which we
consider to be unique vertex labels). In this case, part numbers are interpreted as colors. Without
vertex IDs, only one part is read, and no colors are assigned.

Default extension: directory {case_name}.ensight, containing a file with the .case
extension

File type: multiple binary or text files

Surface elements: triangles, quadrangles, polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, convex polyhedra

Zone selection: possibility of defining element materials (not used), or interpret part
number as color number if vertex IDs are given

Compatibility: files readable by EnSight 7.4 to 9.0, as well as tools based on the
VTK library, especially ParaView (http://www.paraview.org)

Documentation: online documentation, also available at:
http://www.ensight.com/downloads/cat_view-5.html

2.4.2.2 MED 2.3

Initially defined by EDF R&D, this format (Modeéle d’échanges de Données, or Model for Exchange
of Data) has been defined and maintained through a MED working group comprising members of
EDF R&D and CEA (the Code_Saturne team being represented). This is the reference format for the
SALOME environment. This format is quite complete, allowing the definition of all “classical” element
types, in nodal or descending connectivity. Since MED 2.2 in 2003, this format may handle polygonal
faces and polyhedral cells, as well as the definition of structured meshes.

This format, which requires a library also depending on the free HDF5 library, allows both for reading
and writing meshes with their attributes (“families” of color/attribute and group combinations), as
well as handling calculation data, with the possibility (unused by Code_Saturne) of defining variables
only on a subset (“profile”) of a mesh.

The MED library is available under a LGPL licence, and is even packaged in some Linux distributions
(at least Debian and Ubuntu). Versions 2.3.5 and older require HDF5 1.6, version 2.3.6 may compile
with either HDF5 1.6 or HDF5 1.8 (if the latter has HDF5 1.6 compatibility enabled).

Default extension: .med

File type: portable binary, based on the HDF5 library
(http://www.hdfgroup.org/HDF5/index .html)

Surface elements: triangles, quadrangles, simple polygons

Volume elements: tetrahedra, pyramids, prisms, hexahedra, simple polyhedra

Zone selection: element families (i.e. colors and groups)

Compatibility: all versions of MED 2.2 or 2.3 (only unstructured nodal connectivity
is supported)

Documentation: online documentation. Download link at
http://files.opencascade.com/Salome/Salome5.1.2/
med-fichier_2.3.5.tar.gz

http://www.vtk.org
http://www.paraview.org
http://www.ensight.com/downloads/cat_view-5.html
http://www.opencascade.org/SALOME/Salome.html
http://www.gnu.org
http://www.hdfgroup.org/HDF5/index.html
http://files.opencascade.com/Salome/Salome5.1.2/med-fichier_2.3.5.tar.gz
http://files.opencascade.com/Salome/Salome5.1.2/med-fichier_2.3.5.tar.gz

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 23/186

2.4.23 CGNS 2.5

Promoted especially by NASA, Boeing, and ICEM CFD (as well as ONERA in France), this for-
mat(CFD General Notation System) is quite well established in the world of CFD. The concept is
similar to that of MED, with a bigger emphasis on normalization of variable names or calculation
information, and even richer possibilities. The opposite of MED, the first version of this format was
limited to multibloc structured meshes, unstructured meshes having been added in CGNS 2.

Slightly older than MED, this library was free from the start, with a good English documentation,
and is thus much better known. It is more focused on CFD, where MED is more generic. A certain
number of tools accompany the CGNS distribution, including a mesh visualizer (which does not handle
polygonale faces although the format defines them), and an interpolation tool.

We should be able to read almost any mesh written in this format, though meshes with overset interfaces
may not be usable for a calculation. Other (abutting) interfaces are not handled automatically (as
there are at least 3 or 4 ways of defining them, and some mesh tools do not export them®), so the user is
simply informed of their existence in the Preprocessor’s log file, with a suggestion to use an appropriate
conformal joining option. Structured zones are converted to unstructured zones immediately after being
read.

Boundary condition information is interpreted as groups with the same name. The format does not yet
provide for selection of volume elements, as only boundary conditions defined in the model (and can
be assigned to faces in the case of unstructured meshes, or vertices in any case). Note that boundary
conditions defined at vertices are not ignored by the Preprocessor, but are assigned to the faces of
which all vertices bear the same condition.”

The Preprocessor also has the capability of building additional volume or surface groups, based on the
mesh sections to which cells or faces belong. This may be activated using a sub-option of the mesh
selection, and allows obtaining zone selection information from meshes that do not have explicit bound-
ary condition information but that are subdivided in appropriate zones or sections (which depends on
the tool used to build the mesh).

When outputting to CGNS, an unstructured connectivity is used for the calculation domain, with no
face joining information or face boundary condition information.®

Though many tools support CGNS, that support is often quite dissapointing, at least for unstructured
meshes. Thus, some editors seem to use different means to mark zones to associate with boundary
conditions than the ones recommended in the CGNS documentation, and some behaviors are worse:
for example, under EnSight Gold 8, whenever a mesh contains multiple element types, variables are
assigned to the wrong cells. Regarding support of polygons (ngons in the CGNS standard), even the
verification tools published alongside the CGNS library are unable to handle them, and report errors
in valid files containing such elements. Vislt 1.11.1 reports an error when a mesh contains such faces,
while EnSight Gold 8 ignores them. CGNS 3 should improve this situation, allowing for polyhedra,
but it is still in beta stage as of August 2009.

SFor example, ICEM CFD can join non-conforming meshes, but it exports joining surfaces as simple boundary faces
with user-defined boundary conditions.

7If one of a face’s vertices does not bear a boundary condition, that condition is not transferred to the face.

80lder versions of the documentation specified that a field must be defined on all elements of a zone, so that adding
faces on which to base boundary conditions to a volume mesh would have required also defining volume fields on these
faces. More recent versions of the documentation make it clear that a field must be defined on all elements of maximum
dimension in a zone, not on all elements.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 24/186
Default extension: .cgns
File type: portable binary (uses the ADF library specific to CGNS, or HDF5)
Surface elements: triangles, quadrangles, simple polygons
Volume elements: tetrahedra, pyramids, prisms, hexahedra
Zone selection: Surface zone selection using boundary conditions, no volume zone

selection, but the Preprocessor allows creation of groups associated
to zones or sections in the mesh using mesh selection sub-options
Compatibility: CGNS 2.0 to 2.5 on input, CGNS 2.5 on output

Documentation: See CGNS site: http://wuw.cgns.org

2.4.3 Mesh meta-files

The Preprocessor allows use of text files (preferably with a .mesh extension) describing a set of meshes
and their transformations, in place of (or combined with) “true” mesh files. These meta-files are
described here:

Empty lines are ignored, and the # character may be used to define comments (the part of a line
following this character is ignored).

One may request the reading of as many meshes as one needs, using for each mesh a section such as:
read_mesh: filename

or:

read_mesh: filename <sub-options>

If this section type appears more than once, the corresponding meshes are automatically appended.
If needed, a mesh meta-file may itself declare another meta-file as a mesh file. Possible sub-options
associated with a file may be separated by commas, semicolumns, or spaces, and are of the following
form:

format= format name (identical to command-line options)

num= mesh number (useful when a file contains multiple meshes)
grp_cel= <section or zone>, useful only for files in CGNS format
grp_fac= <section or zone>, useful only for files in CGNS format

It is also possible to define a geometric transformation to apply to a mesh, using a homogeneous coordi-
nates transformation matrix (3 lines, 4 columns, with the 3 first columns describing a rotation/scaling
factor, and the last column describing a translation. The corresponding section is as follows (values
may be spread over several lines):

transformation_matrix: €11 t12 t13 t14 to1 tos tog tog t31 t3o t33 t34

Note that the order in which multiple meshes are declared defines the order in which they are read
and appended, but the geometric transformation is only applied at the end (this is a description file,
not a command file). If multiple transformations are needed, a hierarchy of mesh meta-files may be
used.

2.4.4 Meshing tools and associated formats

Most often, the choice of a mesh format is linked to the choice of a meshing tool. Still, some tools allow
exporting a mesh under several formats handled by Code_Saturne. This is the case of FLUENT and
ICEM CFD, which can export meshes to both the I-deas universal and CGNS formats (FLUENT’s
GAMBIT is also able to export to I-deas universal format).

Traditionally, users exported files to the I-deas universal format, but it does not handle pyramid
elements, which are often used by these tools to transition from hexahedral to tetrahedral cells in the

http://www.cgns.org

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 25/186

case of hybrid meshes. The user is encouraged to export to CGNS, which does not have this limitation.

Tools related to the SALOME platform should preferably use SALOME’s native MED format (export
to I-deas universal is also possible, but has some limitations).

The use of files of the “Common Solver” type? is still possible but is deprecated. Such files are read
directly from the Kernel, without the Preprocessor. The variable SOLCOM must be set to 1 in the
launch scripts. Many potentialities of Code_Saturne are not usable with this file format (mesh joining
with hanging nodes, periodicity, parallel computing, ...). For all the other formats, the Preprocessor
must be used (SOLCOM=0).

2.4.5 Meshing remarks

WARNING: Some turbulence models (k—¢, R;;—e SSG, ...) used in Code_Saturne are “High-Reynolds”
models. Therefore the size of the cells neighboring the wall needs to be greater than the thickness
of the viscous sublayer (at the wall, y= > 2.5 is required, and 30 < y* < 100 is preferable). If the
mesh does not match this constraint, the results may be false (particularly if thermal phenomena are
involved). For more details on these constraints, see the keyword ITURB.

2.5 Preprocessor command line options

The main options are:

e —-help: gives a summary of the different command line options

e —m meshl mesh2: used to specify the names of the different meshes used. The launch script
automatically calls the Preprocessor with the option -m $MESH, where MESH is the variable where
the user has specified the different meshes to be used.

e ——join: triggers the mesh joining functions. If nothing more is specified, every area of contact
between two meshes will be joined together. The joining can be limited to certain selected faces.
For instance, to join only the faces of colors 6 and 7, the full option will be -—join --color 6 7.
These options are to be specified in the COMMAND_JOIN variable in the launch script, to be auto-
matically passed to the command line.

e ——perio: triggers periodic boundary conditions. Two types of periodic boundaries are possible:
translation or rotation (see §5.7 for additional details). For the translation, the basic option line
is ——perio --trans tx ty tz
where tx, ty and tz are the coordinates of the translation vector. For the rotation, there are
two possibilities. The transformation can be defined with a rotation angle (in degrees, between
-180 and 180), a direction and an invariant point
--perio --rota --angle a --dir dx dy dz --invpt px py pz
(with obvious notations), or by giving the rotation matrix and an invariant point
--perio --rota --matrix mill ml12 mil3 m21 m22 m23 m31 m32 m33 --invpt px py pz
A rotation and a translation can be combined, by giving both —-rota and --trans specifications.
The translation will always be applied first, whatever the order in which the rotation and the
translation have been given.

The orientation of the transformations is not important since both the transformation and its
inverse will be used to connect faces. Yet, when combining a translation and a rotation, the
orientations given for both have to be consistent.

It is possible (and usually recommended) to restrict the search for periodic connections between
faces to a certain group of faces, by adding selection arguments like --color. It is also possible
to specify up to 3 independent periodicities, simply by repeating the --perio option. Below is
given a example of the option line for a triple periodicity (the \ indicates the continuation of the

9File type specifically developed for the early prototype versions of Code_Saturne (tlc) extension

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 26/186

command line):

--perio --trans -10.2 0 0 --color 2\

--perio --rota --angle 90 --dir 0 0 1 --invpt O O O --color 3 4\

--perio —-trans 0 1 0 --rota --matrix 1 0 0 0 0 -1 0 1 0 -—-invpt 0 0 -0.2

This option is to be specified in the COMMAND_PERIO variable in the launch script, to be automat-
ically passed to the command line.

--reorient: try to re-orient badly-oriented cells if it is necessary to compensate for mesh-
generation software whose output does not conform to the format specifications.

2.6 Kernel command line options

In the standard cases, the compilation of Code_Saturne and its execution are entirely controlled by the
launch script. The potential command line options are passed through user modifiable variables at the
beginning of the script. This way, the user only has to fill these variables and doesn’t need to search
deep in the script for the Kernel command line. Yet, below is given the complete list of options, with
the variables in which they should be specified in the script.

e —-solcom: this option indicates that the Kernel will read the mesh directly, not using the Pre-

processor output files. This is only possible with “Common Solver” type of mesh files (see §2.4.5
for restrictions).

This option is triggered by the SOLCOM variable in the launch script. If SOLCOM is set to 1, the
-solcom option is automatically added to the Kernel command line. The variable ifoenv in the
Fortran code will be set to 0 if the -—solcom option has been used, otherwise it will be set to 1.

--mpi: specifies that the calculation is running with MPI communications. The number of
processors used will be determined automatically by the Kernel. If necessary, the launch script
automatically passes the —-mpi option to the Kernel command line (see 2.7).

-q or ——quality: triggers the verification mode. The code runs without any Interface parameter
file nor any user subroutine. The mesh is read and elementary tests are performed:

- the quality criteria of the mesh are calculated (non-orthogonality angles, internal faces off-
set, ...) and corresponding EnSight post-processing parts are created.

- test calculation of the gradient of sin(x + 2y + 3z). The calculated value is compared to
the exact value, and an EnSight part for the corresponding error is created. The gradient
is calculated with each option IMRGRA from 0 to 4.

The command -q is to be placed in the ARG_CS_VERIF variable in the launch script to be added
automatically to the Kernel command line.

—--cwf: triggers the cutting of boundary and internal faces which have a warp angle larger than
a certain limit!®. The concerned faces are divided into triangles. This option is to handle
with care, since the division of the faces increases the non-orthogonalities of the mesh, but it
is sometimes required (for the Lagrangian modeling, for instance, where non-plane faces lead to
noticeable particle loss). By default, the faces are divided if their warp angle is larger than 0.01
degrees. This default value can be changed by adding an optional angle value to the command.
For instance, to devide faces with a warp angle larger than 0.02 degrees, the full option will be
-cwf 0.02.

This option is to be specified in the COMMAND_CWF variable in the launch script, to be automatically
passed to the command line.

10the warp angle is an indicator of the non-coplanarity of the different vertices of the face

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 27/186

e —-benchmark: triggers the benchmark mode, for a timing of elementary operations on the ma-

chine. A secondary option —-mpitrace can be added. It is to be activated when the benchmark
mode is used in association with a MPI trace utility. It restricts the elementary operations to
those implying MPI communications and does only one of each elementary operation, to avoid
overfilling the MPI trace report.

This command is to be placed in the ARG_.CS_VERIF variable in the launch script to be added
automatically to the Kernel command line.

--log n: specifies the destination of the output for a single-processor calculation or for the
processor of rank 0 in a parallel calculation.

n=0: output directed towards the standard output

n=1: output redirected towards a file 1isting (default behaviour)
This option can be specified in the ARG_CS_OUTPUT variable of the launch script.

—--logp n: specifies the destination of the output for the processors of rank 1 to N — 1 in a
calculation in parallel on N processors (i.e. the redirection of all but the first processor).

n=-1: no output for the processors of rank 1 to N — 1 (default behaviour).

n=0: no redirection. Every processor will write to the standard output. This might be useful
in case a debugger is used, with separate terminals for each processor.

n=1: one file for the output of each processor. The output of the processors of rank 1 to
N — 1 are directed to the files 1isting n0002 to listing n/N. This option can be specified in
the ARG_CS_OUTPUT variable of the launch script.

-p xxx or —-param xxx: specifies the name of the GUI parameter file to use for the calculation.
The value of xxx is to be placed in the PARAM variable in the launch script (the file will be looked
for in the directory DATA). The option -param $PARAM is automatically added to the Kernel
command line.

e -h or —-help: to display a summary of the different command line options.

2.7 Parameters in the launch script

The case preparer command code_saturne create places an example of launch script, runcase, in the
SCRIPTS directory. This script is quite general and known to work on every architecture Code_Saturne
has been tested on. The beginning if the script contains the definition of certain parameters (environ-
ment variables) necessary to set the calculation. The second part of the script contains the commands
for the preparation and execution of the calculation. No user intervention should be necessary in this

second part.

The Graphical User Interface allows to fill in the major parameters of the script without having to

edit the file.

Below is a list of the different variables and parameters that might be modified for a calculation, in

their order of apparition in the script:

LSF headers: definition of the headers for an LSF batch system, as can be found on the machines
of the CCRT (Platine). The data expected are the number of processors reserved (#BSUB -n),
the CPU time limit (#BSUB -W), the name of the standard output file (#BSUB -o), the name of
the standard error file (#BSUB -e) and the name of the job (#BSUB -7J).

PBS headers: definition of the headers for a PBS batch system, as can be found on the machines
of the Chatou cluster. The data expected are the number of nodes reserved (nodes), the number
of processors per node (ppn), the total CPU time (walltime), the memory reserved (mem), and
the name of the job (#PBS -N).

Manchester headers: definition of the headers for the batch system specific to the cluster of the
University of Manchester

SOLCOM: a value of 1 will pass the ~solcom option to the Kernel (see 2.6)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 28/186

STUDY: name of the study directory (automatically set by code_saturne create, see §2.1.2)
CASE: name of the case directory (automatically set by code_saturne create, see §2.1.2)
PARAM: name of the Interface parameter file, if necessary (see 2.6)

MESH: name(s) of the mesh(es) used for the calculation (see 2.5 and 2.4.5). The files will be looked
for in the directory MESHDIR (see below).

COMMAND_JOIN: Preprocessor command line option for mesh joining (see 2.5)

COMMAND_CWF: Kernel command line option for the division of faces with too large a warp angle
(see 2.6)

COMMAND_PERIQ: Preprocessor command line option for the definition of periodic boundary con-
ditions (see 2.5)

THERMOCHEMISTRY_DATA: name of the thermochemical data file, if necessary (the file is looked for
in the directory DATA, see §6.31)

NUMBER_OF _PROCESSORS: number of processors (potentially virtual) to be used for the calcula-
tion.

If the variable is left empty, the launch script will fill it automatically: on a batch system,
NUMBER_OF _PROCESSORS will be equal to the number of processors reserved; in case of an interac-
tive calculation, it will be set to 1.

When using a batch system, NUMBER_OF_PROCESSORS should ideally be equal to the number of
processors reserved, and can never be larger (one executable per processor). With an interactive
calculation (like a Linux PC), NUMBER_OF_PROCESSORS can be larger than the total number of
processors available, although it is not recommended (loss of efficiency because several executa-
bles share the same processor).

In case of coupling with SYRTHES, one processor is reserved for SYRTHES, and the Kernel of
Code_Saturne will therefore automatically be set to run on NUMBER_OF _PROCESSORS-1 processors.

PROCESSOR_LIST: list of nodes on which the calculation is to be run. On batch systems, this list
is set automatically by the batch manager. For calculations on a stand-alone machine, the list is
not used. Hence, except for very specific test (mainly for developing purposes), it is recommended
to leave this variable empty.

USER_INPUT_FILES: list of the user data files to be copied in the temporary execution directory
before the calculation (input profiles for instance). The files will be looked for in the directory
DATA. The thermochemical data files, Interface parameter file and calculation restart files are
specified in other variables and do not need to appear here. When using the vortex method for
LES entry conditions, the corresponding data files have to be specified in USER_INPUT_FILES (see
86.5)

USER_OUTPUT_FILES: list of user result files to be copied in the directory RESU at the end of the
calculation. A directory RES_USERS.mmddhhmm will be created in the directory RESU and all the
files will be stored in it. The files automatically created by the code (listings, post-processing,
automatic chronological records!!, restart files) do not need to be specified in USER_QUTPUT_FILES.

CS_TMP_PREFIX: alternate temporary directory for the calculation (see §2.2.2)

OPTIMIZATION: optimisation level for compilation (LO, DBG, EF or PROF; see §2.1.3). This
optimisation level will be applied to all the modules of Code_Saturne (BASE, CFBL, COGZ,
CPLV, ELEC, FUEL, LAGR, MATT, RAYT). Leaving the variable empty stands for “standard”
optimisation.

Hwhen using ushist for user-defined chronological records, the files created need to be specified in USER_OUTPUT_FILES

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 29/186

e CS_LIB_ADD: additional commands for the link stage of the compilation. This can be especially
useful if the user subroutines call routines provided by external libraries. To link with an external
library “foo”, the variable would be for instance
CS_LIB_ADD=¢‘-L/opt/foo/1lib -1foo’’

e VALGRIND: command to be placed before the Code_Saturne executable name on the execution
command line (i.e. the launch script will execute the command $VALGRIND cs_solver ...). It
is especially designed to use the valgrind debugging and profiling tool. The usual value to use
valgrind is VALGRIND= ‘valgrind --tool=memcheck’’

e ARG_CS_VERIF: verification mode to be used for Code_Saturne (see 2.6). An empty variable implies
standard calculation mode (IVERIF=0).

e ARG_CS_OUTPUT: options for the redirection of the standard output (see 2.6)
e ECHOCOMM: level for the ——echo-comm option of the Kernel command line (see 2.6)

e ADAPTATION: commands to trigger the automatic mesh adaptation with the software Homard.
This option is still under development and restricted to developpers use.

e CASEDIR: root directory of the calculation. This variable is automatically set by code_saturne create
and should not be changed.

o DATA: DATA directory of the case (see 2.1.2). This variable is automatically set by code_saturne create
and should not be changed.

e RESU: RESU directory of the case (see 2.1.2). This variable is automatically set by code_saturne create
and should not be changed.

e SRC: SRC directory of the case (see 2.1.2). This variable is automatically set by code_saturne create
and should not be changed.

e SCRIPTS: SCRIPTS directory of the case (see 2.1.2). This variable is automatically set by
code_saturne create and should not be changed.

e RESTART_IN: directory containing the files for calculation restart.

e PREPROCESSOR_OUTPUT_IN: preprocessor_ouput file for a calculation in “calculation” mode (see
2.2.3)

e MESHDIR: directory containing the mesh files (see 2.1.2). This variable is automatically set by
code_saturne create and should generally not be changed.

e DATA_SYR: directory for the SYRTHES data. This directory has to be created by the user. It
is advised to keep the location proposed in the launch script, which complies with the standard
architecture of Code_Saturne (see 2.1.2).

e SYRTHES_ENV: name of the environment file for SYRTHES (usually syrthes.env, as proposed in
the launch script).

e SRC_SYR: directory for the SYRTHES user subroutines. This directory has to be created by the
user. It is advised to keep the location proposed in the launch script, which complies with the
standard architecture of Code_Saturne (see 2.1.2).

e COUPLING_MODE: coupling mode between Code_Saturne and SYRTHES 3.4, when such coupling is
activated (see COMMAND_SYRTHES). Two options are available:
MPI: for a coupling based on MPI messages (requires a MPI library)
sockets: for a coupling based on sockets

e EXEC_PREPROCESSOR: execution mode for Code_Saturne preprocessor (see 2.2.3)
e EXEC_PARTITION: execution mode for Code_Saturne partitionner (see 2.2.3)

e EXEC _KERNEL: execution mode for Code_Saturne kernel (see 2.2.3)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 30/186

2.8 Graphical User Interface

A Graphical User Interface is available with Code_Saturne. This Interface creates or reads an XML file
according to a specific Code_Saturne syntax which is then interpreted by the code.

In version 2.0.0-rc2, the Graphical Interface manages calculation parameters, standard initialisation
values and boundary conditions for standard physics, pulverised coal combustion and radiative trans-
fers. The other specific physics are not yet managed by the Graphical Interface. In these particular
cases, user subroutines have to be completed.

The Interface is optional. Every data that can be specified through the Interface can also still be
specified in the user subroutines. In case of conflict, all calculation parameters, initialisation value
or boundary condition set directly in the user subroutines will prevail over what is defined by the
Interface. However, it is no longer necessary to redefine everything in the user subroutines. Only what
was not set or could not be set using the Graphical Interface should be specified.

WARNING: There are some limitations to the changes that can be made between the Interface and
the user routines. In particular, it is not possible to specify a certain number of solved variables in
the Interface and change it in the user routines (for example, it is not possible to specify the use of a
k — € model in the Interface and change it to R;; — € in usini1.£90, or to define additional scalars in
usinil with respect to the Interface). Also, all boundaries should be referenced in the Interface, even
if the associated conditions are intended to be modified in usclim, and their nature (entry, outlet,
wall'?, symmetry) should not be changed.

For example, in order to set the boundary conditions of a calculation corresponding to a channel flow
with a given inlet velocity profile, one should:

- set the boundary conditions corresponding to the wall and the output using the Graphical Interface
- set a dummy boundary condition for the inlet (uniform velocity for instance) - set the proper velocity
profile at inlet in usclim. The wall and output areas do not need to appear in usclim. The dummy
velocity entered in the Interface will not be taken into account.

The Graphical User Interface is launched with the ./SaturneGUI command in the directory DATA. The
first step is then to load an existing parameter file (in order to modify it) or to open a new one. The
headings to be filled for a standard calculation are the followings:

- Analysis environment: definition of the calculation directories (STUDY, CASE), mesh file(s),
periodicity, coupling with SYRTHES, stand-alone execution of the Preprocessor module (used
by the Interface to get the colors of the boundary faces).

- Thermophysical models: physical model, ALE mobile mesh features, turbulence model, thermal
model, initialisation of the variables.

- Physical properties: reference pressure, fluid characteristics, gravity.

- Additional scalars: definition, physical characteristics and initialisation of the scalars (apart from
the temperature, which is treated separately in the Interface).

- Boundary conditions: definition of the boundary conditions for each variable. The colors of the
boundary faces may be read directly from a “listing” file created by the Preprocessor. This file
can be generated directly by the Interface under the heading
“Analysis environment — Solution Domain — Stand-alone running”.

- Analysis control: parameters concerning the time averages, time step, location of the probes
where some variables will be monitored over time, definition of the frequency of the outputs in
the calculation listing and in the chronological records and of the EnSight outputs.

- Numerical parameters: advanced parameters for the numerical solution of the equations

12smooth and rough walls are considered of the same nature

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 31/186

- Calculation management: management of the calculation restarts, updating of the launch script
(temporary execution directory, parallel computing, user data or result files, ...), interactive
launch of the calculation and user arrays definition.

The Code_Saturne tutorial [14] offers a step-by-step guidance to the setting up of some simple calcula-
tions with the Code_Saturne Interface.

To launch Code_Saturne using an XML parameter file, the name of the file must be given to the variable
PARAM in the launch script (see §2.7). When the launch script is edited from the Interface (Calculation
management — Prepare batch analysis), the PARAM section is filled automatically as are the other
parameters specified through the Interface.

NOTE: OPTION --NOGUI OF THE CODE_SATURNE CREATE COMMAND

When a calculation is using the Interface but, for some reason, some extra parameters need to be
specified in the subroutine usinii, the latter must be placed in the directory SRC. But, while doing
this, all the parameters appearing in usinil will also be taken into account. In order to prevent
the user from having to respecify in usinil all that he has already specified through the Interface,
code_saturne create automatically comments out the examples in usinil (Cex at the beginning of
each line) while copying it in the directory REFERENCE. Therefore, the user only needs to uncomment
the specific parts of usinil he wants to modify, and the rest of the examples will be ignored.

On the contrary, if the Interface will not be used, then all the parameters in usinii have to be specified.
In that case, using the --nogui option of code_saturne create will prevent it from commenting
usinil out, thus saving the user the tedious task of uncommenting all the lines (and the risk of
skipping some of them).

2.9 Face and cell mesh-defined properties and selection

The mesh entities may be referenced by the user during the mesh creation. These references may then
be used to mark out some mesh entities according to the need (specification of boundary conditions,
pressure drop zones, ...). The references are generally of one of the two following types:

e color. A color is an integer possibly associated with boundary faces and volume elements by
the mesh generator. Depending on the tool, this concept may have different names, which
Code_Saturne interprets as colors. Most tools allow only one color per face or element.

- I-deas uses a color number with a default of 7 (green) for elements, be they volume elements
or boundary “surface coating” elements. Color 11 (red) is used for for vertices, but vertex
properties are ignored by Code_Saturne.

- SIMAIL uses the equivalent notions of “reference” for element faces, and “subdomain”
for volume elements. By default, element faces are assigned no reference (0), and volume
elements domain 1.

- Gmsh uses “physical property” numbers.

- EnSight has no similar notion, but if several parts are present in an EnSight 6 file, or
several parts are present and vertex ids are given in an Ensight Gold file, the part number
is interpreted as a color number by the Preprocessor.

- The Comet Design (pro-STAR/STAR4) and NUMECA Hex file formats have a CAD section
id that is interpreted as a color number. In the latter case, this notion only applies to faces,
so volume elements are given color.

- The MED format allow integer “attributes”, though many tools working with this format
ignore those and only handle groups.

e groups. Named “groups” of mesh entities may also be used with many mesh generators or
formats. In some cases, a given cell or face may belong to multiple groups (as some tools allow
new groups to be defined by boolean operations on existing groups). In Code_Saturne, every
group is assigned a group number (base on alphabetical ordering of groups).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 32/186

- I-deas assigns a group number with each group, but by default, this number is just a
counter. Only the group name is considered by Code_Saturne (so that elements belonging to
two groups with identical names and different numbers are considered as belonging to the

same group).

- CGNS allows both for named boundary conditions and mesh sections. If present, boundary
condition names are interpreted as group names, and groups may also be defined based on
element section or zone names using additional Preprocessor options (-grp-cel or —grp-fac

followed by section or zone).

- Using the MED format, it is preferable to use “groups” to colors, as many tools ignore the

latter.

Selection criteria may be defined in a similar fashion whether using the GUI or in user subroutines.
Typically, a selection criteria is simply a string containing the required color numbers or group names,
possibly combined using boolean expressions. Simple geometric criteria are also possible.

A few examples are given below:

ENTRY
1l or7
allfl]

3.1 >= z >= -2 or not (15 or entry)

range[04, 13, attribute]

sphere[0, 0, 0, 2] and (not no_group[])

Strings such as group names containing whitespace or having names similar to reserved operators may
be protected using “escape characters”.!®> More complex examples of strings whith protected strings

are given here:

"First entry" or Wall\ or\ sym

entry or \plane or "noone’s output"

The following operators and syntaxes are allowed (fully capitalized versions of keywords are also al-
lowed, but mixed capitals/lowercase versions are not):

escape characters
protect next character only:
protect string:

basic operators
priority:

not:

and:

or:

XOor:

general functions
select all:

entities having no group or color:
select a range of groups or colors:

\

’string’ "string"

or | || B 5

alll]

no_group[]

range [first, last]

range [first, last, group]
range [first, last, attributel

For the range operator, first and last values are inclusive. For attribute (color) numbers, natural
integer value ordering is used, while for group names, alphabetical ordering is used. Note also that in
the bizarre (not recommended) case in which a mesh would contain for example both a color number

13Note that for defining a string in Fortran, double quotes are easier to use, as they do not conflict with Fortran’s
single quotes delimiting a string. In C, the converse is true. Also, in C, to define a string such as \plane, the string
\\plane must be used, as the first \ character is used by the compiler itself. Using the GUI, either notation is easy.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 33/186

15 and a group named “15”, using range[15, 15, group] or range[15, 15, attribute] could be
used to distinguish the two.

Geometric functions are also available. The coordinates considered are those of the cell or face centers.
Normals are of course usable only for face selections, not cell selections.

geometric functions

face normals: normallz, y, z, epsilon]
normal[z, y, z, epsilon = epsilon]
plane, ax + by + cz + d = 0 form: planela, b, ¢, d, epsilon]

planela, b, ¢, d, epsilon = epsilon]
planela, b, ¢, d, inside]
planela, b, ¢, d, outsidel

plane, normal + point in plane form: planeln,, ny, n., =, y, 2, epsilon]
planeln;, ny, n., =, y, 2, epsilon = epsilon]
planelng;, ny, n., =, y, 2, insidel
planelng;, ny, n., -, y, z, outside]

box, extents form: box [Tmins Ymins Zmins Tmazs Ymazs Zmazl

box, origin + axes form: box[xg, Yo, 20,

dey, dyy, dz1, dzo, dys, dzo, dxs, dys, dz3]

planela, b, ¢, d, epsilon = epsilon]
planela, b, ¢, d, inside]
planela, b, ¢, d, outsidel

cylinder: cylinder([zg, yo, 20, 1, Y1, 21, radius]
sphere: spherel[z., Y., 2., radius]
inequalities: > <, >=, <= associated with x, y, z or X, Y, Z keywords

and coordinate value;
Tmin <= X < Tmae type syntax is allowed.

In the current version of Code_Saturne, all selection criteria used are maintained in a list, so that
re-interpreting a criterion already encountered (such as at the previous time step) is avoided. Lists
of entities corresponding to a criteria containing no geometric functions are also saved in a compact
manner, so re-using a previously used selection should be very fast. For criteria containing geometric
functions, the full list of corresponding entities is not maintained, so each entity must be compared to
the criterion at each time step. Heavy use of many selection criteria containing geometric functions
may thus lead to reduced performance.

Preprocessing

The Preprocessor module of Code_Saturne reads the mesh file(s) (under any supported format) and
translates the necessary information into a Kernel input file. Mesh joining and domain partitioning
for parallel calculations are done at this stage. In case of periodic boundary conditions, the Prepro-
cessor module also identifies the boundary faces that are related through periodicity and generates the
corresponding connectivity.

The executable of the Preprocessor module is cs_preprocess, and the most useful options and sub-
options are described briefly here. To obtain a complete and up-to-date list of options and environment
variables, use the following command: cs_preprocess -h or cs_preprocess --help. Many options,
such as this one, accept a short and a long version.

For the main options, the launch script runcase contains corresponding variables, that are used to
define options for the Preprocessor. This way, the user only has to define these variables and does not
detailed knowledge of the Preprocessor command line.

Nonetheless, it may be useful to call the Preprocessor manually in certain situations, especially for
frequent verification when building a mesh, so its use is described here. Verification may also be
done using the code_saturne check mesh command, which takes a subset of the same command-line

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 34/186
arguments.

The Preprocessor is controlled using command-line arguments, some of these accepting sub-arguments.
It is possible to complete the command-line with a file, using the same syntax as the command-line,
but also allowing multiple lines and comments. A few environment variables allow an expert user to
modify some behaviors or to obtain a trace of memory management.

3.1 Preprocessor options and sub-options

Main choices are done using command-line options. Sub-option arguments must directly follow the
one activating the corresponding option, and the definition of sub-options ends with the first argument
which does not match the same sub-option. Some options may be applied multiple times. For example,
-j being the option which activates face joining, -—-fraction the sub-option modifying the default
tolerance, and --color a face selection sub-option:

cs_preprocess -m fluid.msh -j --fraction 0.2 --color 2 --color 3 -j

means that we apply a joining to boundary faces of color 2 or 3 of mesh fluid.msh with a tolerance
of 0.2, then that we apply a second joining to all remaining boundary faces (with default parameters),
while:

cs_preprocess -m fluid.msh -j -—-fraction 0.2 -color 2 -j --color 3

means that we apply a joining to boundary faces of color 2 of mesh fluid.msh with a tolerance of
0.2, then that we apply a second joining to boundary faces of color 3 (with default values for other
parameters).

3.1.1 Option files

It is possible to complete the command-line with a file, using the same syntax as the command-line,
but allowing the addition of arbitrary line jumps and comments. On a given line, anything that follows
a# character until the end of the line is ignored in such a file. The use of such a file is activated by the
argument -i. If for example a file pp_cmd contains the following lines:

--ensight # activate EnSight output
--med # activate MED output

then command: cs_preprocess -i pp_cmd -m mesh.unv
is equivalent to: cs_preprocess -m mesh.unv --ensight --med

The use of option files may circumvent command-line length limits (now rarely an issue), and allows
easier manipulation and better readability of complex option combinations.

3.1.2 Mesh selection

Any use of the preprocessor requires one or several meshes (except for cs_preprocess and cs_preprocess -h
which respectively print the version number and list of options). They are selected using the --mesh

or -m option, followed by th list of meshes to read. The file format is usually automatically determined
based on its extension (c.f. 2.4.1 page 18) but this option also allows a —-format sub-option, to force

the format choice of selected files.

For formats allowing multiple meshes in a single file, the ——num sub-option followed by a strictly positive
integer allows selection of a specific mesh; by default, the first mesh is selected.

For meshes in CGNS format, we may in addition use the --grp-cel or --grp-fac sub-options, followed
by the section or zone keywords, to define additional groups of cell or faces based on the organization
of the mesh in sections or zones. The sub-options have no effect on meshes of other formats.

We may define as many mesh selections as we wish. Meshes are read and automatically compounded

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 35/186

(but not joined) in the order of their appearance. For example:
cs_preprocess -m file.1l file.2 --format ideas -m branch.cgns --grp-cel section

reads mesh files file.1 and file.2 as I-deas files, and appends the first mesh from the branch.cgns
file, on which additional groups of cells corresponding to the CGNS section names to which cells belong.

3.1.3 Post-processing output

By default, the Preprocessor does not generate any post-processor output. By adding --ensight,
--med, or --cgns to the command-line arguments, the output of the mesh to the indicated format
is provoked. It is possible to generate output to different formats simultaneously. Note that we will
obtain additional surface meshes corresponding to the calculation domain boundary, to faces joined or
modified by joinings or periodicity, etc. Note also that periodic faces are not considered to be part of
the domain boundary. !4

We consider 4 types of output: the volume mesh (output before possible joinings), the boundary mesh,
informational meshes (such as faces stemming from or modified by a joining of periodicity, or selected
interior faces), and meshes outlining to zones with errors. By default, all types of meshes are output. If
one or several of the three filtering sub-options is used , only the meshes of the requested types will be
output, as well as meshes corresponding to zones with errors (non-filterable). The filtering sub-options
are: ——volume, ——boundary, and --info.

One may also optionally avoid outputting polygons or polyhedra by adding the --discard-poly
sub-option. This allow working around bugs or limited polyhedron support in visualization tools or
limitations of the CGNS 2 format. In this case, the post-processing output will be incomplete, but at
least readable.

In the case of EnSight Gold output, we may use the ——simple sub-option to avoid splitting the output
in several parts corresponding to different attributes (colors and groups) borne by this mesh.

Still in the case of the EnSight Gold output, we may force the output in text mode using the --text
sub-option, or force binary output to “big-endian” variant using the --big-endian sub-option. By
default, the output is native binary.

Finally, in the case of output in the MED format, we may force the conversion of attributes (colors)
to groups using the -—color-to-group sub-option.

3.1.4 Faces selection

Selection of faces occurs at several levels, especially for conforming joining.

It is also possible to select a set of interior faces bearing attributes (colors or groups) for verification
purposes using the option ——int-face. The Preprocessor prints the number of interior faces matching a
selection criterion, and if in addition post-processing output is activated, a surface mesh corresponding
to the selected faces will be generated.

Preprocessor selection criteria are more limited than those used by th kernel, and are generated using
the following sub-options:

--color ¢ ¢3 ... ¢, to select faces of the indicated color numbers
-—group g1 g2 ... gn to select faces of the groups named
--invsel to use the complement of the indicated colors and groups

The same selection sub-options are used for conforming joining, periodicity, and interior faces verifica-
tion. In the case of joining and periodicity, the selection is automatically restricted to boundary faces,
while in the case of interior face verification, it is restricted to interior faces bearing attributes.

For example, to select all interior faces of mesh example.des which bear an attribute (color or group),

M Periodicity is interpreted as a “geometric” condition rather than a classical boundary condition.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 36/186

but are not of color 2 and do not belong to group “inlet”, with output of an Ensight Gold part and
with no kernel output (using -sc), we use the following command line (the \ character marks line
continuation):

cs_preprocess -m example.des -sc --ensight \
--int-face --group entree --color 2 --invsel

3.1.5 Joining of non-conforming meshes

Conforming joining of possibly non-conforming meshes is one of the Preprocessor’s main functions. To
activate it, use the --join or -j command-line options, possibly followed by face selection criteria and
sub-options controlling associated tolerance parameters.

For a simple mesh, it is rarely useful to specify face selection criteria, as joining is sufficiently automated
to detect which faces may actually be joined. For a more complex mesh, or a mesh with thin walls
which we want to avoid transforming into interior faces, it is recommended to filter boundary faces that
may be joined by using face selection sub-arguments (see §2.4.1). This has the additional advantage of
reducing the number of faces to test for in the intersection/overlap search, and thus reduced to time
required by the joining algorithm.

One may also modify tolerance criteria using 2 sub-options:

—--fraction r assigns value r (where 0 < r < 0,49) to the maximum intersection distance
multiplier (0,1 by default). The maximum intersection distance for a given
vertex is based on the length of the shortest incident edge, multiplied by r.
The maximum intersection at a given point along an edge is interpolated from
that at its vertices, as shown on the left of figure 2;

--plane c assigns the minimum cosine between normals for two faces to be considered
coplanar (0,8 by default, which corresponds to almost 37°); this parameter is
used in the second stage of the algorithm, to reconstruct conforming faces, as
shown on the right of figure 2.

| reconstructed face

Figure 2: Maximum intersection tolerance and faces normal angle

In practice, we are sometimes led to increase the maximum intersection distance multiplier to 0.2 or
even 0.3 when joining curved surfaces, so that all intersection are detected. As this influences merging
of vertices and thus simplification of reconstructed faces, but also deformation of “lateral” faces, it is
recommended only to modify it if necessary. As for the --plane sub-option, its use has only been
necessary on a few meshes up to now, and always in the sense of reducing the tolerance (i.e. bringing
the minimum cosine closer to 1) so that face reconstruction does not try to generate faces from initial
faces on different surfaces.

As an example, to join faces with color 2 of the mesh mesh.des with an intersection distance multiplier
of 0.15, then joining all remaining joinable boundary faces with a default parameter of 0.1, we may
use the following command:

cs_preprocess -m mesh.des -j ——fraction 0.15 --color 2 -j

In cases where any two faces to join always have at least one common vertex (which is the case with

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 37/186

meshes containing hanging nodes generated by tools such as Harpoon), we may use the ——semi-conf
sub-option, for a much faster edge intersection search than with the usual algorithm.

3.1.6 Periodicity

Handling of periodicity is based on an extension of conforming joining, as shown on figure 3. It is thus
not necessary that periodic faces be conforming (though it usually leads to better mesh quality). All
sub-options relative to conforming joining of non-conforming faces also apply to periodicity. Note also
that once pre-processed, 2 periodic faces have the same orientation (possibly adjusted by periodicity
of rotation).

duplicated and selected faces
7 translated faces | - N

. N - N

stage 1 ; N . .
Vz N . <
N EN

.. Telation (origin)

periodic step

stage 2 joined faces

~

A
~ . _duplicatedand
non—joined faces relation (origin)

stage 3 faces subdivided
based on their relation - --F---------------= =

with joined faces
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =
joined faces ---~7 relation (periodicity)

Figure 3: Matching of periodic faces

The sub-option for a translation-type periodicity is ——trans followed by the three translation vector
components (tx,ty,tz). The sub-option for a rotation-type periodicity is --rota, which must be
completed either by:

--angle « --dir dz dy dz

where « is the rotation angle in degrees and (dz, dy, dz) defines the rotation axis (using the trigono-
metric orientation), or by:

——-matrix mll ml12 m13 m21 m22 m23 m31 m32 m33

mi1 Mi2 Mi3

where (nm Mmoo m23) defines the rotation matrix.
m31 Mm32 M33

In either case, we may define an invariant point different from (0,0,0) by adding the rotation sub-
option --invpt pz py pz. A translation and a rotation may be combined: in this case, the composite
transformation is always R o T', independently of the order in which the translation and rotation are
defined.

The orientation of the transformations has no importance (but in the case of a composite transformation
RoT, R and T must be consistent). As with joining, it is recommended to filter boundary faces to
process using a selection criterion. As many periodicities may be built as desired, as long as boundary
faces are present. One a periodicity is handled, faces having periodic matches do not appear as
boundary faces, but as interior faces, and are thus not available anymore for other periodicities.

We finish with the example of a periodicity of rotation of 90 degrees around an axis of direction

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 38/186

(0,0, 1) passing through (1,0,0), for faces of group “perio_1” and with a joining tolerance of 20% (the
\ character marks line continuation):

--perio --rota --angle 90 --dir 0 O 1 --invpt 1 0 O\
--fraction 0.2 --group perio_1

3.1.7 Element orientation correction

We may active the possible element orientation correction using the --reorient option.

Note that we cannot guarantee correction (or even detection) of a bad orientation in all cases. Not all
local numbering possibilities of elements are tested, as we focus on “usual” numbering permutations.
Moreover, the algorithms used may produce false positives or fail to find a correct renumbering in the
case of highly non convex elements. In this case, nothing may be done short of modifying the mesh,
as without a convexity hypothesis, it is not always possible to choose between two possible definitions
starting from a point set.

With a post-processing option such as ——ensight, visualizable meshes of corrected elements as well as
remaining badly oriented elements are generated.

3.2 Environment variables

Setting a few environment variables specific to the Preprocessor allows modifying its default behavior.
In general, if a given behavior is modifiable through an environment variable rather than by a command-
line option, it has little interest for a non-developer, or its modification is potentially hazardous. The
environment variables used by the Preprocessor are described here:

CS_PREPROCESS_MEM_LOG

Allows defining a file name in which memory allocation, reallocation, and freeing is logged.

CS_PREPROCESS_MIN_EDGE_LEN

Under the indicated length (10715 by default), an edge is considered to be degenerate and its vertices
will be merged after the transformation to descending connectivity. Degenerate edges and faces will
thus be removed. Hence, the post-processed element does not change, but the Kernel may handle a
prism where the preprocessor input contained a hexahedron with two identical vertex couples (and
thus a face of zero surface). If the Preprocessor does not print any information relative to this type of
correction, it means that it has not been necessary. To completely deactivate this automatic correction,
a negative value may be assigned to this environment variable.

CS_PREPROCESS_IGNORE_IDEAS_CO0_SYS

If this variable is defined and is a strictly positive integer, coordinate systems in I-deas universal format
files will be ignored. The behavior of the Preprocessor will thus be the same as that of versions 1.0
and 1.1. Note that in any case, non Cartesian coordinate systems are not handled yet.

CS_PREPROCESS_JOIN_MAX_SUB_FACES

Defines the number of new faces originating from an initial face (100 by default) above which we
consider that the joining reconstruction has probably entered an infinite loop and has thus failed. This
criterion is the last to intervene in the detection of errors and only comes into play in pathological
cases probably related to excessive deformation of faces to join (and thus a too large tolerance factor).
It should not be necessary to increase it for a mesh really intended for a calculation, as 100 faces
correspond to a refinement ratio of 10 in each direction for joined cells, which is excessive from a
numerical standpoint.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 39/186

3.2.1 System environment variables

Some system environment variables may also modify the behavior of the Preprocessor. For example,
if the Preprocessor was compiled with MED support on an architecture allowing shared (dynamic)
libraries, the LD_PRELOAD environment variable may be used to define a “prioritary” path to load MED
or HDF5 libraries, and thus experiment with another version of these libraries without recompiling
the Preprocessor. To determine which shared libraries are used by an executable file, use the following
command: 1dd {executable_path}.

3.3 Optional functionality

Some functions of the Preprocessor are based on external libraries, which may not always be available.
It is thus possible to configure and compile the Preprocessor so as not to use these libraries. When
running the Preprocessor, the supported options are printed. The following optional libraries may be
used:

o CGNS library. In its absence, CGNS format support is deactivated.
e MED-file library. In its absence, MED format is simply deactivated.

o Read compressed files using Zlib. With this option, it is possible to diretly read mesh files
compressed with a gzip type algorithm and bearing a .gz extension. This is limited to formats
not already based on an external library (i.e. it is not usable with CGNS or MED files), and
has memory and CPU time overhead, but may be practical. Without this library, files must be
uncompressed before use.

3.4 General remarks

Note that the Preprocessor is in general capable of reading all “classical” element types present in
mesh files (triangles, quadrangles, tetrahedra, pyramids, prisms, and hexahedra). Quadratic or cubic
elements are converted upon reading into their linear counterparts. Vertices referenced by no element
(isolated vertices or centers of higher-degree elements) are discarded. Meshes are read in the order
defined by the user and are appended, vertex and element indices being incremented appropriately. '°

At this stage, volume elements are sorted by type, and the fluid domain post-processing output is
generated if required. Conforming joining, which may transform cells into general polyhedra only
occurs after this. This allows bypassing a limitation of most post-processing tools, which do not
handle polyhedral elements. It is possible to require the simultaneous output with multiple formats.

In general, colors or groups assigned to vertices are ignored. selections are thus based on faces or
cells. with tools such as SIMAIL, faces of volume elements may be referenced directly, while with
I-deas or SALOME, a layer of surface elements bearing the required colors and groups must be added.
Internally, the Preprocessor always considers that a layer of surface elements is added (i.e. when
reading a SIMAIL mesh, additional faces are generated to bear cell face colors. When building the
descending connectivity, all faces with the same topology are merged: the initial presence of two layers
of identical surface elements bearing different colors would thus lead to a calculation mesh with faces
bearing two colors.

3.5 Files passed to the Kernel
Data passed to the Kernel by the Preprocessor is transmitted using a binary file, using “big endian”
data representation, named preprocessor_output.

When using the Preprocessor for mesh verification, data for the Kernel is usually not needed. In this
case, the —sc option may be used to simulate output, without creation of a preprocessor_output file.

15Possible entity labels are not maintained, as they would probably not be unique when appending multiple meshes.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 40/186

4 Partitioning for parallel runs

Graph partitioning (using one of the optional METIS or SCOTCH libraries) is done using a secondary
executable,

cs_partition, which reads the file produced by the Preprocessor and builds one or several “cell —
domain” distribution files, named domain number_p for a partitioning on p sub-domains.

This separation leads to extra work for the Kernel, which must redistribute data read in the preprocessor_output
file based on the associated partitioning, but avoids requiring re-running the Preprocessor whenever

running on a different number of files. This useful mainly for large files (20 to 100 million cells, for

which running the Preprocessor may require several hours and a machine with a very large memory

capacity. Simple domain partitioning requires much less time, and in general slightly less memory than

the Preprocessor.

Without partitioning (for example if neither METIS nor SCOTCH is available, or the partitioner has
not been run for the required number of sub-domains), the Kernel will use a built-in partitioning using
a space-filling curve (Z-curve) technique. This usually leads to partitionings of lower quality than with
graph partitioning, but parallel performance remains reasonable.

4.1 Options

To list the partitioner’s options, use the following command: cs_partition -h

We provide the list of required partitionings an optionally additional options. For example, to simulate
a partitioning for calculations on 64 and 128 processes with no output, we may use the following
command:

cs_partition 64 128 --no-write

4.1.1 Ignore periodicity

By default, face periodicity relations are taken into account when building the “cell — cell” connectivity
graph used for partitioning. This allows better partitioning optimization, but increases the probability
of having groups of cells at opposite sides of the domain in a same sub-domain. This is not an issue for
standard calculations, but may degrade performance of search algorithms based on bounding boxes.
It is thus possible to ignore periodicity when partitioning a mesh using the --no-perio option.

Note that nothing guarantees that a graph partitioner will not place disjoint cells in the same sub-
domain independently of this option, but this behavior is rare.

4.1.2 Partitioner choice

If the Partitioner has been configured with both METIS and SCOTCH libaries, using the —-metis or
—--scotch option allows choosing between either library. By default, metis is used if both choices are
available.

4.1.3 Simulation mode

Using the --no-write option, we can tell the partitioner not to output a domain number_p file. Par-
titioning is thus computed, but not saved.

4.1.4 Environment variables

CS_PARTITION_MEM_LOG

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 41/186

Allows defining a file name in which memory allocations, reallocations, and frees will be logged.

5 Main variables

This section presents a non-exhaustive list of the main variables which may be encountered by the
user. Most of them should not be modified by the user. They are calculated automatically from the
data. However it may be useful to know what they represent. Developpers can also refer to [3] and

[11].

These variables are listed in the alphabetical index at the end of this document.

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

5.1 Array sizes

ndim:

ncel:

ncelet:

nfac:

nfabor:

ncelbr:

1ndfac:
1ndfbr:

nnod:

nfml:

nprfml:

nphas:

nphsmx:

nvar:

nscamx:

nscal:

nscapp:

Space dimension (ndim=3).

Number of real cells in the mesh.

Number of cells in the mesh, including the ghost cells of the “halos” (see note 1).
Number of internal faces (see note 2).

Number of boundary faces (see note 2).

Number of cells with at least one boundary face (see note 2).

Size of the array nodfac of internal faces - nodes connectivity (see note 3).
Size of the array nodfbr of boundary faces - nodes connectivity (see note 3).

Number of vertices in the mesh.

Number of referenced families of entities (boundary faces, elements, ...).

Number of properties per referenced entity family.

Effective number of phases. nphas must be inferior or equal to nphsmx. In the current
version, nphas is forced to 1 and should not be changed..

Maximum number of phases (default value: 1)'6.
Number of solved variables (must be lower than nvrmax).

Maximum number of scalars solutions of an advection equation, apart from the variables

of the turbulence model (k, €, R;;, w, ¢, f). That is to say the temperature and other
scalars (passive or not, user-defined or not).

Effective number of scalars solutions of an advection equation, apart from the variables
of the turbulence model (k, €, R;;, w, ¢, ?) That is to say the temperature and other
scalars (passive or not, user-defined or not). These scalars can be divided into two distinct
groups: nscaus user-defined scalars and nscapp scalars related to a “specific physics”.

nscal=nscaus+nscapp, and nscal must be inferior or equal to nscamx.

Effective number of scalars related to a “specific physics”. These scalars are solutions of
an advection equation and distinct from the scalars of the turbulence model (k, e, R;j,
w, @, f). They are automatically defined by the choice of the selected specific physics
model (gas combustion with Eddy Break-Up model, pulverised coal combustion, ...). For

example: mass fractions, enthalpy,

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 42/186
nscaus: Effective number of user-defined scalars. These scalars are solutions of an advection equa-

tion and distinct from the scalars of the turbulence model (k, €, R;;, w, ¢, f) and from the
nscapp scalars related to the “specific physics”. For example: passive tracers, temperature
(when no specific physics model is selected),

nestmx: Maximum number of error estimators for Navier-Stokes.

longia: Size of the macro array of integer ia.

longra: Size of the macro array of real ra.

NPromx : Maximum number of physical properties. They will be stored in the arrays propce, propfa
or propfb.

nproce: Number of properties defined at the cells. They will be stored in the array propce.
nprofa: Number of properties defined at the internal faces. They will be stored in the array propfa.

nprofb: Number of properties defined at the boundary faces. They will be stored in the array

propfb.

nvisls: Number of scalars with variable diffusivity.

nushmx: Maximum number of user chronological files (in the case where ushist is used).

nbmomt : Effective number of calculated time-averages. NBMOMT must be inferior or equal to
nbmomx.

nbmomx: Maximum number of calculated time-averages (default value: 50).

ndgmox: Maximum degree of the time-averages (default value: 5).

nclacp: Number of coal classes for the pulverised coal combustion module. It is the total number

of classes, i.e. the sum of the number of classes for every represented coal. nclacp must
be inferior or equal to nclcpm.

nclcpm: Maximum number of coal classes for the pulverised coal combustion module.

NOTE 1: GHOST CELLS - “HALOS”

A cell (real cell) is an elementary mesh element of the spatial discretisation of the calculation domain.
The mesh is made of NCEL cells.

When using periodicity and parallelism, extra “ghost” cells (called “halo” cells) are defined for tem-
porary storage of some information (on a given processor). The total number of real and ghost cells is
ncelet.

Indeed, when periodicity is enabled, the cells with periodic faces do not have any real neigh-
boring cell across these particular faces. Their neighboring cell is elsewhere in the calculation domain
(its position is determined by the periodicity). In order to temporarily store the information coming
from this “distant” neighboring cell, a ghost cell (“halo”) is created.

The same kind of problem exists in the case of a calculation on parallel machines: due to the
decomposition of the calculation domain, some cells no longer have access to all their neighboring cells,
some of them being treated by another processor. The creation of ghost cells allows to temporarily
store the information coming from real neighboring cells treated by other processors.

The variables are generally arrays of size ncelet (number of real and fictitious cells). The calculations
(loops) are made on ncel cells (only the real cells, the fictitious cells are only used to store information).

NOTE 2: INTERNAL FACES

An internal face is an inferface shared by two cells (real or ghost ones) of the mesh. A boundary face
is a face which has only one real neighboring cell. In the case of periodic calculations, a periodic face
is an internal face. In the case of parallel running calculations, the faces situated at the boundary of
a partition may be internal faces or boundary faces (of the whole mesh);

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 43/186

NOTE 3: FACES-NODES CONNECTIVITY

The faces - nodes connectivity is stored by means of four integer arrays: ipnfac and nodfac for the
internal faces, ipnfbr and nodfbr for the boundary faces. nodfac (size 1ndfac) contains the list of
all the nodes of all the internal faces; first the nodes of the first face, then the nodes of the second
face, and so on. ipnfac (size: nfac+1) gives the position ipnfac(ifac) in nodfac of the first node
of each internal face ifac. Therefore, the reference numbers of all the nodes of the internal face ifac
are: nodfac(ipnfac(ifac)), nodfac(ipnfac(ifac)+1), ..., nodfac(ipnfac(ifac+1)-1). In order
for this last formula to be valid even for ifac=nfac, ipnfac is of size nfac+1 and ipnfac(nfac+1) is
equal to lndfac+1.

The composition of the arrays nodfbr and ipnfbr is similar.

NOTE 4: COMMONS
The user will not modify the existing “commons”. This would require the recompilation of the
complete version, operation which is not allowed in standard use.

5.2 Geometric variables
The main geometric variables are available in most of the subroutines and directly accessible through
the following arrays.
cdgfac(ndim,nfac) [ral]: Coordinates of the centers of the internal faces.
cdgfbo(ndim,nfabor) [ra]: Coordinates of the centers of the boundary face.
ifacel(2,nfac) [ia]: Index-numbers of the two (only) neighboring cells for each internal face.
ifabor(nfabor) [ia]: Index-number of the (unique) neighboring cell for each boundary face.

ipnfac(nfac+1) [ia]: Position of the first node of the each internal face in the array nodfac (see note
3 in paragraph 5.1)..

ipnfbr(nfabor+1) [ia]: Position of the first node of the each boundary face in the array nodfbr (see
note 3 in paragraph 5.1)..

nodfac(lndfac) [ia]: Index-numbers of the nodes of each internal face (see note 3 in paragraph 5.1)..

nodfbr (1ndfbr) [ia: Index-numbers of the nodes of each boundary face (see note 3 in paragraph
5.1)..

surfac(ndim,nfac) [ra]: Surface vector of the internal faces. Its norm is the surface of the face and
it is oriented from ifacel(1,.) to ifacel(2,.)..

surfbo(ndim,nfabor) [ra]: Surface vector of the boundary faces. Its norm is the surface of the face
and it is oriented outwards.

volume (ncelet) [ra]: Volume of each cell.
xyzcen(ndim,ncelet) [ra]: Coordinates of the cell centers.
xyznod(ndim,nnod) [ra]: Coordinates of the mesh vertices.

In addition, other geometric variables are accessible in sections of the unidimensional macro-arrays IA
(for integers) and RA (for real numbers) which are passed as arguments in every subroutine (apart
from a few ones of very low level). The index-number of the first element of these sections is stored in
a “common” (in the file pointe.h), passed to most of the routines. Hence, the surface of an internal
face ifac is stored in ra(isrfan+ifac-1). Or, the coordinate of vector OF (see below for definition)
in the II*" direction for face ifac is stored in ra(idofij+(ifac-1)*ndim+ii-1)17.

The main variables of this type are the following:

17in Fortran, a multidimensional array a(3,2) is in fact a unidimensional array containing the elements a(1,1), a(2,1),
a(3,1), a(1,2), a(2,2) and a(3,2) in this order.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 44/186

idijpf [i]: In ra, pointer to dijpf(ndim,nfac), real array giving, for every internal face, the three
components of the vector I’J’, where I’ and J’ are respectively the orthogonal projections
of the neighboring cell centers I and J on a straight line orthogonal to the face and passing
through its center..

idiipb [i]: In ra, pointer to diipb(ndim,nfabor), real array giving, for every boundary face, the
three components of the vector II’. T’ is the orthogonal projection of I, center of the neigh-
boring cell, on the straight line perpendicular to the face and passign through its center.

idist [i]: In ra, pointer to dist(nfac), real array giving, for every internal face, the scalar product
between the vectors IJ and n. I and J are respectively the centers of the first and the second
neighboring cell. The vector n is the unit vector normal to the face and oriented from the
first to the second cell.

idistb [i]: In ra, pointer to distbr(nfabor), real array giving, for every boundary face, the scalar
product between the vectors IF and n. I is the center of the neighboring cell. F is the face
center. The vector n is the unit vector normal to the face and oriented to the exterior of the
domain.

idofij [i]: In ra, pointer to dofij(ndim,nfac), real array giving, for every internal face, the com-
ponents of the vector OF'. O is the intersection point between the face and the straight line
joining the centers of the two neighboring cells. F is the face center.

iicelb [i]: In ia, pointer to icelbr(ncelbr), integer array giving the list of cells having at least one

boundary face.

Ne)
ipond [i]: In ra, pointer to pond(nfac), real array giving ?7 for every internal face. With regard
1J.70
to the mesh quality, its ideal value is 0.5.

isrfan [i|: In ra, pointer to surfan(nfac), real array giving the norm of the surface vector of the
internal faces.

isrfbn [i|: In ra, pointer to surfbn(nfabor), real array giving the norm of the surface of the bound-
ary faces.

5.3 Physical variables

The main physical variables are available in the majority of the subroutines and brought together
according to their type in the multidimensional arrays listed below. In some paricular subroutines,
some variables may be given a more explicit name, in order to ease the comprehension.

propce(ncelet,nproce) [ra]: Properties defined at the cell centers. For instance: density, viscosity,

propfa(nfac,nprofa) [ra]: Properties defined at the internal faces. For instance: mass flow across
internal faces.

propfb(nfabor,nprofb) [ra]: Properties defined at the boundary faces. For instance: mass flow
across boundary faces, density at boundary faces,

rtp(ncelet,nvar) [ral]: Array storing the values of the solved variables at the current time step.

rtpa(ncelet,nvar) [ra]: Array storing the values of the solved variables at the previous time step.

About rtp and rtpa

The indexes allowing to mark out the different variables (from 1 to nvar) are integers available in a
“common” file called numvar.h. Some solved variables (pressure, velocity, turbulence) depend on the
considered phase, and the index which refers to it is then a array of size nphsmx, the maximum number
of phases.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 45/186

For example, ipr (iphas) refers to the variable “pressure” of the phase iphas (with 1<iphas<nphas):
the pressure of the phase iphas in the cell iel at the current time step is therefore rtp(iel, ipr(iphas)).

The list of integers referring to solved variables is given below. These variable index-numbers are not
only used for the rtp and rtpa arrays, but also for some arrays of variable associated options (for
instance, blencv(ik(iphas)) is the percentage of second-order convective scheme for the turbulent
energy of the phase iphas when a corresponding turbulent model is used).

e ipr(iphas): pressure 8.

e iu(iphas): velocity along the X axis.

e iv(iphas): velocity along the Y axis.

e iw(iphas): velocity along the Z axis.

e ik(iphas): turbulent energy, in k — ¢, k — w modeling or v2f (¢-model) modeling.
e irli(iphas): Reynolds stress R11, in R;; — ¢ or SSG modeling.

e ir22(iphas): Reynolds stress R22, in R;; — ¢ or SSG modeling.

e ir33(iphas): Reynolds stress R33, in R;; — ¢ modeling.

e ir12(iphas): Reynolds stress R12, in R;; — ¢ modeling.

e ir13(iphas): Reynolds stress R13, in R;; — ¢ modeling.

e ir23(iphas): Reynolds stress R23, in R;; — ¢ modeling.

e iep(iphas): turbulent dissipation in k — ¢, R;; — ¢ or v2f (p-model) modeling.
e iomg(iphas): Specific dissipation rate w, in k¥ —w SST modeling.

e iphi(iphas): variable ¢ = v2/k in v2f (p-model).

e ifb(iphas): variable f in v2f (¢-model).

e isca(j): scalar j(1<j<nscal).

Concerning the solved scalar variables (apart from the variables pressure, k, €, R;j, w, ¢, f), the
following are highly important:

- The designation “scalar” refers to scalar variables which are solution of an advection equation,
apart from the variables of the turbulence model (k, ¢, R;;, w, ¢, f): for instance the tempera-
ture, scalars which may be passive or not, “user” or not. The mean value of the square of the
fluctuations of a “scalar” is a “scalar”, too. The scalars may be divided into two groups: nscaus
“user” scalars and nscapp “specific physics” scalars, with nscal=nscaus+nscapp. nscal must

be inferior or equal to nscamx.
- The phase related to the scalar j is iphsca(j).

- The j*® user scalar is, in the whole list of the nscal scalars, the scalar number j. In the list of
the nvar solved variables, it corresponds to the variable number isca(j), its value in the cell
iel at the current time step is given by rtp(iel,isca(j)).

18ipr(iphas) corresponds to a reduced pressure, from which the standard hydrostatic pressure has be deduced. The
total pressure is stored in the PROPCE array

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 46/186

- The j' scalar related to a specific physics is, in the whole list of the nscal scalars, the
scalar number iscapp(j). In the list of the nvar solved variables, it corresponds to the vari-
able number isca(iscapp(j)), its value in the cell iel at the current time step is given by
rtp(iel,isca(iscapp(j))).

- The temperature (or the enthalpy) is the scalar number iscalt (iphas) in the list of the nscal
scalars. It corresponds to the variable number isca(iscalt(iphas)) and its value in the cell
iel is rtp(iel,isca(iscalt(iphas))). if there is no thermal scalar, iscalt(iphas) is equal
to -1.

- A “user” scalar number j may represent the average of the square of the fluctuations of a scalar k
(i.e. the average ¢’y for a fluctuating scalar ¢). This can be made either via the interface or by
indicating iscavr(j)=k in usinil (if the scalar in question is not a “user” scalar, the selection
is made automatically). For instance, if j and k are “user” scalars, the variable ¢ corresponding
to k is the variable number isca(k)=isca(iscavr(j)), and its value in the cell iel is
rtp(iel,isca(k))=rtp(iel,isca(iscavr(j))).

The variable corresponding to the mean value of the square of the fluctuations!'? is the variable
number isca(j) and its value in the cell iel is rtp(iel,isca(j)).

About propce, propfa and propfb In Code_Saturne, the physical properties?” are stored in the propce,
propfa and propfb arrays. Some properties, like the density, are only stored for cells and boundary
faces. Some, like the mass flux, are only stored at the interior and boundary faces. To avoid having
different index numbers for a physical property, depending on the array it is used in, the following
structure is used in Code_Saturne:

- All the properties (used or not) have a unique and distinct index-number, given automatically
by the code and stored in an integer or an integer array (its size may be the maximum number
of phases, the maximum number of scalars or the maximum number of variables).

- The indexes referring to the different properties stored in the propxx arrays are given respectively
by the following integer arrays:

ipproc(npromx) [ia]: Rank i in propce(.,i) of the properties defined at the cell centers.
ipprof (npromx) [ia]: Rank i in propfa(.,i) of the properties defined at the internal faces.
ipprob(npromx) [ia]: Rank i in propfb(.,i) of the properties defined at the boundary faces.

For instance, the index number corresponding to the density of the phase iphas is irom(iphas).

In the list of the properties defined at the cell center, the density of the phase iphas is therefore the
ipproc(irom(iphas))*® property: its value at the center of the cell iel is given by
propce(iel,ipproc(irom(iphas))).

In the same way, in the list of the properties defined at the boundary faces, the density of the phase
iphas is the ipprob(irom(iphas)))*® property: its value at the boundary face is given by
propfb(iel,ipprob(irom(iphas)))

The list of properties accessible in the PROPxx arrays is given below (this does not include the
properties linked to the specific physics modules):

irom(nphsmx) [ia]: For each phase, property number corresponding to the density (i.e. p in kg.m=3)
stored at the cells and the boundary faces.

iroma(nphsmx) [ia]: For each phase, property number corresponding to the density (i.e. pin kg.m=3)
at the previous time step, in the case of a second-order extrapolation in time
stored at the cells and the boundary faces.

194t is really ’¢’, and not 1/’ ¢’
20other variables are stored in the arrays propce, propfa and propfb. They are not “physical properties” strictly
speaking, but it is convenient to have them in the same array as the proper physical properties

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 47/186

iviscl(nphsmx) [ia]: For each phase, property number corresponding to the fluid molecular dynamic
viscosity (i.e. p in kg.m~1.s71)
stored at the cells.

ivisla(nphsmx) [ia]: For each phase, property number corresponding to the fluid molecular dynamic
viscosity (i.e. p in kg.m~l.s71) at the previous time step, in the case of a second-order
extrapolation in time
stored at the cells.

ivisct (nphsmx) [ia]: For each phase, property number corresponding to the fluid turbulent dynamic
viscosity (i.e. py in kg.m~t.s71)
stored at the cells.

ivista(nphsmx) [ia]: For each phase, property number corresponding to the fluid turbulent dynamic
viscosity (i.e. p; in kg.m~1.s7!) at the previous time step, in the case of a second-order
extrapolation in time
stored at the cells.

icp(nphsmx) [ia]: For each phase, property number corresponding to the specific heat, in case where
it is variable (i.e. Cp in m2.s72.K~1). See note below
stored at the cells.

icpa(nphsmx) [ia]: For each phase, property number corresponding to the specific heat, in case where
it is variable (i.e. C, in m?.s72. K1), at the previous time step, in the case of a second-order
extrapolation in time. See note below
stored at the cells.

itsnsa(nphsmx) [ia]: For each phase, in the case of a calculation run with a second-order discretisa-
tion in time with extrapolation of the source terms, property number corresponding to the
source term of Navier-Stokes at the previous time step (kg.m~1.s72)
stored at the cells.

itstua(nphsmx) [ia]: For each phase, in the case of a calculation run with a second-order discretisa-
tion in time with extrapolation of the source terms, property number corresponding to the
source terms of the turbulence at the previous time step
stored at the cells.

itssca(nphsmx) [ia]: For each phase, in the case of a calculation run with a second-order discretisa-
tion in time with extrapolation of the source terms, property number corresponding to the
source terms of the equations solved for the scalars at the previous time step (kg.m='.s72)
stored at the cells.

iestim(nestmx,nphsmx) [ia]: For each phase, property number for the nestmx error estimators for
Navier-Stokes. The estimators currently available are iestim(iespre,iphas),
iestim(iesder,iphas), iestim(iescor,iphas), iestim(iestot, iphas) stored at the cells.

ifluma(nvarmx) [ia]: Property number corresponding to the mass flow associated with each variable
(i.e. for each face of surface S, pu.S in k;g.s_l). It must be noticed that the mass flows
are associated with the variables and not with the phases. This allows to have a distinct
convective flow for each scalar.
stored at the internal faces and boundary faces.

ifluaa(nvarmx) [ia]: Property number corresponding to the mass flow associated with each variable
at the previous time step, in the case of a second-order extrapolation in time
stored at the internal faces and boundary faces.

ivisls(nscamx) [ia]: Property number corresponding to the diffusivity of scalars for which it is
variable (i.e.C— for the temperature, in kg.m~1.s71). It must be noticed that the diffusivity

p
is associated with the scalars rather than with the variables. See note below
stored at the cells.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 48/186

ivissa(nscamx) [ia]: Property number corresponding to the diffusivity of scalars for which it is
variable (i.e.— for the temperature, in kg.m~1.s71) at the previous time step, in the case

P
of a second-order extrapolation in time
stored at the cells.

ismago (nphsmx) [ia]: For each phase, property number corresponding to the variable C' of the dy-

namic model, i.e so that pu; = pC’Z2 25;;S;; (with the notations of [2]). C corresponds to
C? in the classical model of Smagorinsky
stored at the cells.

icour (nphsmx) [ia]: For each phase, CFL number in each cell at the present time step
stored at the cells.

ifour (nphsmx) [ia]: For each phase, Fourier number in each cell at the present time step
stored at the cells.

iprtot (nphsmx) [ia]: For each phase?!, total pressure in each cell
stored at the cells.

ivisma(l or 3) [ia]: When the ALE method for deformable meshes is activated, ivisma corresponds
to the “mesh viscosity”, allowing to limit the deformation in certain areas. This mesh
viscosity can be isotropic or be taken as a diagonal tensor (depending on the value of the
parameter iortvm.
stored at the cells.

icmome (nbmomx) [ia]: Property number corresponding to the time averages defined by the user. More
precisely, it is not the time average that is stored, but a summation over time (the division
by the cumulated duration is done just before the results are written)
stored at the cells.

icdtmo (nbmomx) [ia]: Property number corresponding to the cumulated duration associated with
each time average defined by the user, when this duration is not spatially uniform (see note
below)
stored at the cells.

NOTE: VARIABLE PHYSICAL PROPERTIES

Some physical properties such as specific heat or diffusivity are often constant (choice made by the
user). In that case, in order to limit the necessary memory, these properties are stored as a simple real
number rather than in a domain-sized array of reals.

o It is the case for the specific heat Cp.

- If C, is constant for the phase iphas, it can be specified in the interface or by indicating
icp(iphas)=0 in usinil, and the property will be stored in the real number cp0O(iphas).

- If C, is variable, it can be specified in the interface or by indicating icp(iphas)=1 in
usinil. The code will then modify this value to make icp(iphas) refer to the effective
property number corresponding to the specific heat of the phase iphas, in a way which is
transparent for the user. For each cell iel, the value of (), is then given in usphyv and
stored in the array propce(iel,ipproc(icp(iphas))).

e It is the same for the diffusivity K of each scalar iscal.

- If k£ is constant, it can be specified in the interface or by indicating ivisls(iscal)=0 in
usinil, and the property will be stored in the real number vislsO(iscal).

21 Although the data structure of Code_Saturne allows multi-phase variables, the algorithm does not allow more than
one pressure

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 49/186

- If k is variable, it can be specified in the interface or by indicating ivisls(iscal)=1 in
usinil. The code will then modify this value to make ivisls(iscal) refer to the effective
property number corresponding to the diffusivity of the scalar iscal, in a way which is
transparent for the user. For each cell iel, the value of k is then given in usphyv and stored
in the propce(iel,ipproc(ivisls(iscal))) array.

NOTE: CUMULATED DURATION ASSOCIATED WITH THE AVERAGES DEFINED BY THE USER

The cumulated duration associated with the calculation of a time averages defined by the user is often
a spatially uniform value. In this case, it is stored in a simple real number: for the mean value imom,
it is the real number dtcmom(-idtmom(imom)) (idtmom(imom) is negative in this case).

When this cumulated duration is not spatially uniform (for instance in the case of a spatially variable
time step), it is stored in propce. It must be noted that the cumulated duration associated with the
calculation of the average imom is variable in space if idtmom(imom) is strictly positive. The number
of the associated property in propce is then icdtmo(idtmom(imom)). For instance, for the average
imom, the cumulated duration in the cell iel will be propce(iel,icdtmo(idtmom(imom))).

The user may have a look to the example given in usproj to know how to calculate a time averages
in a particular cases (printing of extreme values, writing of results, ...).

Two other variables, hbord and tbord, should be noted here, although they are relatively local (they
appear only in the treatment of the boundary conditions) and are used only by developers.

hbord(nfabor) [ra]: Array of the exchange coefficient for temperature (or enthalpy) at the boundary
faces. The table is allocated only if isvhb is set to 1 in tridim, which is done automatically,
but only if the coupling with SYRTHES or the 1D thermal wall module are activated..

tbord(nfabor) [ra]: Temperature (or enthalpy) at the boundary faces??. The table is allocated only
if isvtb is set to 1 in tridim, which is done automatically but only if the coupling with
SYRTHES or the 1D thermal wall module are activated..

Tables hbord and tbord are of size nfabor, although they concern only the wall boundary faces.

5.4 Variables related to the numerical methods

The main numerical variables and “pointers”?? are displayed below.

BOUNDARY CONDITIONS

coefa(nfabor,*) [ra]: Boundary conditions: see note 2.
coefb(nfabor,*) [ra]: Boundary conditions: see note 2.

iclrtp(nvarmx,2) [ia]: For each variable ivar (1<ivar<nvar<nvarmx), rank in coefa and coefb of
the boundary conditions. See note 2.

icoef [i]: Rank in iclrtp of the rank in coefa and coefb of the “standard” boundary conditions.
See note 2.

icoeff [i]: Rank in iclrtp of the rank in coefa and coefb of the “flow” type boundary conditions,
reserved for developers. See note 2.

ifmfbr(nfabor) [ia]: Family number of the boundary faces. See note 1.

221t is the physical temeprature at the boundary faces, not the boundary condition for temperature. See [11] for more
details on boundary conditions

23 As for the geometrical variables, some variables may be accessed to directly in sections of the unidimensional macro-
arrays IA (for the integers) and RA (for the real numbers) which are present as arguments in every subroutine (apart
from a few ones of very low level). The number of the first position of these sections in IA and RA is indicated by an
integer stored in a “common”. These integers are called “pointers”

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 50/186

iprfml (nfml,nprfml) [ia]: Properties of the families of referenced entities. See note 1.

iisymp [i]: Integer giving the rank in ia of the first element of the section allowing to mark out
the “wall” (itypfb=iparoi or iparug) or “symmetry” (itypfb=isymet) boundary faces
in order to prevent the mass flow (these faces are impermeable). For instance, for the
phase iphas, if the face ifac is a wall or symmetry face, ia(iismph+ifac-1)=0 (with
iismph=iisymp+nfabor*(iphas-1)).
Otherwise ia(iisymp+ifac-1)=1.
In some subroutines, an array called isympa(nfabor) allows to simplify the coding with
isympa(ifac)=ia(iismph+ifac-1).

iitrif [i]: In ia, pointer to itrifb.
iitypf [i]: In ia, pointer to itypfb.

itrifb(nfabor,nphas) [ia]: Indirection array allowing to sort the boundary faces according to their
boundary condition type itypfb.

itypfb(nfabor,nphas) [ia]: Boundary condition type at the boundary face ifac for the phase iphas
(see user subroutine usclim).

iuetbo [i|: In ra, pointer to uetbor, used to store the friction velocity at the wall, in the case of a
LES calculation with van Driest-wall damping.

DISTANCE TO THE WALL

iifapa(nphsmx) [ia]: For each phase, the pointer in ia which marks out the number of the wall
face(type itypfb=iparoi or iparug) which is closest to the center of a given volume when
necessary (R;; —e with wall echo, LES with van Driest-wall damping, or SST k—w turbulence
model) and when icdpar=2. The number of the wall face (for the phase iphas) which is the
closest to the center of the cell iel is therefore ia(iifapa(iphas)+iel-1). This calculation
method is not compatible with parallelism and periodicity.

idipar [i|]: For each phase, pointer in ra to the section allowing to mark out the distance between the
center of a given volume and the closest wall, when it is necessary (R;; —e with wall echo, LES
with van Driest-wall damping, or SST k—w turbulence model) and when icdpar=1. The dis-
tance between the center of the cell iel and the closest wall is therefore ra(idipar+iel-1).

iyppar [i]: For each phase, pointer in ra to the section allowing to mark out the adimensional distance
yT between a given volume and the closest wall, when it is necessary (LES with van Driest-
wall damping) and when icdpar=1. The adimensional distance y* between the center of the
cell iel and the closest wall is therefore ra(iyppar+iel-1).

PRESSURE DROPS

iicepd(nphsmx) [ia]: For each phase iphas, pointer in ia to
icepdc(ncepdc (iphas)), array allowing to mark out the index-numbers of the
ncepdc (iphas) cells in which a pressure drop is imposed.
The number of these cells is therefore given by icepdc(ii)=ia(iicepd(iphas)+ii-1), with
1<ii<ncepdc(iphas). See the user subroutine uskpdc.

icepdc(ncepdc(iphas)) [ia]: Number of the ncepdc(iphas) cells in which a pressure drop is im-
posed. See iicepd and the user subroutine uskpdc.

ickupd(nphsmx) [ia]: For each phase iphas, pointer in ra to
ckupdc (ncepdc (iphas),6), array allowing to mark out the
coefficients of the pressure drop tensor of the ncepdc (iphas) cells in which a pressure drop
is imposed. See the user subroutine uskpdc.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 51/186

ckupdc (ncepdc (iphas),6) [ral: Value of the coefficients of the pressure drop tensor of the ncepdc (iphas)
cells in which a pressure drop is imposed. See ickpdc and the user subroutine uskpdc.

ncepdc (nphsmx) [ia]: For each phase, number of cells in which a pressure drop is imposed. See the
user subroutine uskpdc.

MASS SOURCES

iicesm(nphsmx) [ia]: For each phase iphas, pointer in ia to
icetsm(ncetsm(iphas), array allowing to mark out the numbers of the
ncetsm(iphas) cells in which a source of mass is imposed. The number of these cells is
therefore given by icetsm(ii)=ia(iicesm(iphas)+ii-1), with I<ii<ncetsm(iphas). See
the user subroutine ustsma.

iitpsm(nphsmx) [ia]: For each phase iphas, pointer in ia to itypsm (type of mass source for each
variable). See itypsm and the user subroutine ustsma.

icetsm(ncetsm(iphas)) [ia]: Number of the ncetsm(iphas) cells in which a mass source term is
imposed. See iicesm and the user subroutine ustsma.

ismace (nphsmx) [ia]: For each phase iphas, pointer in ra to smacel (mass source term and if nec-
essary injection value for every variable apart from pressure). See smacel and the user
subroutine ustsma.

itypsm(ncetsm(iphas) ,nvar) [ia]: Type of mass source term for each variable (0 for an injection at
ambient value, 1 for an injection at imposed value). See the user subroutine ustsma.

ncetsm(nphsmx) [ia]: For each phase, number of cells with mass sources. See the user subroutine
ustsma.

smacel (ncetsm(iphas) ,nvar) [ral]: Value of the mass source term for pressure. For the other vari-
ables, eventual imposed injection value. See the user subroutine ustsma.

WALL 1D THERMAL MODULE

nfptid [i]: Number of boundary faces which are coupled with a wall 1D thermal module. See the
user subroutine uspt1d.

iifptl [i]: In ia, pointer to ifptid(nfptid), array allowing to mark out the numbers of the nfptid
boundary faces which are coupled with a wall 1D thermal module. The number of these
boundary faces is therefore given by ifptid(ii)=ia(iifpti+ii-1), with 1<ii<nfptid.
See the user subroutine usptid.

inppt1 [i]: In ia, pointer to npptild(nfptild), array giving the number of discretisation cells in the 1D
wall for the nfptid boundary faces which are coupled with a wall 1D thermal module. The
number of cells for these boundary faces is therefore given by nppt1d(ii)=ia(inppti+ii-1),
with 1<ii<nfpt1d. See the user subroutine usptid.

iepptl [i]: In ia, pointer to epptid(nfptld), array giving the thickness of the 1D wall for the
nfptild boundary faces which are coupled with a wall 1D thermal module. The wall thick-
ness for these boundary faces is therefore given by epptid(ii)=ia(iepptl+ii-1), with
1<ii<nfptid. See the user subroutine usptid.

OTHERS

dt(ncelet) [ral: Value of the time step.

ifmcel (ncelet) [ia]: Family number of the elements. See note 1.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 52/186

is2kw(nphsmx) [ia]: For each phase iphas, pointer in ra to the section storing the square of the
norm of the deformation rate tensor. In the cell iel, for the phase iphas, S? = 28,55
is therefore given by ra(is2kw(iphas)+iel-1). This array is defined only when the phase
iphas is treated with the SST k& — w turbulence model.

idvukw (nphsmx) [ia]: For each phase iphas, pointer in ra to the section storing the divergence of the
velocity. In the cell iel, for the phase iphas, div(u) is therefore given by ra(idvukw(iphas)+iel-1).
This array is defined only when the phase iphas is treated with the SST k — w turbulence
model (because in this case it may be calculated at the same time as S?).

ngrmmx [i]: upper limit of the number of grid levels in the case of a multigrid solving (see ngrmax).
ia(longia) [ia]: Integer work array.

ra(longra) [ral: Real work array.

NOTE: BOUNDARY CONDITIONS

The boundary conditions in Code_Saturne boil down to determine a value for the current variable ¢ at
the boundary faces, that is to say ¢y, value expressed as a function of ¢/, value of ¢ in I, projection
of the center of the adjacent cell on the straight line perpendicular to the boundary face and crossing
its center: qbf = A¢7f + B¢,f¢p.

For a face ifac, the pair of coefficients Ay ¢, By ¢ is stored in coefa(ifac,iclvar) and coefb(ifac,iclvar),
where the integer iclvar=iclrtp(ivar,ijcl) determines the rank in coefa and coefb of the set of
boundary conditions of the variable ivar.

The second index of the array iclrtp allows to have several sets of boundary conditions for each vari-
able. The “standard” boundary conditions are determined by ijcl=icoef, where icoef is a parameter
which is fixed automatically by the code, and can be accessed to in the “common” file numvar.h. More
specificic or advanced boundary conditions can be accessed to with ijcl=icoeff.

In practice, for a variable ivar whose value ¢/ in a boundary cell is known, the value at the corre-
sponding boundary face ifac is:

¢pr=coefa(ifac,iclvar)+coefb(ifac,iclvar) ¢, with iclvar=iclrtp(ivar,icoef)

5.5 User arrays

The code allows to define two user arrays, one integer array and one real array. The default size of
these arrays is zero, and may be changed in usinil. The two arrays are then passed as arguments in
every user subroutine of the code. For instance, a local variable calculated during the determination
of the physical properties (user subroutine usphyv) may be stored in these arrays and sent to the
post-processor at the end of the time step (user subroutine usvpst).

nituse [i]: Size of the user integer array.
nrtuse [i]: Size of the user real array.
ituser(nituse) [ia]: User integer array.

rtuser (nrtuse) [ra]: User real array.

5.6 Developer arrays

The code allows to define two developer arrays (similar to the user arrays ituser and rtuser), one
integer array a one real array. The default size of these arrays is zero, and may be changed in ustbus.
The two arrays are then passed as arguments in the rest of the code. They are designed to be used
during the transitory development phases, in order to ease the tests (transfer of pieces of informations
without consequence on the arguments of the subroutines).

nideve [i|]: Size of the developer integer array.

nrdeve [i]: Size of the developer real array.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 53/186

idevel(nideve) [ia]: Complementary integer array, used during development and test phases.

rdevel (nrdeve) [ra]: Complementary real array, used during development and test phases.

5.7 Parallelism and periodicity

Parallelism is based on domain partitioning: each processor is assigned a part of the domain, and
data for cells on parallel boundaries is duplicated on neigboring processors in corresponding “ghost”,
or “halo” cells (both terms are used interchangeably). Values in these cells may be accessed just the
same as values in regular cells. Communication is only required when cell values are modified using
values from neighboring cells, as the values in the “halo” can not be computed correctly (since the
halo does not have access to all its neighbors), so halo values must be updated by copying values from
the corresponding cells on the neighboring processor.

Compared to other tools using a similar system, a specificity of Code_Saturne is the separation of the
halo in two parts: a standard part, containing cells shared through faces on parallel boundaries, and an
extended part, containing cells shared through vertices, which is used mainly for least squares gradient
reconstruction using an extended neighborhood. Most updates need only operate on the standard
halo, requiring less data communication than those on the extended halos.

Domain A Domain B Domain A Domain B

- =y

Figure 4: Parallel domain partitioning: halos

Periodicity is handled using the same halo structures as parallelism, with an additional treatment for
vector and coordinate values: updating coordinates requires applying the periodic transformation to
the copied values, and in the case of rotation, updating vector and tensor values also requires appying
the rotation transformation. Ghost cells may be parallel, periodic, or both. The example of a pump
combining parallelism and periodicity is given figure 5. In this example, all periodic boundaries match
with boundaries on the same domain, so halos are either parallel or periodic.

o

e =
Iy \ ~ \ Decomposition
,‘ ’ R \ J
& -~/ Velocity field

on 4 domains
.. on full domain

Figure 5: Combined parallelism and periodicity

Activation

Parallelism and periodicity are activated by means of the launch script in the standard cases:

e On clusters with PBS batch systems, the launching of a parallel run requires to complete the PBS
batch cards located in the beginning of runcase, and particularly to set the number of physical
nodes (nodes) and the number of physical processors per node (ppn) wanted. This can be done
through the Graphical Interface or by editing the runcase file directly. The number of processors

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 54/186

used for the calculation will then be set automatically to the number of processors reserved and
the variable NUMBER_OF _PROCESSORS can be left empty (see also §2.7).

e On clusters with LSF batch systems (like the CCRT machines), the launching of a parallel run
requires to complete the LSF batch cards located in the beginning of runcase, and particularly
to set the number of processors (#BSUB -n) wanted and the limit CPU time (#BSUB -W). As for
now, this can only be done by editing the runcase file directly. The number of processors used
for the calculation will then be set automatically to the number of processors reserved and the
variable NUMBER_OF _PROCESSORS can be left empty (see also §2.7).

e On clusters with other batch systems, runcase file may have to be modified manually. Please do
not hesitate to contact the Code_Saturne support (saturne-support@edf.fr) so that these modifi-
cations can be added to the standard launch script to make it more general.

e Although on batch systems the NUMBER_OF_PROCESSORS variable in the script (indicating the
number of processors used for the calculation) is filled automatically to the number of processors
reserved, the user can still choose to specify another value for it. This might only happen
in very specific conditions and is not advised, as it will probably not be compatible with the
batch system. Indeed, batch systems forbid to launch a calculation on more processors than the
number of processors reserved, and some batch systems also forbid to launch a calculation on
less processors than the number of processors reserved (automatic timeout on the idle processors
that will stop the whole calculation).

e Periodicity is activated through the Graphical Interface or by completing the COMMAND_PERIO of
the launch script runcase. The transformation allowing to pass from a boundary to the other one
must be defined (the direction does not matter) and the set of periodic faces should be (optional
but strongly advised) marked out (for instance by means of a color).

e Periodicity is compatible with parallelism.

e Periodicity can also work when the periodic boundaries are meshed differently (periodicity of non-
conforming faces), apart from the case of a 180 degree rotation periodicity with faces coupled on
the rotation axis.

e A parallel calculation may be stopped in the same manner as a sequential one using a ficstp
file (see praragraph 2.2.4).

e The standard pieces of information displayed in the listing (marked out with ’v ’ for the
min/max values of the variables), >c ’ for the data concerning the convergence and ’a ’ for the
values before clipping) are global values for the whole domain and not related to each processor.

User subroutines

The user can notice in a subroutine

- that the presence of periodicity is tested with the variable iperio (=1 if periodicity is activated);

- that the presence of rotation periodicities is tested with the variable iperot (number of rotation
periodicities);

- that running of a calculation in parallel is tested for with the variable irangp (irangp is worth
-1 in the case of a non-parallel calculation and p — 1 in the case of a parallel calculation, p being
the number of the current processor)

Attention must be paid to the coding of the user subroutines. If conventionnal subroutines like usini1
or usclim usually do not cause any problem, some kind of developments are more complicated. The
most usual cases are dealt with below.

Examples are given in the subroutine usproj.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 55/186

e Access to information related to neighboring cells in parallel and periodic cases.
When periodicity or parallelism are brought into use, some cells of the mesh become physically
distant from their neighbors. Concerning parallelism, the calculation domain is split and dis-
tributed between the processors: a cell located at the “boundary” of a given processor may have
neighbors on different processors.

In the same way, in case of periodicity, the neighboring cells of cells adjacent to a periodic face
are generally distant.

When data concerning neighboring cells are required for the calculation, they must first be
searched on the other processors or on the other edge of periodic frontiers. In order to ease the
manipulation of these data, they are stored temporarily in virtual cells called “halo” cells, as
can be seen in figure 4. It is in particular the case when the following operations are made on a
variable A:

- calculation of the gradient of A (use of grdcel);

- calculation of an internal face value from the values of A in the neighboring cells (use of
ifacel).

The variable A needs to be exchanged before these operations can be made: to allow it, the
subroutines parcom and percom need to be called in this order.

¢ Global operations in parallel mode.
In parallel mode, the user must pay attention during the realisation of global operations. The
following list is not exhaustive:

- calculation of extreme values on the domain (for instance, minimum and maximum of some
calculation values);

- test of the existence of a certain value (for instance, do faces of a certain color exist ?);

- verification of a condition on the domain (for instance, is a given flow value reached some-
where 7);

- counting out of entities (for instance, how many cells have pressure drops ?);

- global sum (for instance, calculation of a mass flow or the total mass of a pollutant).

The user may refer to the different examples present in the user subroutine usproj.

Care should be taken with the fact that the boundaries between subdomains consist of internal
faces shared between two processors (these are indeed internal faces, even if they are located
at a “processor boundary”). They should not be counted twice (once per processor) during
global operations using internal faces (for instance, counting the internal faces per processor and
summing all the obtained numbers drives into overevaluing the number of internal faces of the
initial mesh).

e Writing; operations that should be made on one processor only in parallel mode.

In parallel mode, the user must pay attention during the writing of pieces of information. Writing
to the “listing” can be done simply by using the nfecra logical unit (each processor will write
to its own “listing” file): use write(nfecra,.. ..
If the user wants an operation to be done by only one processor (for example, open or write a file),
the associated instructions must be included inside a test on the value of irangp (generally it is
the processor 0 which realises these actions, and we want the subroutine to work in non-parallel
mode, too: if (irangp.le.0) then ...).

Some notes about periodicity

Some particular points should be reminded:

- rotation periodicity is incompatible with

- semi-transparent radiation,

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 56/186

- reinforced velocity-pressure coupling (ipucou=1).

- although it has not been the case so far, potential problems might be met in the case of rotation
periodicity with the LRR R;; — ¢ model. They would come from the way of taking into account
the orthotropic viscosity (however, this term usually has a low influence).

5.8 Geometry and particule arrays related to Lagrangian modeling

In this section is given a non-exhaustive list of the main variables which may be seen by the user
in the Lagrangian module. Most of them should not be modified by the user. They are calculated
automatically from the data. However it may be useful to know their meaning.

These variables are listed in the alphabetical index in the end of this document.

The type of each variable is given: integer [i], real number [r], integer array [ia], real array [ra].

SiZE OF THE LAGRANGIAN ARRAYS

lndnod [i]: Size of the array icocel concerning the cells — faces connectivity (the faces — nodes
connectivity needs to be given to allow the construction of this connectivity. See note 3 of
section 5.1).

nbpmax [i]: Maximum number of particles simultaneously acceptable in the calculation domain.

nvp [i]: Number of variables describing the particles for which a stochastic differential equation (SDE)
is solved.

nvls [i]: Number of variables describing the supplementary user particles for which a SDE is solved.
nvep [i]: Number of real state variables describing the particles.
nivep [i]: Number of integer state variables describing the particles.

ntersl [i|: Number of source terms representing the backward coupling of the dispersed phase on the
continuous phase.

nvlsta [i]: Number of volumetric statistical variables .

nvlsts [i]: Number of supplementary user volumetric statistical variables.
nvisbr [ij: Number of boundary statistical variables.

nusbor [i]: Number of supplementary user boundary statistical variables.
nvgaus [i]: Number of gaussian random variables.

NOTE: CONTINUOUS EULERIAN PHASE NUMBER

The current version of Lagrangian module is planned to work with only one eulerian phase. This phase
carries inclusions, and source terms of backward coupling are applied to it, if necessary. The number
of this phase is stored in the variable ilphas. The standard value is ilphas = 1.

LAGRANGIAN ARRAYS

icocel(lndnod) [ia]: Cells rightarrow internal/boundary faces connectivity. The numbers of the
boundary faces are marked out in icocel with a negative sign.

itycel(ncelet+1) [ia]: Array containing the position of the first face surrounding every cell in the
array icocel (see subroutine lagdeb for more details).

ettp(nbpmax,nvp) [ral]: Variables forming the state vector related to the particles: either at the
current stage if the Lagrangian scheme is a second-order, or at the current time step if the

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 57/186

scheme is a first-order. These variables are marked out by “pointers” whose value can vary
between 1 and nvp:

— jmp: particle mass

— jdp: particle diameter

— jxp, jyp, jzp: particle coordinates

— jup, jvp, jwp: particle velocity components

— juf, jvf, jwf: locally undisturbed fluid flow velocity components

— jtp, jtf: particle and locally undisturbed fluid flow temperature (°C)
— jcp: particle specific heat

— jhp: coal particle temperature (°C)

— jmch: mass of reactive coal of the coal particle

— jmck: mass of coke of the coal particle

— jvls(ii): iith supplementary user variable

ettpa(nbpmax,nvp) [ral: Variables forming the state vector related to the particles: either at the
previous stage if the Lagrangian scheme is a second-order, or at the previous time step if the
Lagrangian scheme is a first-order.

itepa(nbpmax,nivep) [ia]: Integer state variables related to the particles. They are marked out by
the following “pointers”:

— jisor: Number of the current cell containing the particle; this number is reactualised during the
trajectography step

— jinch: Number of the coal particle

tepa(nbpmax,nvep) [ral: Real state variables related to the particles. They are marked out by the
following “pointers”:

— jrtsp: particle residence time

— jrpoi: particle statistic weight

— jrdck: coal particle shrinking core diameter
— jrdOp: coal particle initial diameter

— jrrOp: coal particle initial density

indep(nbpmax) [ia]: Storage of the cell number of every particle at the beginning of a Lagrangian
iteration; this data is not modified during the iteration.

vitpar(nbpmax,3) [ra]: At the beginning of the trajectography, vitpar contains the particle ve-
locity vector components; the modifications of the particle velocity following every parti-
cle/boundary interaction are saved in this array; after the trajectography and backward
coupling steps, ettp is updated with vitpar.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 58/186

vitflu(nbpmax,3) [ra]: At the beginning of the trajectography, vitflu contains the locally undis-
turbed fluid flow velocity vector components; the modifications of the locally undisturbed
fluid flow velocity following every particle/boundary interaction are saved in this array; after
the trajectography and backward coupling steps, ettp is updated with vitflu.

gradpr (ncelet,3) [ra]: Pressure gradient of the continuous phase.

gradvf (ncelet,9) [ra]: Gradient of the continuous phase fluid velocity (useful if the complete model
is activated: see modcpl).

cpgdl(nbpmax) [ra]: First devolatilisation term (light volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpgd2 (nbpmax) [ral]: Second devolatilisation term (heavy volatile matters) of the coal particles (useful
in the case of backward coupling on the continuous phase).

cpght (nbpmax) [ra]: Heterogeneous combustion term of the coal particles (useful in the case of back-
ward coupling on the continuous phase).

statis(ncelet,nvlsta) [ra]: Volumetric statistics related to the dispersed phase; these statistics
are the kind of results expected with the Lagrangian module. It is from these statistics that
we obtain information concerning the particle cloud (the particle trajectories should only be
observed on “pedagogical” account); they are marked out by the following “pointers”:

— 1ilvx,ilvy,ilvz: mean dispersed phase velocity

— ilvx2,ilvy2,ilvz2: dispersed phase velocity standard deviation
— 1ilfv: dispersed phase volumetric concentration

— 1ilpd: sum of the statistical weights

— iltp: dispersed phase temperature (°C)

— 1ildp: dispersed phase mean diameter

— ilmp: dispersed phase mean mass

— ilhp: temperature of the coal particle cloud (°C)

— ilmch: mass of reactive coal of the coal particle cloud

— ilmck: mass of coke of the coal particle cloud

— ilmdk: shrinking core diameter of the coal particle cloud

— ilvu(ii): iith supplementary user volumetric statistics

parbor (nfabor,nvisbr) [ra]: Boundary statistics related the dispersed phase; after every parti-
cle/boundary interaction it is possible to save some data and to calculate averages; the
boundary statistics are marked out by the following “pointers”:

— inbr: number of particle/boundary interactions

— iflm: particle mass flow at the boundary faces

— iang: mean interaction angle with the boundary faces (see example in uslabo)
— ivit: mean interaction velocity with the boundary faces

— ienc: mass of coal deposit at the walls

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 59/186

— iusb(ii): iith supplementary user boundary statistics

tslagr(ncelet,ntersl) [ra]: Source terms corresponding to the backward coupling of the dispersed

phase on the continuous phase. These source terms are marked out by the following “point-

ers”:

itsvx, itsvy, itsvz: explicit source terms for the continuous phase velocity

itsli: implicit source term for the continuous phase velocity and for the turbulent energy if the
k — e model is used

itske: explicit source term for the turbulent dissipation and the turbulent energy if the k — ¢
turbulence model is used for the continuous phase

itsril,... itsr33: source terms for the Reynolds stress and the turbulent dissipation if the
R;; — € turbulence model is used for the continuous phase

itsmas: mass source term

itste, itsti: explicit and implicit thermal source terms for the thermal scalar of the continuous
phase

itsmvi(icha), itsmv2(icha): source terms respectively for the light and heavy volatile matters
itsco: source term for the carbon released during heterogeneous combustion

itsf: source term for the air variance (not used at the present time)

croule(ncelet) [ral:

particles).

vagaus (nbpmax ,nvgaus) [ral: Vectors of gaussian random variables.

auxl (nbpmax,3) [ra]: Auxiliary work array.

5.9 \Variables saved to allow calculation restarts

The directory RESTART* contains:

- suiava:
- suiavx:
- rayava:
- lagava:
- lasava:
- tldava:

- vorava:

main restart file,
auxiliary restart file (see ileaux, iecaux),
restart file for the radiation module,

main restart file for the Lagrangian module,

Importance function for the technique of variance reduction (cloning/fusion of

auxiliary restart file for the Lagrangian module (mainly for the statistics),

restart file for the 1D wall thermal module,

restart file for the vortex method (see ivrtex).

The main restart file contains the values in every cell of the mesh for pressure, velocity, turbulence
variables and scalars. Its content is sufficient for a calculation restart, but the complete continuity of
the solution at restart is not ensured?*.

2

4in other words, a restart calculation of n time steps following a calculation of m time steps will not yield strictly the

same resluts as a direct calculation on m+n time steps, whereas it is the case when the auxiliary file is used

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 60/186

The auxiliary restart file completes the main restart file to ensure solution continuity in the case of a
calculation restart. If the code cannot find one or several pieces of data required for the calculation
restart in the auxiliary restart file, default values are then used. This allows in particular to run
calculation restarts even if the number of faces has been modified (for instance in case of modification
of the mesh merging or of periodicity conditions?®). More precisely, the auxiliary restart file contains
the following data:

- type and value of the time step, turbulence model,
- density value at the cells and boundary faces, if it is variable,

- values at the cells of the other variable physical properties, when they are extrapolated in time
(molecular dynamic viscosity, turbulent or subgrid scale viscosity, specific heat, scalar diffusivi-
ties); for the Joule effect, the specific heat is stored automatically (in case the user should need it
at restart to calculate the temperature from the enthalpy before the new specific heat has been
estimated),

- time step value at the cells, if it is variable,

- mass flow value at the internal and boundary faces (at the last time step, and also at the previous
time step if required by the time scheme),

- boundary conditions,
- values at the cells of the source terms when they are extrapolated in time,
- number of time-averages, and values at the cells of the associated cumulated values,

- for each cell, distance to the wall when it is required (and index-number of the nearest boundary
face, depending on icdpar),

- values at the cells of the external forces in balance with a part of the pressure (hydrostatic, in
general),

- for the D3P gas combustion model: massic enthalpies and temperatures at entry, type of bound-
ary zones and entry indicators,

- for the EBU gas combustion model: temperature of the fresh gas, constant mixing rate (for the
models without mixing rate transport), types of boundary zones, entry indicators, temperatures
and mixing rates at entry,

- for the LWC gas combustion model: the boundaries of the probability density functions for
enthalpy and mixing rate, types of boundary zones, entry indicators, temperatures and mixing
rates at entry,

- for the pulverised coal combustion: coal density, types of boundary zones, variables ientat,
ientcp, timpat, x20 (in case of coupling with the Lagrangian module, iencp and x20 are not
saved),

- for the electric module: the tuned potential difference dpot and, for the electric arc module, the
tuning coefficient coejou (when the boundary conditions are tuned), the Joule source term for
the enthalpy (with the Joule effect is activated) and the Laplace forces (with the electric arc
module).

It should be noted that, if the auxiliary restart file is read, it is possible to run calculation restarts
with relaxation of the density?®(when it is variable), because this variable is stored in the restart file.
On the other hand, it is generally not possible to do the same with the other physical properties (they

2
2

5imposing a periodicity changes boundary faces into internal faces
Ssuch a relaxation only makes sense for a stationary calculation

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 61/186

are stored in the restart file only when they are extrapolated in time, or with the Joule effect for the
specific heat).

Apart from vorava which has a different structure and is always in text format, all the restart files are
binary files. Nonetheless, they may be dumped by the cs_io_dump tool provided with the Preprocessor.

In the case of parallel calculations, it should be noted that all the processors will write their restart
data in the same files. Hence, for instance, there will always be one and only one suiava file, whatever
the number of processors used. The data in the file are written according to the initial full domain
index-numbers for the cells, faces and nodes. This allows in particular to continue with p proces-
sors a calculation begun with n processors, or to make the restart files independent of any vectorial
renumbering that may be carried out in each domain.

On the other hand, if the numbering of the initial full domain mesh is modified, the restart files
will not be compatible. This may be the case if the mesh is composed of different elements that are
pasted by the Preprocessor module and the order of the different elements has been changed in the
Preprocessor command line between two calculations.

WARNING: if the mesh is composed of several files, the order in which they appear in the launch script
or in the Graphical Interface must not be modified in case of a calculation restart®”.

NOTE: when meshes are pasted by the Preprocessor module with potential hanging nodes, two nodes
closer than a certain (small) tolerance will be merged. Hence, due to numerical round-up errors, two
different machines may yield different results. This might change the number of faces in the global
domain®® and make restart files incompatible. Should that problem arise when making a calculation
restart on a different architecture, the solution is to discard the suiavz file and use only the suiava

file.

6 User subroutines
6.1 Preliminary comments

The user can run the calculations with or without an interface, with or without the user subroutine.
Without interface, some user subroutines are needed. With interface, all the user subroutines are
optional.

The parameters can be read in the interface and then in the user subroutine. In the case that a
parameter is specified in the interface and in the user subroutine, it is the value in the user subroutine
that is taken into acount. It is for that reason that all the examples of user subroutines are placed in
the REFERENCE directory by the case preparer code_saturne create.

6.2 Using selection criteria in user subroutines

In order to use selection criteria (cf. §2.9) in Fortran user subroutines, a collection of utility subroutines
is provided. The aim is to define a subset of the mesh, for example:

- boundary regions (cf. usclim, uscpcl, usray?2, uslag?2,...),

- volumic initialization (cf. usiniv,...),

- head-loss region (cf. uskpdc),

source terms region (cf. ustsns, ustssc),

- advanced post-processing (cf. usdpst), usproj, ...),

27Twhen uncertain, the user can check the saved copy of the launch script in the RESU directory, or the head of the
listpre file, which repeats the command line passed to the Preprocessor module
28the number of cells will not be modified, it is always the sum of the number of cells of the different meshes

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 62/186

This section explains how to define surface or volume sections, in the form of lists 1stelt of nlelt
elements (internal faces, boundary faces or cells). For each type of element, the user calls the appro-
priate Fortran subroutine: getfbr for boundary faces, getfac for internal faces and getcel for cells.
All of these take the three following arguments:

- the character string which contains the selection criterion (see some examples below),
- the returned number of elements nlelt,

- the returned list of elements 1stelt.
Several examples of possible selections are given here:

- call getfbr(’Face_1, Face_2’, nlelt, lstelt) to select boundary faces in groups Face_1
or Face_2,

- call getfac(’4’, nlelt, lstelt) to select internal faces of color 4,

- call getfac(’not(4)’, nlelt, 1lstelt) to select internal faces which have a different color
from 4,

- call getfac(’4 to 8’, nlelt, 1lstelt) to internal faces with color between 4 and 8 internal
faces,

- call getcel(’1 or 2’, nlelt, 1lstelt) to select cells with colors 1 or 2,

- call getfbr(’1 and y > 0’, nlelt, lstelt) to select boundary faces of color 1 which have
the coordinate Y > 0,

- call getfac(’normal[1l, 0, 0, 0.0001]’, nlelt, lstelt) to select internal faces which have
a normal direction to the vector (1,0,0),

- call getcel(’all[]’, nlelt, 1lstelt) to select all cells.
The user may then use a loop on the selected elements. For instance, in the subroutine usclim used
to impose boundary conditions, let us consider the boundary faces of color number 2 and which have

the coordinate X <= 0.01 (so that call getfbr(’2 and x <= 0.01’, nlelt,lstelt)); we can do
a loop (do ilelt = 1, nlelt) and obtain ifac = lstelt(ilelt).

NOTE: LEGACY METHOD USING EXPLICIT FAMILIES AND PROPERTIES

The selection method for user subroutines by prior versions of Code_Saturne is still available, though
it may be removed in future versions. This method was better adpated to working with colors than
with groups, and is explained here:

From Code_Saturne’s point of view, all the references to mesh entities (boundary faces and volume
elements) correspond to a number (color number or negative of group number) associated with the
entity. An entity may have several references (for instance, one entity may have one color and belong
to several groups). In Code_Saturne, these references may be designated as “properties”.

The mesh entities are gathered in equivalence classes on the base of their properties. These equivalence
classes are called “families”. All the entities of one family have the same properties. In order to know
the properties (in particular the color) of an entity (a boundary face for example), the user must first
determine the family to which it belongs.

For instance, let’s consider a mesh whose boundary faces have all been given one color (for example
using SIMAIL). The family of the boundary face ifac is ifml=ifmfbr(ifac). The first (and only)
property of this family is the color icoul, obtained for the face ifac with icoul=iprfml (ifml,1).
In order to know the property number corresponding to a group, the utility function numgrp (nomgrp,
lngnom) (with a name nomgrp of the type characterx and its lenght 1ngnom of the type integer)
may be used.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 63/186

6.3 Initialisation of the main key words: usinil

Subroutine only called during calculation initialisation.

This subroutine is used to indicate the value of different calculation basic parameters: constant and
uniform physical values, parameters of numerical schemes, input-output management ...

In the case of a calculation launched using the interface, it is only used to modify high-level parameters
which can not be managed by the interface. In the case of a code utilisation without interface, this
subroutine is compulsory and all the headings must be completed.

For more details about the different parameters, please refer to the key word list (§7).

usinil.f90 is in fact a gouping of 6 sperate subroutines: usipph, usinsc, usipsc, usipgl, usipsuand
usipes. Each one controls the management of various specific parameters. The key words that dont’
feature in the supplied example can be provided by the user in SRC/REFERENCE/base; in this case,
understanding of the comments is needed to add the key words in the appropriate subroutine (the
most widely used is iphas, it will assure that the value has been well defined). The modifiable
parameters in each of the subroutines of usinil.f90 are:

e usipph: iturb and icp (don’t modify these parameters anywhere else)
e usinsc: nscaus (don’t modify these parameters anywhere else)
e usipsc: iscavr and ivisls (don’t modify these parameters anywhere else)

e usipgl: idtvar, ipucou, iphydr and the parameters related to the error estimators(don’t modify
these parameters anywhere else).

e usipsu: physical parameters of the calculation (thermal scalar, physical properties,...), numeric
parameters (time steps, number of iterations, ...), definition of the time averages.

e usipes: post processing output parameters (periodicity, variable names, probe positions,...)

For more details of the different parameters, see the list of key words (§7). The names of the key words
can also be seen in the helps sections of the interface.

NOTES

e Determined in the list of nscaus user scalars, representing the mean square fluctuations of another
whilst informing the iscavr array (warning, this was not the case in version 1.0). For the other
scalars, iscavr does not need to be completed (by default, iscavr(ii)<0). For instance, if the scalar
jj represents the average of the square of the fluctuations of the scalar kk, the user must indicate
iscavr(jj)=kk (I<kk<nscaus).

e When using the interface, only the supplementary parameters (which can not be defined in the
interface) should appear in usinil. To spare the user the necessity to delete the other parameters
appearing as examples in the subroutine, the utility program code_saturne create comments auto-
matically all the example lines of usinil with a code !ex. The user needs then only to uncomment
the lines which are useful in his case. This function of code_saturne create can be deactivated with
the option —-nogui (useful if the user knows that he will not use the interface).

6.4 Management of boundary conditions: usclim

Subroutine called every time step.

It is the second compulsory subroutine for every calculation launched without interface(except in the
specific physics case where the corresponding boundary condition user subroutine must be used)

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 64/186

When the interface is used, usclim is used to define complex boundary conditions (input profiles,
conditions varying in time, ...) which could not be specified by means of the interface, and only these
need to be defined. In the case of a calculation launched without the interface, all the boundary
conditions must appear in usclim.

usclim is essentially constituted of loops on boundary face subsets. Several sequences of call getfbr
(’criterion’, nlelt, lstelt) (cf. §6.2) allow to differentiate the boundary faces according to
their group(s), their color(s) or geometric criteria. If needed, geometric and physical variables are also
available to the user, these allow him to differentiate the boundary faces using other criteria.

For more details about the treatment of boundary conditions, the user may refer to the theoretical
and computer documentation [11] of the subroutine condli (for the wall conditions, see clptur) (to
access to this document on a workstation, use code_saturne info --guide theory).

From the user point of view, the boundary conditions are totally determined by three arrays2’:
itypfb(nfabor,nphas), icodcl(nfabor,nvar) and rcodcl(nfabor,nvar,3).

- itypfb(ifac,iphas) defines the type of the face ifac (input, wall, ...) for the phase iphas.

- icodcl(ifac,ivar) defines the type of boundary condition for the variable ivar at the face
ifac (Dirichlet, flux ...).

- rcodcl(ifac,ivar,.) gives the numerical values associated with the type of boundary condition
(value of the Dirichlet, of the flux ...).

In the case of standard boundary conditions (see §6.4.1), it is enough to complete itypfb(ifac,iphas)
and some boxes of the array rcodcl, the array icodcl and most of the boxes of rcodcl are completed
automatically. For non-standard boundary conditions (see §6.4.2), the arrays icodcl and rcodcl must
be totally completed.

6.4.1 Coding of standard boundary conditions

The standard values taken by the indicator itypfb are: ientre, iparoi, iparug, isymet, isolib and
iindef.

o If itypfb=ientre: inlet face.

— Zero-flux condition for pressure and Dirichlet condition for all other variables. The value of
the Dirichlet must be given in rcodcl(ifac,ivar,1) for every value of ivar, apart from
ivar=ipr(iphas). The other values of rcodcl and icodcl are completed automatically.

o If itypfb=iparoi: smooth solid wall face, impermeable and with friction.

— the eventual moving velocity of the wall tangent to the face is given by rcodcl (ifac,ivar,1)

(ivar being iu(iphas), iv(iphas) or iw(iphas)). The initial value of rcodcl(ifac,ivar,1)
is zero for the three velocity components (and therefore needs to be specified only in the
case of the existence of a slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

— Concerning the scalars, two kinds of boundary conditions can be defined:

~> Imposed value at the wall. The user must write
icodcl(ifac,ivar)=>5
rcodcl (ifac,ivar,1)=imposed value

29except with Lagrangian

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 65/186

~~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=flux imposed value (for the flux definition according to
the variable, the user may refer to the case icodc1=3 of the paragraph 6.4.2).

~» If the user does not complete these arrays, the default condition is zero flux.
o If itypfb=iparug: rough solid wall face, impermeable and with friction.

— the eventual moving velocity of the wall tangent to the face is given by rcodcl (ifac,ivar,1)

(ivar being iu(iphas), iv(iphas) or iw(iphas)). The initial value of rcodcl (ifac,ivar,1)
is zero for the three velocity components (and therefore needs to be specified only in the
case of the existence of a slipping velocity).
WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

— The dynamic roughness must be specified in rcdocl(ifac,iu(iphas),3). The values of
rcdocl(ifac,iv(iphas),3) and rcdocl(ifac,iw(iphas),3) are not used.

— For scalars, two kinds of boundary conditions can be defined:
~» Imposed value at the wall. The user must write
icodcl(ifac,ivar) =6
rcodcl(ifac,ivar,1)=imposed value
rcodcl(ifac,ivar,3)=thermal roughness value

~ Imposed flux at the wall. The user must write
icodcl(ifac,ivar)=3
rcodcl(ifac,ivar,3)=flux imposed value (for the flux definition according to
the variable, the user may refer to the case icodc1=3 of the paragraph 6.4.2).

~~ If the user does not complete these arrays, the default condition is zero flux.

o If itypfb=isymet: symmetry face (or wall without friction)
— Nothing to write in icodcl and rcodcl.
o If itypfb=isolib: free outlet face (or more precisely free inlet/outlet with forced pressure)
— The pressure is always treated with a Dirichlet condition, calculated in order to have
d (dP
dn \ dt
pressure drop is always linked to just one face, even if there are several outlets.

) = 0. The pressure is given the value Py at the first face isolib met. The

— If the mass flow is coming in, the “infinite” velocity is retained and Dirichlet condition for
the scalars and the turbulent quantities is used (or zero-flux condition if no Dirichlet value
has been specified).

— If the mass flow is going out, zero-flux condition for the velocity, the scalars and the turbulent
quantities.

— Nothing to write in icodcl or rcodcl for pressure or velocity. An optional Dirichlet condi-
tion can be specified for the scalars and turbulent quantities.

o If itypfb=iindef: non-defined type face (non-standard case)

— The coding is done by completing every array rcodcl and icodcl (see §6.4.2).

NOTES
e Whatever the value of the indicator itypfb(ifac,iphas), if the array icodcl(ifac,ivar) is

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 66/186

modified by the user (i.e. filled in by a value different from zero), the code will not use the default
conditions for the variable ivar at the face ifac, but will take into account the values of icodcl and
rcodcl given by the user (these arrays must then be totally completed, like in the non-standard case).
For instance, for a symmetry face at which the scalar 1 is given a Dirichlet condition equal to 23.8
(with an infinite exchange coefficient):

itypfb(ifac,iphas)=isymet

icodcl(ifac,isca(1))=1

rcodcl(ifac,isca(1),1)=23.8
(rcodcl(ifac,isca(l),2)=rinfin is the default value, so it is not necessary to specify it)
The boundary conditions for the other variables are still automatically defined.

e The user may define new types of wall faces. He only needs to choose a value N and to specify
completely the boundary conditions corresponding to this new wall face type (see §6.4.2). He must
then specify itypfb(ifac,iphas)=N. The value of N must be between 1 and ntypmx (maximum
number of boundary face types), and of course different from the values ientre, iparoi, iparug,
isymet, isolib and iindef (the value of these variables is given in the file paramx.h). This allows to
easily isolate some boundary faces, in order to calculate balances.

6.4.2 Coding of non-standard boundary conditions

In the case of a face not corresponding to a standard type, the user must complete all of the arrays
itypfb, icodcl and rcodcl. itypfb(ifac,iphas) is then worth iindef or another value defined by
the user (see note in the end of paragraph 6.4.1). The arrays icodcl and rcodcl must be completed
as follows:

o If icodcl(ifac,ivar)=1: Dirichlet condition at the face ifac for the variable ivar.

— rcodcl(ifac,ivar,1) is the value of the variable ivar at the face ifac.

— rcodcl(ifac,ivar,2) is the value of the exchange coefficient between the outside and the
fluid for the variable ivar. An infinite value (rcodcl(ifac,ivar,2)=rinfin) indicates a
perfect transfer between the outside and the fluid (default case).

— rcodcl(ifac,ivar,3) is not used.
— rcodcl(ifac,ivar,1) is expressed in the unit of the variable ivar, i.e.:

~» m/s for the velocity

m?/s? for the Reynolds stress

m? /s for the dissipation

Pa for the pressure

°C for the temperature

J.kg™! for the enthalpy

°C? for the temperature fluctuations

I

~ J2.kg™?2 for the enthalpy fluctuations

— rcodcl(ifac,ivar,2) is expressed in the following unit (defined so that by multiplying
the exchange coefficient and the variable, the obtained flux has the same unit as the flux
defined below for icodcl=3):

2

~ kg.m~2.s7! for the velocity

2

kg.m~2.s7! for the Reynolds stress

PUNN
~ s.m~! for the pressure

~s Wam=2.°C71 for the temperature
—- 2

kg.m~2.s71 for the enthalpy

o If icodcl(ifac,ivar)=3: flux condition at the face ifac for the variable ivar.

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 67/186

— rcodcl(ifac,ivar,1) and rcodcl(ifac,ivar,2) are not used.

— rcodcl(ifac,ivar,3) is the flux value of ivar at the wall. This flux is negative if it is a
source for the fluid. It corresponds to:

o

A
fC’p(CfT + %)g@ T - n in the case of a temperature (in W/m?).
P

—(An + %)g@ h-n in the case of an enthalpy (in W/m?).
h

—(Ap + &)g@ ¢ - n in the case of another scalar ¢ (in kg.m=2.s71.[p], where [¢] is
o

©
the unit of ¢).
—At grad P -n in the case of the pressure (in kg.m=2.s71).

$

$

—(p + p¢)grad U; - n in the case of a velocity component (in kg.m~t.s72).
~» —pgrad R;; -n in the case of a R;; tensor component (in W/m?).

o If icodcl(ifac,ivar)=4: symmetry condition, for the symmetry faces or wall faces without
friction. This condition can only be used for the velocity components (U - n = 0) and the R;;
tensor components (for the other variables, a zero-flux condition type is generally used).

o If icodcl(ifac,ivar)=>5: friction condition, for the smooth-wall faces with friction. This con-
dition can not be applied to the pressure.

~» For the velocity and (if necessary) the turbulent variables, the values at the wall are calcu-

lated from theoretical profiles. In the case of a moving wall, the three components of the
slipping velocity are given by (rcodcl(ifac,iu(iphas),1), rcodcl(ifac,iv(iphas),1),
and rcodcl(ifac,iw(iphas),1)).

WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the veloc-
ity specified by the user is not in the face plane, the wall moving velocity really taken into
account will be different.

For the other scalars, the condition icodcl=5 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11].

e If icodcl(ifac,ivar)=6: friction condition, for the rough-wall faces with friction. This condi-
tion can not be applied to the pressure.

~» For the velocity and (if necessary) the turbulent variables, the values at the wall are calcu-

lated from theoretical profiles. In the case of a moving wall, the three components of the
slipping velocity are given by (rcodcl(ifac,iu(iphas),1), rcodcl(ifac,iv(iphas),1),
and rcodcl(ifac,iw(iphas),1)).

WARNING: the wall moving velocity must be in the boundary face plane. By security, the
code uses only the projection of this velocity on the face. As a consequence, if the velocity
specified by the user is not in the face plane, the wall moving velocity really taken into ac-
count will be different.

The dynamic roughness height is given by rcodcl(ifac,iu(iphas),3) only.

For the other scalars, the condition icodcl=6 is similar to icodcl=1, but with a wall
exchange coefficient calculated from a theoretical law. The values of rcodcl(ifac,ivar,1)
and rcodcl(ifac,ivar,2) must therefore be specified: see [11]. The thermal roughness
height is then given by rcodcl(ifac,ivar,3).

e If icodcl(ifac,ivar)=9: free outlet condition for the velocity. This condition can only be
applied to the velocity components.
If the mass flow at the face is going out, this condition is equivalent to a zero-flux condition.
If the mass flow at the face is coming in, the value zero is imposed to the velocity at the face
(but not to the mass flow).
rcodcl is not used.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 68/186
NOTE

e A standard isolib outlet face amounts to a Dirichlet condition (icodcl=1) for the pressure, a free
outlet condition (icodcl=9) for the velocity and a Dirichlet condition (icodcl=1) if the user has
specified a Dirichlet value or a zero-flux condition (icodc1=3) for the other variables.

6.4.3 Checking of the boundary conditions

The code checks the main compatibilities between the boundary conditions. In particular, the following
rules must be respected:

e On each face, the three components of the velocity must belong to the same type. The same must
be true for the different components of the R;; tensor.

e If the boundary conditions for the velocity belong to the “slipping” type (icodcl=4), the conditions
for R;; must belong to the “symmetry” type (icodcl=4), and vice versa.

e If the boundary conditions for the velocity belong to the “friction” type (icodcl=5 or 6), the
conditions for the turbulent variables must belong to the “friction” type, too.

o If the boundary condition for a scalar belongs to the “friction” type, the boundary condition for the
velocity must belong to the “friction” type, too.

In case of error, if post-processing output is activated (which is the default), a special error output to
the same mesh format occurs, so as to help correcting boundary condition definitions.

6.4.4 Sorting of the boundary faces

In the code, it may be necessary to have access to all the boundary faces of a given type. In order
to ease this kind of search, an array of sorted faces is automatically completed (and updated at every
time step) for each phase iphas: itrifb(nfabor,iphas).
ifac=itrifb(i,iphas) is the number of the i*? face of type 1.
ifac=itrifb(i+n,iphas) is the number of the i*? face de type 2, if there are n faces of type 1.

. ete.

Two auxiliary arrays of size ntypmx are also defined.

idebty(ityp,iphas) is the number of the first box corresponding to the faces of type ityp in the
array itrifb.

ifinty(ityp,iphas) is the number of the last box corresponding to the faces of type ityp in the
array itrifb.

Therefore, a number ifacO between idebty(ityp,iphas) and ifinty(ityp,iphas) corresponds to
each face of type ityp=itypfb(ifac,iphas), so that ifac=itrifb(ifacO,iphas).

If there is no face of type ityp, the code imposes
ifinty(ityp,iphas)=idebty(ityp,iphas)-1,

which allows to bypass, for all the missing ityp, the loops like
do ii=idebty(ityp,iphas),ifinty(ityp,iphas).

The values of all these indicators are displayed in the beginning of the code execution listing.

6.5 Management of the boundary conditions with LES: usvort

This subroutine allows to generate the non-stationary inlet boundary conditions for the LES by the
vortex method. The method is based on the generation of vortices in the 2D inlet plane with help
from the pre-defined functions. The fluctuation normal to the inlet plane is generated by a Langevin
equation. It is in the subroutine usvort where the parametres of this method are given.

subroutine called for each time step

To allow the application of the vortex method, an indicator must be informed of the method in the

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 69/186

user subroutine usinil(ivrtex=1)

The subroutine usvort contains 3 seperate parts:

- The 1st part defines the number of inlets concerned with the vortex method (nnentt) and the
number of vortex for each inlet (nvort), where ient represents the number of inlets.

The 2nd part (iappel=1) defines the boundary faces at which the vortex method is applicable.
The irepvo array is informed by ient which defines the number of inlets concerned with the
vortex (essentially, the vortex method can be applied with many independant inlets).

The 3rd section defines the main parameters of the method at each inlet. With the complexity
of any given geometry, 4 cases are distinguished (the first 3 use the data file ficvor and in the
final case only 1 initial velocity and energy are imposed.):

* icas=1, For the outlet of a rectangluar pipe; 1 boundary condition is defined for each side
of the rectangle taking into account their interaction with the vortex.

* icas=2, For the outlet of a circular pipe; the entry face is considered as a wall (as far as

interaction with the vortex is concerned)

* icas=3, For inlets of any geometry; no boundary conditions are defined at the inlet face

(i.e no specific treatment on the interation between the vortex and the boundary)

* icas=4, similar to icas=3 except the data file is not used (ficvor); the outflow parameters

are estimated by the code from the global data (initial velocity, level of turbulence and
dissipation), information which is supplied by the user.

When the geometry allows, cases 1 and 2 are used. Case 4 is only used if it is not possible to use
the other 3.

In the first 3 cases, the 2 base vectors in the plane of each inlet must be defined (vectors dirl
and dir2). The 3rd vector is automatically calculated by the code, defined as a product of diri
and dir2. dirl and dir2 must be chosen imperatively to give (cen, dirl, dir2) an orthogonal
reference of the inlet plane and so dir3 is oriented in the entry domain. If icas=2, the cen
position must be the center of gravity of the rectangle or disc.

The reference points (cen, dirl, dir2, dir3) which define the values of the variable in the ficvor
file.
In the case where icas=4, the vectors dirl and dir2 are generated by the code.

If icas=1, the boundary conditions at the rectangle’s edges must be defined. They are defined
in the array iclvor. iclvor(ii,ient) represents the standard boundary conditions at the edge
IT(1<II<4) of the inlet ient. The code for the boundary conditions is as follows:

* iclvor=1 for a wall

* iclvor=2 for symmetry

* iclvor=3 for periodicity of translation (the face corresponding to periodicity will automat-

ically be taken as 3)

The 4 edges are numbered relative to the directions dirl and dir2 as shown in figure 6:

If icas=1, the user must define 11x and 11y which give the lengths of the rectangular pipe in
the directions dirl and dir2.

If icas=2, 114 represents the diameter of the circular pipe. If icas=4, udebit ,kdebit and
edebit are defined for each inlet, these give respectively, initial speed, turbulent energy level and
the dissipation level. These can be used to obtain their magnitude using the correlations in the
user routine usclim for fully developed flow in a pipe.

The case independant parameters are defined as follows:

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 70/186

* itmpl represents the indicator of the advancement in time of the vortex. If itmpli=1, the

vortex will be regenerated after a fixed time of tmplim second (defined as itmpli=1). If

itmpli=2, following the data indicated in ficvor file, the vortex will have a variable life
3

K
span equal to 56'#—2 , where C, = 0,09 and k, € and U represent respectively, turbulent

energy, turbulent dissipation and the convective velocity in the direction normal to the inlet
plane.

xsgmvo represents the support functions used in the vortex method. They are represen-

tative of the eddy sizes entered in the vortex method. isgmvo is used to define their

size: if isgmvo=1, xsgmvo will be constant across the inlet face and is defined in usvort, if

isgmvo=2, xsgmvo will be variable and equal to the mixing length of the standard k—e model
k3

(C’u%—), if isgmvo=3, xsgmvo will be equal to the maximum of L; et Lx where L; and
€

3
Lk are the ou ou Taylor and Kolmogrov co-efficients (Lr = (5Vﬁ)%, Lk = QOO(V—)%).
dy Oy € €
idepvo gives the vortex displacement method in the 2D inlet plane (the vortex method is a
langrangian method in which the eddy centers are replaced by a set velocity). If idepvo=1,
the velocity displacement referred to by ud which is the vortex following a random sampling
(a sample number r, is taken for each vortex, at each time step and for each direction and
the center of the vortex is replaced by the 2 principle directions, rudAt where At is the
time step of the calcualtion). If idepvo=2, the vortex will be convected by itself (with the
speed given by the time step before the vortex method)

A data file, ficvor, must be defined in the cases of icas=1,2,3, for each inlet. The data file must

ou
contain the following data in order (z, y, U, —, k, €). The number of lines of the file is given by

Ay
the integer ndat. x and y are the co-ordinates in the inlet plane defined by the vectors dirl and
dir2. U, k and ¢ are respectively, the average speed normal to the inlet, the turbulent energy

U
and the turbulent dissipation. — is the derivative in the direction normal to the inlet boundary

0

in the cases, icas=1, icas=2. yVVhere icas=3 and icas=4 this variable is not applied (it is
given the value 0) so the Langevin equations, used to generate fluctuations normal to the inlet
plane, is de-activated (the flucutations normal to the inlet is 0 on both these cases). Note that
the application of many different test of the Langevin equation doesn’t have a notable influence
on the results and that, by contrast it simply increases the computing time per iteration and so it
decreases the random sampling which slows down the pressure solver. The interpolation used in
the vortex method is defined by the function phidat. An example is given at the end of usvort
where the user can define the interpolation required. In the phidat function, xx and yy are the
co-ordinates by which the value of phidat is calculated. xdat and ydat are the co-ordinates in
the ficvor file. vardat is the value of the phidat function with the co-ordinates xdat and ydat
(given in the ficvor file). Note that using an indicator iii accelerates the calculations (the user
need not modify or delete). The user must also define the parameter isuivo which indicates if
the vortex were started at 0 or if the file must be re-read (ficmvo).

WARNING

e Be sure that the ficvor file and the interpolation in the user function phidat are compatible
(in particular that all the entry region is covered by ficvor)

o If the user wants to use a 1D profile in the dir2 direction, set £ =0 in the ficvor file and define
the interpolation in phidat.

6.6 Management of the variable physical properties: usphyv

Subroutine called every time step.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 71/186

If necessary, all the variation laws related to the fluid physical parameters (density, viscosity, thermal
diffusivity, ...) are written in this subroutine.

The validity of the variation laws must be checked, particularly when non-linear laws are defined (for
instance, a third-degree polynomial law may produce negative density values).

WARNING

If one wishes to impose a density or viscosity variable in usphyv, it can be done either in the
interface or in usinil(irovar (iphas)=1, ivivar(iphas)=1).

In order to impose a physical property (p, i, A, C,)3° a reference value must be inputted to the
interface or in usinil(in particular for p, the pressure will contain 1 part as pggz)

By default, the C, coefficient of the phase iphas and the diffusivity of the scalars iscal (A/C),
for the temperature) are considered as constant in time and uniform in space, with the values
cpO(iphas) and vislsO(iscal) specified in the interface or in usinil.

To give a variable value to Cp, the user must specify it in the interface or give the value 1 to
icp(iphas) in usinil, and complete for each cell iel the array propce(iel,ipccp) in usphyv.
Completing the array propce(iel,ipccp) while icp(iphas)=0 induces array overwriting prob-
lems and produces wrong results.

In the same way, to have variable diffusivities for the scalars iscal, the user must specify it in the
interface or give the value 1 to ivisls(iscal) in usinil, and complete for each cell iel the ar-
ray propce(iel,ipcvsl) in usphyv. Completing propce(iel,ipcvsl) while ivisls(iscal)=0
induces memory overwriting problems and produces wrong results.

Ezxample: If the scalars 1 and 3 have a constant and uniform viscosity, and if the scalars 2 and 4
have a variable viscosity, the following values must be imposed in usinii:

ivisls(1)=0, ivisls(2)=1, ivisls(3)=0 and ivisls(4)=1.

The indicators ivisls(2) and ivisls(4) are then modified automatically by the code in or-
der to reflect the rank corresponding to the diffusivity of each scalar in the list of physi-
cal properties®'. The arrays propce(iel,ipcvsl) in usphyv must then be completed with

ipcvsl=ipproc(ivisls(2)) and ipcvsl=ipproc(ivisls(4)).

Note: The indicators ivisls must not be completed in the case of user scalars representing the
average of the square of the fluctuations of another scalar, because the diffusivity of a user scalar
jj representing the average of the square of the fluctuations of a user scalar kk comes directly
from the diffusivity of this last scalar. In particular, the diffusivity of the scalar jj is variable if
the diffusivity of kk is variable.

6.7 Non-default variables initialisation: usiniv

Subroutine only called during calculation initialisation.

At the calculation beginning, the variables are initialised automatically by the code. Velocities and
scalars are set to the value 0 (or scamax or scamin if 0 is outside the acceptable scalar variation range),
and the turbulent variables are estimated from uref and almax.

For kin k — ¢, Ri; — ¢, v2f or k — w model:

rtp(iel,ikiph) = 1.5%(0.02*uref (iphas))**2 (in R;; — ¢, R;; = %kéij)

For € in k — ¢, R;; — € or v2f model:

rtp(iel,ieiph) = rtp(iel,ikiph)**1.5%cmu/almax(iphas)

For w in k — w model:

rtp(iel,iomgip) = rtp(iel,ikiph)**0.5/almax (iphas)

30

except for some specific physics

3lthey are no longer worth 1 but stay positive so that ivisls>0 is synonymous with variable property

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 72/186

For ¢ and f in v2f model:
rtp(iel,iphiph) = 2/3
rtp(iel,ifbiph) = 0

The subroutine usiniv allows if necessary to initialise some variables at values closer to their estimated
final values, in order to obtain a faster convergence.

This subroutine allows also to make non-standard initialisation of physical parameters (density, vis-
cosity, ...), to impose a local value of the time step, or to modify some parameters (time step, variable
specific heat, ...) in the case of a calculation restart.

NOTE: VALUE OF THE TIME STEP

- In the case of a calculation with constant and uniform time step (idtvar=0), the value of the
time step is dtref, given in the parametric file of the interface or usinii, the calculation being
whether a restart (isuite=1) or not (isuite=0).

- In the case of a calculation with non-constant time step (idtvar=1 or 2) which is not a calculation
restart (isuite=0), the value of dtref given in the parametric file of the interface or in usinii
is used to initialise the time step.

- In the case of a calculation with non-constant time step (idtvar=1 or 2) which is a restart
(isuite=1) of a calculation whose time step type was different (for instance, restart using a
variable time step of a calculation run using a constant time step), the value of dtref given in
the parametric file of the interface or in usinil is used to initialise the time step.

- In the case of a calculation with non-constant time step (idtvar=1 or 2) which is a restart
(isuite=1) of a calculation whose time step type was the same (for instance, restart with
idtvar=1 of a calculation run with idtvar=1), the time step is read from the restart file and
the value of dtref given in the parametric file of the interface or in usinii is not used.

It follows that for a calculation with non-constant time step (idtvar=1 or 2) which is a restart
(isuite=1) of a calculation in which idtvar had the same value, dtref does not allow to modify the
time step. The user subroutine usiniv allows to modify the array dt which contains the value of the
time step read from the restart file (array whose size is ncelet, defined at the cell centers whatever
the chosen time step type).

WARNING: to initialise the variables in the framework of a specific physics module (nscapp.gt.0)
one of the subroutines usebut, usd3pi, uslwci or uscpiv should be used instead of usiniv (depending
on the activated module).

6.8 Non-standard management of the chronological record files: ushist

Subroutine called every time step

The interface and the subroutine usinil allow to manage the “automatic” chronological record files in
an autonomous way: position of the probes, printing frequency and concerned variables. The results
are written in a different file for each variable. These files are written in xmgrace or gnuplot format
and contain the profiles corresponding to every probe. This type of output format may not be well
adapted if, for instance, the number of probes is too high. The subroutine ushist allows then to
personalise the output format of the chronological record files. The version given as example in the
directory works as follows:

- Positionning of the probes (only at the first passage): the index ii varies between 1 and the
number of probes. The coordinates xx, yy and zz of each probe are given. The subroutine
findpt gives then the number icapt(ii) of the cell center which is the closest to the defined
probe.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 73/186

- Opening of the output files (only at the first pass): in the version given as example, the program

opens a different file for all the nvar variables. ficush(j) contains the name of the T fle and
impush(j) its unit number (impush is initialised by default so that the user has at his disposal
specific unit numbers and does not run the risk to overwrite an already open file).

- Writing to the files: in the version given as example, the program writes the time step number,
the physical time step (based on the standard time step in the case of a variable time step) and
the value of the selected variable at the different probes.

- Closing of the files (only at the last time step).

WARNING: The use of ushist neither erases nor replaces the parameters given in the interface or
in usinil. Therefore, in the case of the use of ushist, and to avoid the creation of useless files,
the user should set ncapt=0 in the interface or in usinil to deactivate the automatic production of
chronological records.

In addition, ushist generates supplementary result files. The user shoud remember to add in the
launch script the necessary command to copy them in the directory RESU at the end of the calculation.
The interface allows the specification of the name of the copied user results files. For the calculations
without interface, the variable must be inputted in USER_OUTPUT_FILES in the launch script.

6.9 User source terms in Navier-Stokes: ustsns

Subroutine called every time step

This subroutine is used to add user source terms to the Navier-Stokes equations. For each phase iphas,
it is called three times every time step, once for each velocity component (ivar is successively worth
iu(iphas), iv(iphas) and iw(iphas)). At each passage, the user must complete if necessary the
arrays crvimp and crvexp expressing respectively the implicit and explicit part of the source term. If
no other source terms apart from ivar=iu(iphas) for example, are required, crvimp and crvexp must
be read over and their 2 other components, ivar=iv(ihpas) and ivar=iw(iphas) must be cancelled.

Let us assume that the user source terms modify the equation of a variable ¢ in the following way:

dp

pa+...:...+5implx§0+sexpl

¢ is here a velocity component, but the examples are also valid for a turbulent variable (k, e, Rij, w,
p or f) and for a scalar (or for the average of the square of the fluctuations of a scalar), because the
syntax of the subroutines ustske, ustsri, ustsv2, ustskw and ustssc is similar.

In finite volume formulation, the solved system is then modified as follows:

i$Y; n " B
(pAt - Qisimpl,i> (QDE T _ QOE)) +...=...+ QiSimpl,iSOE) + QiSe;Epl,i

The user needs therefore to provide the following values:
crvimp, = ;Simpl.i
crvexp; = i Seapl,i

piQi

K3
equation really taken into account by the code is the following:

In practice, it is essential that the term — 3 Simpi,s | is positive. To ensure this property, the

pifdi . 1

< At‘v - Mln(QiSimpl,i; 0)) ((pl(n+) - ‘Pgn)) +...=...F QiSherl,i@z('n) + QiSea:pl,i
1

To make the “implicitation” effective, the source term decomposition between implicit and explicit

parts will be done by the user who must make sure crvimp, = ;S;mp1,; is always negative (otherwise

the solved equation remains right, but there is no “implicitation”).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 74/186

WARNING: When the second-order in time with extrapolation of the source terms>? is activated, it is
no longer possible to test the sign of Simpii, because of coherence reasons (for more details, the user
may refer to the theoretical and computer documentation [11] of the subroutine preduv). The user
must therefore make sure it is always positive.

PARTICULAR CASE OF A LINEARISED SOURCE TERM

In some cases, the added source term is not linear, but the user may want to linearise it using a
first-order Taylor development, in order to make it partially implicit.
Let us consider an equation of the type:

dp
PE = F(p)

We want to make it implicit using the following method:

P (Aol = 0[P+ (o0 - o) Tl
= Qi%(wgn)) x " 4 {F(%(")) - %(%(-")) X WE”)]
The user must therefore specify:
crvimp, = Qz%(En))
crvexp, = Q; | F(p!") - %(%@)) x o

Ezxample:

0
If the equation is pa—f = —K¢?, the user must set:
crvimp, = —ZKQiapZ(-n)
(n)]Q

)

crvexp, = KQ;[p

6.10 User source terms for k£ and <: ustske

Subroutine called every time step, in k — e and in v2f.

This subroutine is used to add source terms to the transport equations related to the turbulent kinetics
energy k and to the turbulent dissipation e (for each phase iphas). This subroutine is called every
time step, once for each phase (the treatment of the two variables k& and ¢ is made simultaneously).
The user is expected to provide the arrays crkimp and crkexp for k and creimp and creexp for e.
These arrays are similar to the arrays crvimp and crvexp given for the velocity in the user subroutine
ustsns. The way of making implicit the resulting source terms is the same as the one presented in
ustsns. For ¢ and f in v2f, see ustsv2, §6.12.

6.11 User source terms for 7;; and ¢: ustsri

Subroutine called every time step, in R;; — €.

This subroutine is used to add source terms to the transport equations related to the Reynolds stress
variables R;; and to the turbulent dissipation ¢ (for each phase iphas). This subroutine is called 7
times every time step and for each phase (once for each Reynolds stress component and once for the
dissipation). The user must provide the arrays crvimp and crvexp for the variable ivar (referring

32indicator isno2t for the velocity, ISTO2T for the turbulence and isso2t for the scalars

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 75/186

successively to ir11(iphas), ir22(iphas), ir33(iphas), ir12(iphas), ir13(iphas), ir23(iphas)
and iep(iphas)). These arrays are similar to the arrays crvimp and crvexp given for the velocity in
the user subroutine ustsns. The method for impliciting the resulting source terms is the same as that
presented in ustsns.

6.12 User source terms for ¢ and f: ustsv2

Subroutine called every time step, in v2f.

This subroutine is used to add source terms to the transport equations related to the variables ¢ and f
of the v2f p-model (for each phase iphas). This subroutine is called twice every time step and for each
phase (once for ¢ and once for f). The user is expected to provide the arrays crvimp and crvexp for
ivar referring successively to iphi(iphas) and ifb(iphas). Concerning ¢, these arrays are similar
to the arrays crvimp and crvexp given for the velocity in the user subroutine ustsns. Concerning f,
the equation is slightly different:

L2dlv(g@ (?)) = ? +...+ Simpl X ? + Se:vpl
In finite volume formulation, the solved system is written:

— 1 —(n —n
[e (705 = 7 (R 4t QS T+ S

The user must then specify:
crvimp, = £;Simpl,i
crvexp, = 2 Sexpi i

The way of making implicit the resulting source terms is the same as the one presented in ustsns.

6.13 User source terms for £ and w: ustskw

Subroutine called every time step, in k — w.

This subroutine is used to add source terms to the transport equations related to the turbulent kinetics
energy k and to the specific dissipation rate w (for each phase iphas). This subroutine is called every
time step, once for each phase (the treatment of the two variables k and w is made simultaneously).The
user is expected to provide the arrays crkimp and crkexp for the variable k£ the arrays crwimp and
crwexp for the variable w. These arrays are similar to the arrays crvimp and crvexp given for the
velocity in the user subroutine ustsns. The way of impliciting the resulting source terms is the same
as the one presented in ustsns.

6.14 User source terms for the user scalars: ustssc

Subroutine called every time step.

This subroutine is used to add source terms to the transport equations related to the user scalars
(passive or not, average of the square of the fluctuations of a scalar, ...). In the same way as ustsns,
this subroutine is called every time step, once for each user scalar. The user needs to provide the
arrays crvimp and crvexp related to each scalar. cvimp and crvexp must be set to O for the scalars
on which it is not wished for the user source term term to be applied (the arrays are initially at 0 at
each inlet in the subroutine.)

6.15 Management of the pressure drops: uskpdc

Subroutine called every time step.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 76/186

This subroutine is called three times every time step and for each phase iphas.

The tensor representing the pressure drops is supposed to be symmetric and positive.

e During the first call, all the cells are checked to know the number of cells in which a pressure
drop is present for the phase iphas. This number is called ncepdp in uskpdc (and corresponds
to ncepdc (iphas)). It is used to lay out the arrays related to the pressure drops. If there is no
pressure drop, ncepdp must be equal to zero (it is the default value, and the rest of the subroutine
is then useless).

e During the second call, all the cells are checked again to complete the array icepdp whose size is

ncepdp. icepdc(ielpdc) is the number of the ielpdcth cell containing pressure drops (for the
current phase).

e During the third call, all the cells containing pressure drops (for the current phase) are checked
in order to complete the array containing the components of the tensor of pressure drops
ckupdc (ncepdp, 6). This array is so that the equation related to the velocity may be written:

0
p&ﬂz~-~_p£pdc'ﬂ

The tensor components are given in the following order (in the general reference frame): k11,
k22, k33, k12, k13, k23 with k12, k13 and k23 being zero if the tensor is diagonal.

The three calls are made every time step, so that variable pressure drop zones or values may be treated.

6.16 Management of the mass sources: ustsma

Subroutine called every time step.

This subroutine is used to add a density source term in some cells of the domain. The mass conservation
equation is then modified as follows:

dp .
a5 + div(pu) =T

I is the mass source term expressed in kg.m3.s71.

The presence of a mass source term modifies the evolution equation of the other variables, too. Let ¢
be a any solved variable apart from the pressure (velocity component, turbulent energy, dissipation,
scalar, ...). Its evolution equation becomes:

©; is the value of ¢ associated with the mass entering or leaving the domain. After discretisation, the
equation may be written:

Y = 4T(p — D
p Az + +T(pi — ¢)

For each variable ¢, there are two possibilities:

e We can consider that the mass is added (or removed) with the ambient value of . In this case
©; = ¢+ and the equation of ¢ is not modified.

e Or we can consider that the mass is added with an imposed value ; (this solution is physically
correct only when the mass is effectively added, I" > 0).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 77/186

This subroutine is called three times every time step (for each phase).

During the first call, all the cells are checked to know the number of cells containing a mass source
term for the current phase iphas. This number is called ncesmp in ustsma (and corresponds to
ncetsm(iphas)). It is used to lay out the arrays related to the mass sources. If there is no mass
source, ncesmp must be equal to zero (it is the default value, and the rest of the subroutine is
then useless).

During the second call, all the cells are checked again to complete the array icetsm whose

dimension is ncesmp. icetsm(ieltsm) is the number of the ieltsm'®

source (for the current phase).

cell containing a mass

During the third call, all the cells containing mass sources are checked in order to complete the
arrays itypsm(ncesmp,nvar) and smacel(ncesmp,nvar):

th cell

- itypsm(ieltsm,ivar) is the flow type associated with the variable ivar in the ielstm
containing a mass source.
itypsm=0: ¢; = ("1 condition
itypsm=1: imposed ; condition
itypsm is not used for ivar=ipr (iphas)
- (ieltsm,ipr(iphas)) is the value of the mass source term I, in kg.m=3.s71.
- smacel (ieltsm,ivar), for ivar different from ipr(iphas), is the value of ¢; for the variable

ivar in the ielstm™ cell containing a mass source.

NOTES

o If itypsm(ieltsm,ivar)=0, smacel(ieltsm,ivar) is not used.

o If '=smacel(ieltsm,ipr (iphas)) <0, mass is removed from the system, and Code_Saturne con-
siders automatically a ¢; = ("1 condition, whatever the values given to itypsm(ieltsm,ivar)
and smacel (ieltsm,ivar) (the extraction of a variable is done at ambient value).

The three calls are made every time step, so that variable mass source zones or values may be treated.

For the variance, do not take into account the scalar ¢; in the environment where ¢ # ¢; generates a
variance source.

6.17 Thermal module in a 1D wall

subroutine called at every time step

This subroutine takes into account the affected thermal inertia by a wall. Some boundary faces are
treated as a solid wall with a given thickness, on which the code resolves an undimensional equation
for the heat conduction. The coupling between the 1D module and the fluid works in a similar way to
the coupling with the SYRTHES. In construction, the user is not able to account for the heat transfer
between different parts of the wall. A physical analysis of each problem, case by case is required to
evaluate the relevance of its usage by way of a report of the simple conditions (temperature, zero-flux
) or a coupling with SYRTHES.

The use of this code requires that theres is only 1 phase (nphas=1) and that the thermal scalar is
defined as (iscalt> 0).

WARNING: The 1D thermal module is developped assuming the thermal scalar as a temperature. If
the thermal scalar is an enthalpy, the code calls the subroutine usthht for each transfer of information
between the fluid and the wall in order to convert the enthalpy to temperature and vice-versa. This
function has not been tested and is firmly discouraged. If the thermal variable is the total (compressible)
energy, the thermal module will not work.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 78/186

This procedure is called twice,on initialisation and again at each time step.

e The 1st call (initialisation) all the boundary faces that will be treated as a coupled wall are
marked out. This figure is written noted as nfkptid. It applies dimension to the arrays in the
thermal module. nfkpt1d will be at 0 if there are no coupled faces (it is in fact the default value,
the remainer of the subroutine is not used in this case). The parameter isuitl also need to
be defined, this indicates if the temperature of the wall must be initialised or written in the file
(stored in the variable filmt1).

e The 2nd call (initialisation) again concern the wall faces, it completes the ifptid array of dimen-

sion nfptld. ifpt1d(ifbtid) is the number ifbt 1qth boundary faces coupled with the thermal
module of a 1D wall. The directional parameters are then completed for a pseudo wall associated
to each face

npptld(nfpti1d): number of cells in the 1D mesh associated to the pseudo wall.

- epptld(nfptild): thickness of the pseudo wall.

- rgptid(nfptid): geometery of the pseudo wall mesh (refined as a fluid if rgtid is smaller
than 1)

- tpptld(afptid): initialisation temperature of the wall (uniform in thickness). In the course

of the calculation, the array stores the temperature of the solid at the fluid/solid interface.

Other than for re-reading a file (ficmtl), tpptid is not used. npptld, ifptld, rgptid and
epptld are compared to data from the follow-up file and they must be identical.

WARNING: The test in ifptid implicilty assumes that the array is completed in ascending
order (i.e ifptid(ii)>4ifpt1d(54) if it>jj. This will be the case if the coupled faces are defined
starting from the unique loop on the boundary faces (as in the example). If this is not the case,
contact the development team to short circuit the test.

e The 3rd call (at each time step) is for the confirmation that all the arrays involving physical
parameter and external boundary conditions have been completed.

- icltid(nfptid):Typical boundary condition at the external (pseudo) wall: Dirichlet con-
dition (iclt1d=1) or flux condition (iclt1d=3)

- teptld(nfptid): External temperature of the pseudo wall in the Dirichlet case.

- heptid(nfptid): External coefficient of transfer in the pseudo wall under Dirichlet condi-
tions(en W.m=2.K").

- feptild(nfpt1d): External heat flux in the pseudo wall under the flux conditions(en W.m 2 negative
value for energy entering the wall)

- x1mt1d(nfpt1d): Conductivity of the wall uniform in thickness, (in W.m~1.K~1).
- rcptid(nfptid): Volumetric heat capacity pCp of the wall uniform in thickness in Jom 3. K1)

- dtptid(nfptid): Physical time step ascociated with the solved 1D equation of the pseudo
wall(which can be different from the time step in the calculation)

The 3rd call, done at each time step, allows the imposition of boundary conditions and physical values
in time.

6.18 Initialization of the options of the variables related to the ale
module: usalin and usstril

Subroutine called at the start.

SUBROUTINE USALIN
This subroutine completes usinil.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 79/186

usalin allows to set option for the ale module, and in particular to active the ale module

SUBROUTINE USSTR1

usstri allows to specify for the structure module the following pieces of information:

- number of structure (nbstru).

- initial value of deplacement, velocity and acceleration (xstr0, xstreq and vstr0).

Below is a list of the different variables that might be modified:

e nbstru
the number of structures

e idfstr(i)
index of the structure, where I is the index of the face

e xstr0(i,k)
initial position of a structure, where i is the dimension of space and k the index of the structure

e xstreq(i,k)
position of balance of a structure, where i is the dimension of space and k the index of the
structure

e vstr0(i,k)
initial velicity of a structure, where i is the dimension of space and k the index of the structure

6.19 Management of the boundary conditions of velocity mesh re-
lated to the ale module: usalcl

Subroutine called every time step.

SUBROUTINE USALCL

The use of usalcl is obligatory to run a calculation using the ale module just as it is in usinil. The
way of using it is the same as the way of using usclim in the framework of standard calculations, that
is to say a loop on the boundary faces marked out by their colour (or more generally by a property of
their family), where the type of boundary condition of velocity mesh for each variable are defined.

The main numerical variables are described below.

ialtyb(nfabor) [ia]: In the ale module, the user defines the velocity mesh from the colour of the
boundary faces, or more generally from their properties (colours, groups, ...), from the
boundary conditions defined in usclim, or even from their coordinates. To do so, the ar-
ray ialtyb(nfabor) gives for each face ifac the velocity mesh boundary condition types
marked out by the key words ivimpo, igliss, ibfixe

o If ialtyb=ivimpo: imposed velocity.

— In the case where all the nodes of a face have a imposed displacement, it is not necessary to
fill the tables with boundary conditions velocity mesh for this face, they will be erased. In
the other case, the value of the Dirichlet must be given in rcodcl(ifac,ivar,1) for every
value of ivar (iuma, ivma and iwma) The other boxes of rcodcl and icodcl are completed
automatically.

The tangential velocity mesh is taken like a tape speed under the boundary conditions of
wall for the fluid, except if wall velocity was specified by the user in the interface or usclim
(in which case it is this speed which is considered).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 80/186

e if ialtyb(nfac) = ibfixe: fixed wall
— the velocity is null.
o if ialtyb(nfac) = igliss: sliding wall

— the tangential velocity is not used.

6.20 Management of the structure property: usstr2

Subroutine called every time step.
The use of usstr2 is obligatory to run a calculation using the ale module with a structure module.

For each structure, the system that will be solved is:
Mz +Cx +K.(x—z9=0 (1)
where

- M is the mass stucture (xmstru).

C is the dumping coefficient of the stucture (xcstru).

- K is the spring constant or force constant of the stucture (xkstru).

x¢ is the initial position
Below is a list of the different variables that might be modified:

e xmstru(i,j,k)
the mass stucture of the structure, where i,j is the array of mass structure and k the index of
the structure.

e xcstru(i,j,k)
dumping coefficient of the stucture, where 1,j is the array of dumping coefficient and k the index
of the structure.

e xkstru(i,j,k)
spring constant of the stucture, where i,j is the array of spring constant and k the index of the
structure.

e forstr(i,k)
force vector of the stucture, where i is the force vector and k the index of the structure.

6.21 Modification of the turbulent viscosity: usvist

Subroutine called every time step.

This subroutine is used to modify the calculation of the turbulent viscosity of the phase iphas, i.e.
pe in kg.m~1l.s71 (this piece of information, at the mesh cell centers, is conveyed by the variable
propce(iel,ipcvst), with ipcvst = ipproc(ivisct(iphas))). The subroutine is called at the be-
ginning of every time step, after the calculation of the physical parameters of the flow and of the
“conventional” value of y; corresponding to the chosen turbulence model (indicator iturb(iphas)).
WARNING: The calculation of the turbulent viscosity being a particularly sensible stage, a wrong use
of usvist may seriously distort the results.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 81/186

6.22 Modification of the variable C of the dynamic LES model: ussmag

Subroutine called every time step in the case of LES with the dynamic model.

This subroutine is used to modify the calculation of the variable C of the LES sub-grid scale dynamic
model.

Let us first remind that the LES approach introduces the notion of filtering between large eddies and
small motions. The solved variables are said to be filtered in an “implicit” way. Sub-grid scale models
(“dynamic” models) introduce in addition an explicit filtering.

The notations used for the definition of the variable C' used in the dynamic models of Code_Saturne
are specified below. These notations are the ones assumed in the document [2], to which the user may
refer for more details.

The value of a filtered by the explicit filter (of width i) is called @ and the value of a filtered by the
implicit filter (of width A) is called a@. We define:

T w, | Oui\ [. [od. @
Sij = %(2%. + 7o) ISl =1/25:;55;

~2 ~ ~ 9)
ai; = =28 |[SI[S,; B, = ~2A"|ISIIS,,)
Lij = wu; —u; My = o6y — Bij

1

In the framework of LES, the total viscosity (molecular + sub-grid) in kg.m~!.s~! may be written in

Code_Saturne:

total = W+ Usub-grid if Msub-grid > 0
= ©u otherwise (3)
. 72 q
with figub-gria = pCA[[S]|

§ is the width of the implicit filter, defined at the cell €2; by
A =XLESFL(IPHAS)« (ALES(IPHAS) |Qi|)BLE5(IPHAS))

In the case of the Smagorinsky model (iturb(iphas)=40), C is a constant which is worth C2. C? is
the so-called Smagorinsky constant and is stored the variable csmago.

In the case of the dynamic model (iturb(iphas)=41), C is variable in time and in space. It is
M;;Lij

My My

In practice, in order to increase the stability, the code does not use the value of C' obtained in each

cell, but an average with the values obtained in the neighboring cells (this average uses the extended
neighborhood and corresponds to the explicit filter). By default, the value calculated by the code is

determined by C' =

M My

The subroutine ussmag allows to modify this value. It is for example possible to calculate the local
average after having calculated the ratio

oo {Mijuj]
M My,

WARNING: The subroutine ussmag can be activated only when the dynamic model is used.

6.23 Tenlilgerature-enthalpy and enthalpy-temperature conversions:
usthht

Subroutine optionally called.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 82/186

This subroutine is used to encapsulate a simple enthalpy-temperature conversion law and its inverse.
This subroutine is called in usray4, user subroutine from the radiation module.

6.24 Modification of the mesh geometry: usmodg

Subroutine called only during the calculation initialisation.

This subroutine may be used to modify “manually” the mesh vertices coordinates, i.e. the array:
e xyznod(3,nnod) (vertex coordinates)

WARNING: Caution must be exercised when using this subroutine along with periodicity. Indeed, the
periodicity parameters are not updated accordingly, meaning that the periodicity may be unadapted after
one changes the mesh vertex coordinates. It is particularly true when one rescales the mesh.

6.25 Management of the post-processing intermediate outputs: usnpst

Subroutine called every time step(even if the user hasn’t moved it to the SRC directroy).

This subroutine is used to determine when post-processing outputs will be generated. By default, it
tests if the current time step number (ntcabs) is a multiple of the chosen output frequency (ntchr).
If it is the case, the indicator iipost turns to 1, which triggers the writing of an intermediate output.
If the frequency is given a negative value, the test is not done.

For instance, a user who wants to generate post-processing outputs (also called “chronological out-
puts”) at the time step number 36 and around the physical time ¢=12 seconds may use the following
test:

iipost = 0 No output by default.

if (ntcabs.eq.36) then If the current time step is the 36,
iipost=1 generate an output.

endif End of the test on the time step number.

if (abs(ttcabs-12.d0).le.0.01d0) then If the physical time is 12s +/- 0.01s,
iipost=1 generate an output.

endif End of the test on the physical time.

In any case, a post-processing output is generated after the last time step, usnpst being used or not.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 83/186

6.26 Definition of post-processing and mesh zones: usdpst

Subroutine called at the calculation beginming..

This subroutine allows for the definition of surface or volume sections, in the form of lists of nlfac
internal faces (1stfac) and nlfab boundary faces (1stfab), or of nlcel cells (1stcel), in order to
generate chronological outputs in EnSight, MED or CGNS format.

One or several “writers” can be associated with each visualization mesh, or “part” created. The
)
arguments of the function pStCWI’ deﬁning a “writer” are as follows:

e nomcas: basic name of the associated case.
WARNING: depending on the chosen format, this name may be shortened (maximum number
of characters: 32 for MED, 19 for EnSight) or modified automatically (whitespaces or forbidden
characters will be replaced by ’_")

e nomrep: name of the output directory

e nomfmt: choice of the output format:

—

—

—

—

EnSight Gold (EnSight also accepted)
MED._fichier (MED also accepted)
CGNS

text (mesh output, no variables output, for debug only).

The options are not case-sensitive, so ensight or cgns are valid, too.

e optfmt: character string containing a list of options related to the format, separated by commas;
for the EnSight Gold format, these options are:

—

—

binary for a binary format version (by default)
text for a text format version

discard_polygons to prevent from exporting faces with more than four edges (which may not
be recognized by some post-processing tools); such faces will therefore not appear in the
post-processing mesh.

discard_polyhedra to prevent from exporting elements which are neither tetrahedra, prisms,
pyramids nor hexahedra (which may not be recognized by some post-processing tools); such
elements will therefore not appear in the post-processing mesh.

divide_polygons to divide faces with more than four edges into triangles, so that any post-
processing tool can recognize them

divide_polyhedra to divide elements which are neither tetrahedra, prisms, pyramids nor hex-
ahedra into simpler elements (tetrahedra and pyramids), so that any post-processing tool
can recognize them

split_tensor to export the components of a tensor variable as a series of independent variables
(a variable is recognised as a tensor if its dimension is 6 or 9); not implemented yet.

e indmod: indicates if the post-processing (i.e. visualization) meshes (or “parts”) are:

—

—

—

0 fixed (usual case)

1 deformable (the vertex positions may vary over time)

¢

2 modifiable: (the lists of cells or faces defining these “parts” can be changed over time)

e ntchrl: default output frequency associated with this “writer” (the output may be forced or
prevented at every time step using the subroutine usnpst)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 84/186

In order to allow the user to add an output format to the main output format, or to add a mesh to
the default output, the lists of standard and user meshes and “writers” are not separated. Negative
numbers are reserved for the non-user items. For instance,the mesh numbers -1 and -2 correspond
respectively to the global mesh and to boundary faces, generated by default, and the “writer” -1
corresponds to the usual post-processing case defined via usinil or via the interface.

The user chooses the numbers corresponding to the post-processing meshes and “writers” he wants
to create. These numbers must be positive integers. It is possible to assocate a user mesh with the
standard post-processing case (-1), or to ask for outputs regarding the boundary faces (-2) associated
with a user “writer”.

For safety, the output frequency and the possibility to modify the post-processing meshes are associated
with the “writers” rather than with with the “parts”. This logic avoids unwanted generation of
inconstitent post-processing outputs. For instance EnSight would not be able to read a case in which
one field is output to a given part every 10 time steps while another field is output to the same part
every 200 time steps.

The possibility to modify a mesh over time is limited by the more restrictive “writer” which is associated
with it. For instance, if the “writer” 1 allows the modification of the mesh topology (argument indmod
= 2 in the call to pstcwr) and the “writer” 2 allows no modification (indmod = 0), a user post-
processing mesh associated with the “writers” 1 and 2 will not be modifiable, but a mesh associated
only with the “writer” 1 will be modifiable. The modification is done by means of the user subroutine
usmpst, which is called only for the currently modifiable meshes.

It is possible to output variables which are normally automatically output on the main volume or
boundary meshes to a user mesh which is a subset of one of these by assigning the corresponding
category to the user mesh. By default, a meshe’s category is identical to its number, so the category
associated with the main volume output is -1, and that associated with the main boundary output is
-2. A category may be assigned using the pstcat subroutine.

It is also possible to define an alias of a post-processing mesh. An alias shares all the attributes of a
“part” (without duplication), except its number. This may be used to output different variables on a
same “part” with 2 different writers: the choice of output variables is based on the “part”; so if P, is
associated with writer W,, all that is needed is to define an alias P, to P, and associate it with writer
Wy to allow a different output variable selection with each writer. An alias may be created using the
pstalm subroutine.

Modification of a part or it’s alias over time is always limited by the most restrictive ”writer” to which
it’s meshes have been asscoiated (parts of the structures being shared in memory). It is possible to
define as many alias’ as are required for a ”part”, but an alias cannot be defined for another alias.

It is not possible to mix cells and faces in the same “part” (most of the post-processing tools being
perturbed by such a case)®3. If the user defines lists of faces and cells simultaneously, only the higher
dimension entities (the cells) will be taken into account.

For a better understanding, the user may refer to the example given in usdpst. We can note that the
whitespaces in the beginning or in the end of the character strings given as arguments of the functions
called are suppressed automatically.

“

The variables to post-process on the defined “parts” will be specified in the subroutine usvpst.

WARNING In the parallel case, some “parts” may not contain any local elements on a given processor.
This is not a problem at all, as long as the “part” is defined for all processors (empty or not). It would
in fact not be a good idea at all to define a “part” only if it contains local elements, global operations
on the “part” would become impossible, leading to probable deadlocks or crashes.

33in thr future, it will probably be possible to automatically add faces bearing group or attribute characteristics to
a cell mesh, but those faces will only be written for formats supporting this (such as MED 2.3), and will only bear
attributes, not variable fields

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 85/186

6.27 Modification of the mesh zones to post-process: usmpst

Subroutine called only for each modifiable “part”, at every active time step of an associated “writer”.

For the user “parts” defined wvia the user subroutine usdpst and associated only with “writers” allowing
the “part” modification over time (i.e. created with the parameter indmod = 2), this subroutine is
used to modify the lists of cells, internal and boundary faces defining this “part” (or post-processing
mesh).

At first, the corresponding lists contain the previously defined values. If these lists are modified for a
given post-processing mesh, the argument imodif must be given the value 1.If this argument maintains
it’s initial value of 0, the code will not consider this ”part” to have been modified away from that call
and it will offer to bring it upto date. It is in fact at the end of an optimisation so there is no need to
modify these ”parts” within the definate and modifiable assembly (if in doubt, let imodif=1).

Note that the itypps flag can be used to determine whether the current post-processing mesh contains
cells (itypps (1) = 1), internal faces (itypps(2) = 1), or boundary faces (itypps(2) = 1) globally (as
the number of local cells or faces of a processor could be 0, it doesn’t provide sufficient information).
If at any time, a given part contains no element of any type, all the values of itypes will be 0 and that

number cannot be put in the part (nummai) to determine if it will affect the cells or faces3.

The user may refer to the example, in which cells are selected according to a given criterion:

- For a volume “part”, cells for which the velocity exceeds a certain value.

- For a surface “part”, interior faces which are between a cell in which the velocity exceeds a certain
value and a cell in which the velocity is lower than this value (and boundary faces neighboring a cell
in which the velocity exceeds this value). This surface post-processing mesh corresponds therefore to
an approximation of a velocity isosurface.

6.28 Definition of the variables to post-process: usvpst

Subroutine called for each “part”, al every active time step of an associated “writer” (see usdpst).
For the parts defined in usdpst, the subroutine usvpst is used to specify the variables to post-process.

The output of a given variable is generated by means of a call to psteva, whose arguments are:

e nummai: current “part” number (input argument in usvpst).

e namevr: name to give to the variable.

e idimt: dimension of the variable (3 for a vector, 1 for a scalar).
e ientla: indicates if the stored arrays are “interlaced” or not:

— 0: not interlaced, in the form {1, T2, ..., T, Y1, Y2, -, Yn, 215 225 - Zn }
(case of all variables defined in rtp).

— 1: interlaced, in the form {x1, y1, 21,2, Y2, 22, -y Troy Yns Zn }
(case of the geometric parameters, like xyzcen, surfbo, ...).

For a scalar variable, this argument does not matter.
e ivarpr: indicates if the variable is defined on the “parent” mesh or locally:

— 0: variable generated by the user in the given work arrays tracel, trafac, and trafbr
(whose size is respectively the number of cells, internal faces and boundary faces of the
“part”, x3). The arrays lstcel, 1lstfac, and lstfbr can be used to get the numbers
corresponding to the cells, internal faces and boundary faces associated with the “part” and
to generate the appropriate post-processing variable.

341t is not expressly forbidden to associate cells with the “part” at a certain timestep and faces at another, but this
has not been tested

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 86/186

— 1: variable already defined in the main mesh (“parent” mesh of the “parts”), for example
the variables in the rtp array. Instructions in the report which listlstcel, 1lstfac, and
1stfbrwill be treated directly by the sub routine, avoiding unused copies and simplifying
hte code

e ntcabs: absolute current time step number. If a negative value is given (usually -1), the variable
will be regarded as time-independent (and we will have to make sure this call is only made once).

e ttcabs: current physical time value. It is not taken into account if ntcabs < 0.

e tracel: array containing the values of the variable at the cells. If ivarpr = 1, this argument
will be replaced by the position of the beginning of the array on which the variable in defined,
for instance rtp(1, iu(1)) for the velocity of the phase 1.

e trafac: equivalent of tracel for the internal faces.

e trafbr: equivalent of tracel for the boundary faces.

The user may refer to the example, which presents the different ways of generating an output of a
variable.

WARNING: Apart from the time-independent variables, it is not recommended not to generate the
same variables at every call (corresponding to an active time step) for a given mesh, because the post-
processing tool may have difficulties to deal with such a case. To generate outputs of different variables
on the same mesh with different frequancies, it is recommended to create an alias of this mesh and to
associate it with a different “writer” in the subroutine usdpst.

6.29 Modification of the variables at the end of a time step: usproj

Subroutine called every time step.

This subroutine is called at the end of every time step. It is used to print of modify any variable at
the end of every time step.

Several examples are given:

- Calculation of a thermal balance at the boundaries and in the domain (including the mass source
terms)

- Modification of the temperature in a given area starting from a given time
- Extraction of a 1D profile
- Printing of a moment

- Utilisation of utility subroutines useful in the case of a parallel calculation (calculation of a sum
on the processors, of a maximum, ...)

WARNING: As all the variables (solved variables, physical properties, geometric parameters) can be
modified in this subroutine, a wrong use may distort totally the calculation.

The thermal balance example is particularly interesting.

- It can be easily adapted to another scalar (only three simple modifications to do, as indicated in
the subroutine).

- It shows how to make a sum on all the subdomains in the framework of a parallel calculation
(see the calls to the subroutines parx).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 87/186

- It shows the precautions to take before doing some operations in the framework of periodic or
parallel calculations (in particular when we want to calculate the gradient of a variable or to
have access to values at the cells neighboring a face).

- Finally it must not be forgotten that the solving with temperature as a solved variable is ques-
tionable when the specific heat is not constant.

6.30 Radiative thermal transfers in semi-transparent gray media
6.30.1 Initialisation of the radiation main key words: usray1

Subroutine called only during calculation initialisation.

This subroutine is one of the two which must be completed by the user for all calculations including
radiative thermal transfers. This subroutine is composed of three headings. The first one is dedicated
to the activation of the radiation module, only in the case of classic physics.

WARNING: when a calculation is run using a specific physics module, this first heading must not be
completed. The radiation module is then activated or not according to the parameter file related to the
considered specific physics.

In the second heading the basic parameters of the radiation module are indicated.

Finally, the third heading deals with the selection of the post-processing graphic outputs. The variables
to treat are splitted into two categories: the volumetric variables and those related to the boundary
faces.

For more details about the different parameters, the user may refer to the key word list (§7).

6.30.2 Management of the radiation boundary conditions: usray?2

Subroutine called every time step.

This is the second subroutine is necessary for every calculation including radiative thermal transfers.
It is used to give all the necessary parameters concerning, in the one case, the wall temperature
calculation, and in the other, the coupling between the termal scalar (temperature or enthalpy) and
the radiation module at the calculation domain boundaries. It must be noted that the boundary
conditions concerning the thermal scalar which may have been defined in the subroutine usclim will
be modified by the radiation module according to the data given in usray?2 (cf. §6.2).

A zone number must be given to each boundary face 3°and, specifically for the walls, a boundary
condition type and an initialisation temperature (in Kelvin). The initialisation temperature is only
used to make the solving implicit at the first time step. The zone number allows to assign an arbitrary
integer to a set of boundary faces having the same radiation boundary condition type. This gathering
is used by the calculation, and in the listing to print some physical values (mean temperature, net
radiative flux ...). An independent graphic output in EnSight format is associated with each zone and
allows the display on the boundary faces of the variables selected in the third heading of the subroutine
usrayl.

A boundary condition type stored in the array ISOTHP is associated with each boundary face. There
are five different types:

e itpimp: wall face with imposed temperature,

e ipgrno: for a gray or black wall face, calculation of the temperature by means of a flux balance,

35this must be less than the maximum allowable by the code, nozrdm. This is fixed at 2000 in radiat.h and cannot
be modified.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 88/186

e iprefl: for a reflecting wall face, calculation of the temperature by means of a flux balance.
This is fixed at 2000 in radiat.h and cannot be modified.

e ifgrno: gray or black wall face to which a conduction flux is imposed,

e ifrefl: reflecting wall face to which a conduction flux is imposed, which is equivalent to impose
this flux directly to the fluid.

Depending on the selected boundary condition type at every wall face, the code needs to be given some
supplementary pieces of information:

e itpimp: the array tintp must be completed with the imposed temperature value and the array
epsp must be completed with the emissivity value (strictly positive).

e ipgrno: must be given: an initialisation temperature in the array tintp, the wall emissivity
(strictly positive, in epsp), thickness (in epap), thermal conductivity (in xlamp) and an external
temperature (in textp) in order to calculate a conduction flux across the wall.

e iprefl: must be given: an initialisation temperature (in tintp), the wall thickness (in epap)
and thermal conductivity (in xlamp) and an external temperature (in textp).

e ifgrno: must be given: an initialisation temperature (in tintp), the wall emissivity (in epsp)
and the conduction flux (in W/m? whatever the thermal scalar, enthalpy or temperature) in the
array rcodcl. The value of rcodcl is positive when the conduction flux is directed from the
inside of the fluid domain to the outside (for instance, when the fluid heats the walls). If the
conduction flux is null, the wall is adiabatic.

e ifrefl: must be given: an initialisation temperature (in tintp) and the conduction flux (in
W/m? whatever the thermal scalar) in the array rcodcl. The value of rcodcl is positive when
the conduction flux is directed from the inside of the fluid domain to the outside (for instance,
when the fluid heats the walls). If the conduction flux is null, the wall is adiabatic. The flux
received by rcodcl is directly imposed as boundary condition for the fluid.

WARNING: it is obligatory to set a zone number to every boundary face, even those which are not wall
faces. These zones will be used during the printing in the listing. It is recommended to gather together
the boundary faces of the same type, in order to ease the reading of the listing.

6.30.3 Absorption coefficient of the medium, boundary conditions for the lumi-
nance and calcualtion of the net radiative flux: usray3

Subroutine called every time step.

This subroutine is composed of three parts. In the first one, the user must provide the absorption
coefficient of the medium in the array CK, for each cell of the fluid mesh. By default, the absorption
coefficient of the medium is 0, which corresponds to a transparent medium.

WARNING: when a specific physics is activated, it is forbidden to give a value to the absorption co-
efficient in this subroutine. In this case, it is calculated automatically, or given by the user via a
thermo-chemical parameter file (dp-C3P or dp-C3PSJ for gas combustion, and dp-FCP for pulverised
coal combustion,).

The two following parts of this subroutine concern a more advanced use of the radiation module. It
is about imposing boundary conditions to the equation of radiative transfer and net radiative flux
calculation, in coherence with the luminance at the boundary faces, when the user wants to give it a
particular value. In most cases, the given examples do not need to be modified.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 89/186

6.30.4 Encapsulation of the temperature-enthalpy conversion: usray4

Subroutine called every time step.

This subroutine is used to call the subroutine usthht. The user can implement his own conversion
formulas into it.
This subroutine is useless when the thermal scalar is the temperature.

WARNING: when a specific physics is activated, it is forbidden to use this subroutine. In this case,
usray4 is replaced by ppray4, which is not a user subroutine.

The value of the argument mode allows to know in which direction the conversion will be made:

e mode = 1: the fluid enthalpy in the cell must be converted into temperature (in Kelvin),

e mode = -1: the wall temperature (text or tparoi, in Kelvin) must be converted into enthalpy.

WARNING: the value of mode is passed as argument and must not be modified by the user.

6.31 Utilisation of a specific physics: usppmo

Subroutine called only during calculation initialisation.

This is one of the three subroutines which must be obligatory completed by the user in order to
use a specific physics module. At the moment, Code_Saturne allows to use two “pulverised coal”
modules (Lagrangian coupling or not), two “gas combustion” modules, two “electric” modules and
one “compressible” module. To activate one of these modules, the user needs to complete one (and
only one) of the indicators ippmod(i.....) in the subroutine usppmo. By default, all the indicators
ippmod(i.....) are initialised at -1, which means that no specific physics is activated.

e Diffusion flame in the framework of “3 points” rapid complete chemistry: indicator ippmod (icod3p)

— ippmod(icod3p) = 0 adiabatic conditions
— ippmod(icod3p) = 1 permeatic conditions (enthalpy transport)

— ippmod(icod3p) =-1 module not activated
e Eddy Break Up pre-mixed flame: indicator ippmod (icoebu)

— ippmod(icoebu) = 0 adiabatic conditions at constant richness
— ippmod(icoebu) = 1 permeatic conditions at constant richness
— ippmod(icoebu) = 2 adiabatic conditions at variable richness

— ippmod(icoebu) = 3 permeatic conditions at variable richness
=

ippmod (icoebu) =-1 module not activated
e Libby-Williams pre-mixed flame: indicator ippmod(icolwc)

— ippmod(icolwc)=0 two peak model with adiabiatic conditions.

l

ippmod (icolwc)=1 two peak model with permeatic conditions.
— ippmod(icolwc)=2 three peak model with adiabiatic conditions.
— ippmod(icolwc)=3 three peak model with permeatic conditions.
— ippmod(icolwc)=4 four peak model with adiabiatic conditions.
.

ippmod (icolwc)=>5 four peak model with permeatic condintions.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 90/186

— ippmod(icolwc)=-1 module not activated.

e Multi-coals and multi-classes pulverised coal combustion: indicator ippmod(icp3pl) The number
of different coals must be inferior or equal to ncharm = 3. The number of particle size classes
nclpch(icha) for the coal icha, must be inferior or equal to ncpemx = 10.

— ippmod(icp3pl) = 0 imbalance between the temperature of the continuous and the solid
phases
— ippmod(icp3pl) = 1 otherwise
— ippmod(icp3pl) =-1 module not activated
e Lagrangian modeling of multi-coals and multi-classes pulverised coal combustion: indicator
ippmod(icpl3c) The number of different coals must be inferior or equal to ncharm = 3. The
number of particle size classes nclpch(icha) for the coal icha, must be inferior or equal to
ncpemx = 10.
— ippmod(icpl3c) = 1 coupling with the Lagrangian module, with transport of Ho
— ippmod(icpl3c) =-1 module not activated
e Electric arc module (Joule effect and Laplace forces): indicator ippmod(ielarc)
— ippmod(ielarc) = 1 determination of the magnetic field by means of the Ampere’s theorem
(not available)
— ippmod(ielarc) = 2 determination of the magnetic field by means of the vector potential

— ippmod(ielarc) =-1 module not activated
e Joule effect module (Laplace forces not taken into account): indicator ippmod(ieljou)

ippmod(ieljou) = 1 use of a real potential

-
— ippmod(ieljou) = 2 use of a complex potential

— ippmod(ieljou) = 3 use of real potential and specific boundary conditions for transformers.
—

ippmod(ieljou) = 4 use of complex potential and specific boundary conditions for trans-
formers.

— ippmod(ieljou) =-1 module not activated
e Compressible module: indicator ippmod (icompf)

— ippmod (icompf) = 0 module activated

— ippmod(icompf) =-1 module not activated

WARNING: Only one specific physics module can be activated at the same time.

In the framework of the gas combustion modeling, the user may impose his own enthalpy-temperature
tabulation (conversion law). He needs then to give the value zero to the indicator indjon (the default
value being 1). For more details, the user may refer to the following note (thermo-chemical files).

NOTE: THE THERMO-CHEMICAL FILES

The user must not forget to place in the directory DATA the thermo-chemical file dp_FCP, dp_C3P,
dp_C3PSJ or dp_ELE (depending on the specific physics module he activated) and to specify the name
of this file in the variable THERMOCHEMISTRY DATA in the launch script (for instance: THER-
MOCHEMISTRY _DATA”dp-C3P”). Some example files are placed in the directory DATA/THCH at the
creation of the study case. Their content is described below.

e Example of file for the gas combustion:

EDF R&D

Code_Saturne version 2.0.0-rc2 practical
user’s guide

Code_Saturne
documentation
Page 91/186

DIR1

CEN

DIR2

LLY

O

Figure 6: Numbering of the edges of a rectangular inlet(icas=1) treated by the vortex method

Lines| Examples of values Variables Observations
1 5 ngaze Number of current species
2 10 npo Number of points for the
enthalpy-temperature tabulation
3 300. tmin Temperature inferior limit
for the tabulation
4 3000. tmax Temperature superior limit
for the tabulation
5 Empty line
6 |CH4 02 CO2 H20 N2 nomcoe(ngaze) List of the current species
7 .35 .35 .35 .35 .35 kabse(ngaze) Absorption coefficient
of the current species
8 4 nato Number of elemental species
9 01210100 wmolat(nato), Molar mass of the elemental
10 .00140020 species (first column)
11 01602210 atgaze(ngaze,nato) Composition of the current species
12 .01400002 as a function of the elemental species
(ngaze following columns)
13 3 ngazg Number of global species
Here, ngazg = 3 (Fuel, Oxidiser and Products)
14 1. 0. 0. 0. 0. Composition of the global species as a
15 0. 1. 0. 0. 3.76 compog(ngaze,ngazg) | fonction of the current species of the line 6
16 0. 0. 1. 2.7.52 In the order: Fuel (line 15),
Oxidiser (line 16) and Product (line 17)
17 1 nrgaz Number of global reactions
Here nrgaz = 1 (always equal to 1
in this version)
18 igfuel(nrgaz), Numbers of the global species concerned by
12-1-9.5210.52 igoxy(nrgaz), the stoichiometric ratio
(first 2 integers)
stoeg(ngazg,nrgaz) Stoichiometry in reaction global species.
Negative for the reactants (here
“Fuel” and “Oxidiser”) and positive for
the products (here “Products”)

Table 1: Example of file for the gas combustion when JANAF is used: dp_C3P

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 92/186
Lines Examples of values Variables Observations
1 6 npo Number of tabulation points
2 | 50. -0.32E+07 -0.22E+4-06 -0.13E+4-08
3 [250. -0.68E+406 -0.44E+05 -0.13E+08 th(npo), Temperature(first column),
4 450. 0.21E407 0.14E+06 -0.13E+08 |ehgazg(l,npo),| mass enthalpy of fuel, oxidiser
5 650. 0.50E+07 0.33E+06 -0.12E+08 | ehgazg(2,npo), | and products (columns 2,3 and 4)
6 850. 0.80E+07 0.54E+06 -0.12E+08 | ehgazg(3,npo) from line 2 to line npo+1
7 | 1050. 0.11E+08 0.76E+06 -0.11E+08
8 .00219 .1387 .159 wmolg(1), Molar mass of fuel,
wmolg(2), oxidiser
wmolg(3) and products
9 11111 fs(1) Mixing rate at the stoichiometry
(relating to Fuel and Oxidiser)
10 0.4 0.5 0.87 ckabsg(1), Absorption coefficient of fuel,
ckabsg(2), oxidiser
ckabsg(3) and products
11 1. 2. xco02, xh2o0 Molar coefficents of C'O5
and H20 in the products
(radiation using Modak)

Table 2: Example of file for the gas combustion when the user provides his own enthalpy-temperature
tabulation (there must be three species and only one reaction): dp_C3PSJ (this file replaces dp-C3P)

— if the enthalpy-temperature conversion data base JANAF is used: dp_C3P (see arrayl).

— if the user provides his own enthalpy-temperature tabulation (there must be three chemical
species and only one reaction): dp_-C3PSJ (see array 2). This file replaces dp_C3P.

e Example of file for the pulverised coal combustion: dp_FCP (see array 3).

e Example of file for the electric arc: dp_ELE (see array 4).

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 93/186

Lines Examples of values Variables Observations
1 THERMOCHIMIE Comment line
2 8 ncoel Number of current species
3 8 npo Number of points for the
enthalpy-temperature tabulation
4 ESPECES COURANTES Comment line
5 CH4 C2H4 CO O2 CO2 H20 N2 C(S) nomcoel (ncoel) List of the
current species
6 300. tmin Temperature inferior limit (Kelvin)
for the enthalpy-temperature tabulation
7 2400. tmax Temperature superior limit (Kelvin)
for the enthalpy-temperature tabulation
8 4 nato Number of elemental species
9 01212101001 Molar mass of the elemental species
10 00144000200 wmolat (nato), (first column)
11 01600122100 atcoel(ncoel,nato) and composition of the current species
12 01400000020 as a function of the elemental species
13 RAYONNEMENT Comment line
14 0.1 ckabs1 Constant absorption coefficient
for the gas mixture
15 CARACTERISTIQUES CHARBONS Comment line
16 2 ncharb Number of coal types
17 T1 nclpch(ncharb) Number of classes for each coal
(each column corresponding to
one coal type)
18 50.E-6 50.E-6 diam20(nclacp) Initial diameter of each class (m)
nclacp is the total number of classes.
All the diameters are written on the same line
(sucessively for each coal, we give the
diameter corresponding to each class)
19 74.8 60.5 cch(ncharb) Composition in C (mass.-%, dry) of each coal
20 5.1 4.14 hch(ncharb) Composition in H (mass.-%, dry) of each coal
21 12.01 5.55 och(ncharb) Composition in O (mass.-%, dry) of each coal
22 0 31524000. 0 31524000. ipci(ncharb) Value of the PCI (Jkg~ 1) for each coal,
pcich(ncharb) the first integer indicating if this value refers
to pure (0) or dry coal (1)
23 1800. 1800. cp2ch(ncharb) Heat-storage capacity at constant pressure
(Jkg— 1K —1) for each coal
24 1200. 1200. rhoOch(ncharb) Initial density (kg'mf?’) of each
25 Coke Comment line
26 0. 0. cck(ncharb) Composition in C (mass.-%, dry) of the coke
for each coal
27 0. 0. hck(ncharb) Composition in H (mass.-%, dry) of the coke
for each coal
28 0. 0. ock(ncharb) Composition in O (mass.%, dry) of the coke
for each coal
29 0. 0. pcick(ncharb) PCI of the dry coke (Jkg 1) for each coal
30 Cendres Comment line
31 6.3 6.3 xashch(ncharb) Ash mass fraction (mass.-%, dry) in each coal
32 0. 0. hOashc(ncharb) Ash formation enthalpy (chg_l)
for each coal
33 0. 0. cpashc(ncharb) CP of the ashes (Jkgilel) for each coal
34 Dévolatilisation (Kobayashi) Comment line
35 10.37 0 0.37 iylch(ncharb), For each coal, pairs (iyich, yich).
yich(ncharb) The real yich is the adimensional stoich. coefficient
If the integer iylch is worth 1,
the provided value of yich is adopted and
the composition of the light volatile matters
is calculated automatically.
If the integer iyich is worth 0,
the provided value of yich is ignored:
yich is calculated automatically (the light
volatiles are then composed of CHy, CO).
36 10.7410.74 iy2ch(ncharb), For each coal, pairs (iy2ch, y2ch).
y2ch(ncharb) The real y2ch is the adimensional stoich. coefficient
If the integer iy2ch is worth 1,
the provided value of y2ch is adopted and
the composition of the heavy volatile matters
is calculated automatically.
If the integer iy2ch is worth 0,
the provided value of y2ch is ignored:
y2ch is calculated automatically (the heavy
volatiles are then composed of CoHy, CO).
37 370000. 410000. alch(ncharb) Devolatilisation pre-exponential factor Al (s~ 1)
for each coal (light volatile matters)
38 1.3E13 1.52E13 a2ch(ncharb) Devolatilisation pre-exponential factor A2 (s 1)
for each coal (heavy volatile matters)
39 74000. 80000. elch(ncharb) Devolatilisation activation energy E1 (J'mul_l)
for each coal (light volatile matters)
40 250000. 310000. e2ch(ncharb) Energie d’activation E2 (Jmol 1) de dévolatilisation
for each coal (heavy volatile matters)
41 Combustion hétérogéne Ligne de commentaire
42 17.88 17.88 ahetch(ncharb) Char burnout pre-exponential constant
(k'g'm_2s_1at7n_1) for each coal
43 16.55 16.55 ehetch(ncharb) Char burnout activation energy (kcalmol—1)
for each coal
44 11 iochet (ncharb) Char burnout reaction order for each coal
0.5 if iochet = 0 and 1 if iochet = 1

Table 3: Example of file for the pulverised coal combustion: dp_FCP

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 94/186
Li nes | Examples of values Variables Observations
1 # Fichier ASCII format libre ... Free comment
2 | # Les lignes de commentaires ... Free comment
3 # ... Free comment
4 # Proprietes de I’Argon ... Free comment
5 # ... Free comment
6 # Nb d’especes NGAZG et Nb ... Free comment
7 # NGAZG NPO ... Free comment
8 1238 ngazg Number of species
npo Number of given temperature points for
the tabulated physical properties
(npo < npot set in ppthch.h)
So there will be ngazg blocks of npo lines each
9 # ... Free comment
10 | # Proprietes ... Free comment
11 | # T H .. Free comment
12 | # Temperature Enthalpie ... Free comment
13 | # ... Free comment
14 | # K J/kg ... Free comment
15 | # ... Free comment
16 300. 14000. ... Tabulation in line of the physical properties
as a function of the temperature in Kelvin
for each of the ngazg species
h Enthalpy in J/kg
roel Density in kg/m3
cpel Specific heat in J/(kg K)
sigel Electric conductivity in Ohm/m
visel Dynamic viscosity in kg/(m s)
xlabel Thermal conductivity in W/(m K)
xkabel Absorption coefficient (radiation)

Table 4: Example of file for the electric arc module: dp_ELE

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 95/186

6.32 Management of the boundary conditions related to pulverised

coal and gas combustion: usebuc, usd3pc, uslwcc, uscpcl and
uscplc

Subroutines called every time step.
In this paragraph, “specific physics” refers to gas combustion or to pulverised coal combustion.

As are usinil and usppmo, the use of usebuc, usd3pc, uslwcc, uscpcl or uscplc is obligatory to run
a calculation concerning a specific physics modeling. The way of using them is the same as the way of
using usclim in the framework of standard calculations, that is to say several loops on the boundary
faces lists (cf. §6.2) marked out by their colors, groups, or geometrical criterion, where the type of
face, the type of boundary condition for each variable and eventually the value of each variable are
defined.

WARNING: In the case of a specific physics modeling, all the boundary conditions for every variable
must be defined here, even for the eventual user scalars: usclim is not used at all.

In the case of a specific physics modeling, a zone number izone 3¢ (for instance the color icoul) is
associated with every boundary face, in order to gather together all the boundary faces of the same
type. In comparison to usclim, the main change from the user point of view concerns the faces whose
boundary conditions belong to the type itypfb=ientre:

e for the EBU pre-mixed flame module:

— the user can choose between the “burned gas inlet” type (marked out by the burned gas
indicator ientgb(izone)=1) and the “fresh gas inlet” type (marked out by the fresh gas
indicator ientgf (izone)=1)

— for each inlet type (fresh or burned gas), a mass flow or a velocity must be imposed:

- to impose the mass flow,

- the user gives to the indicator iqimp(izone) the value 1,

- the mass flow value is set in qimp(izone) (positive value, in kgs—1!)

- finally he imposes the velocity vector direction by giving the components of a direc-
tion vector in rcodcl (ifac,iu(iphas)), rcodcl(ifac,iv(iphas)) and rcodcl(ifac,iw(iphas

WARNING:

- the variable qimp (izone) refers to the mass flow across the whole zone izone and
not across a boundary face (specifically for the axisymetric calculations, the inlet
suface of the mesh must be broken up)

- the variable qimp (izone) deals with the inflow across the area izoz and only across
this zone;it is recomended to pay attention to the boundary conditions.

- the velocity direction vector is neither necessarily normed, nor necessarily incoming.

- to impose a velocity, the user must give to the indicator iqimp(izone) the value
0 and set the three velocity components (in m.s™!) in rcodcl(ifac,iu(iphas)),
rcodcl(ifac,iv(iphas)) and rcodcl(ifac,iw(iphas))

— finally he specifies for each gas inlet type the mixing rate fment (izone) and the temperature
tkent (izone) in Kelvin

e for the “3 points” diffusion flame module:

— the user can choose between the “oxydiser inlet” type marked out by ientox(izone)=1
and the “fuel inlet” type marked out by ientfu(izone)=1

363izone must be less than the maximum number of boundary zone allowable by the code, nozppm. This is fixed at

2000 in pppvar.h;not to be modified

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 96/186

— concerning the input mass flow or the input velocity, the method is the same as for the EBU
pre-mixed flame module

— finally, the user sets the temperatures tinoxy for each oxydiser inlet and tinfue, for each
fuel inlet

Note: In the standard version, only the cases with only one oxydising inlet type and one
fuel inlet type can be treated. In particular, there must be only one input temperature for
the oxidiser (tinozy) and one input temperature for the fuel (tinfuel).

e for the pulverised coal module:

— the inlet faces can belong to the “primary air and pulverised coal inlet” type, marked
out by ientcp(izone)=1, or to the “secondary or tertiary air inlet” type, marked out by
ientat (izone)=1

— in a way which is similar to the process described in the framework of the EBU module,
the user chooses for every inlet face to impose the mass flow or not (iqimp(izone)=1 or
0). If the mass flow is imposed, the user must set the air mass flow value qimpat (izone),
its direction in rcodcl(ifac,iu(iphas)), rcodcl(ifac,iv(iphas)) and
rcodcl(ifac,iw(iphas)) and the incoming air temperature timpat (izone) in Kelvin. If
the velocity is imposed, he has to set rcodcl(ifac,iu(iphas)),
rcodcl(ifac,iv(iphas)) and rcodcl(ifac,iw(iphas)).

— if the inlet belongs to the “primary air and pluverised coal” type (ientcp(izone) = 1)
the user must also define for each coal type icha: the mass flow qimpcp(izone,icha), the
granulometric distribution distch(izone,icha,iclapc) related to each class iclacp, and
the injection temperature timpcp(izone,icha)

6.33 Initialisation of the variables related to pulverised coal and gas
combustion: usebui, usd3pi, uslwci and uscpiv

Subroutines called only during the calculation initialisation.
In this paragraph, “specific physics” refers to gas combustion or to pulverised coal combustion.

These subroutines allow the user to initialise some variables specific to the specific physics activated
via usppmo. As usual, the user may have access to several geometric variables to discriminate between
different initialisation zones if needed.

WARNING: in the case of a specific physics modeling, all the variables will be initialised here, even
the eventual user scalars: usiniv is no longer used.

e in the case of the EBU pre-mixed flame module, the user can initialise in every cell iel: the
mixing rate rtp(iel,isca(ifm)) in variable richness, the fresh gas mass fraction
rtp(iel,isca(iygfm)) and the mixture enthalpy rtp(iel,isca(ihm)) in permeatic conditions

e in the case of the rapid complete chemistry diffusion flame module, the user can initialise in
every cell iel: the mixing rate rtp(iel,isca(ifm)), its variance rtp(iel,isca(ifp2m)) and
the mixture mass enthalpy rtp(iel,isca(ihm)) in permeatic conditions

e in the case of the pulverised coal combustion module, the user can initialise in every cell iel:

— the transport variables related to the solid phase
rtp(iel,isca(ixch(icla))) the reactive coal mass fraction related to the class icla
(icla from 1 to nclacp which is the total number of classes, i.e. for all the coal type)
rtp(iel,isca(ixck(icla))) the coke mass fraction related to the class icla

rtp(iel,isca(inp(icla))) the number of particles related to class icla per kg of
air-coal mixture

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 97/186

rtp(iel,isca(ih2(icla))) the mass enthalpy related to the class icla in permeatic
conditions

— rtp(iel,isca(ihm)) the mixture enthalpy

— the transport variables related to the gas phase
rtp(iel,isca(ifim(icha))) the mean value of the tracer 1 representing the light
volatile matters released by the coal icha
rtp(iel,isca(if2m(icha))) the mean value of the tracer 2 representing the heavy
volatile matters released by the coal icha
rtp(iel,isca(if3m)) the mean value of the tracer 3 representing the carbon released
as CO during coke burnout
rtp(iel,isca(if4p2m)) the variance associated with the tracer 4 representing the air
(the mean value of this tracer is not transported, it can be deduced directly from the
three others)

rtp(iel,isca(ifp3m)) the variance associated with the tracer 3

6.34 Initialisation of the options of the variables related to pulverised

coal and gas combustion: usebul, usd3pl, uslwcl, uscpil and
uscpll

Subroutines called at calculation beginning.
In this paragraph, “specific physics” refers to gas combustion or pulverised coal combustion.

These 3 subroutines are used to complete usinil for the considered specific physics. They allow to:

e generate, for the variables which are specific to the activated specific physics module, chronolog-

ical outputs (indicators ichrvr (ipp)), follow-ups in the listings (indicator ilisvr (ipp)) and to
activate chronological records at the probes defined in usinil (indicators ihisvr (ipp)).
The way of doing it is the same as in usinil and the writing frequencies of these ouputs are set by
usinil. The values of the indicators ipp are ipp=ipppro (ipproc(ivar)), with ivar the num-
ber of the specific physics variable. Concerning the main variables (velocity, pressure, etc ...) the
user must still complete usinii if he wants to get chronological records, printings in the listing or
chronological outputs. The variables which can be activated by the user for each specific physics
are listed below. The calculation variables ivar (defined at the cell iel by rtp(iel,ivar)) and
the properties iprop (defined at the cell iel by propce(iel,ipproc(iprop))) are listed now:

— EBU pre-mixed flame modeling;:

- Calculation variables rtp(iel,ivar)

ivar = isca(iygfm) fresh gas mass fraction
ivar = isca(ifm) mixing rate
ivar = isca(ihm) enthalpy, if transported
- Properties propce(iel,ipproc(iprop))
iprop = itemp temperature
iprop = iym(1) fuel mass fraction
iprop = iym(2) oxidiser mass fraction
iprop = iym(3) product mass fraction
iprop = ickabs absorption coefficient, when the radiation modeling is activated
iprop = it3m and it4m “T” and “T*” terms, when the radiation modeling is acti-
vated

— rapid complete chemistry diffusion flame modeling;:

everything is identical to the “EBU” case, except from the fresh gas mass fraction which
is replaced by the variance of the mixing rate ivar=isca(ifp2m)

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 98/186

— pulverised coal modeling with 3 comustables:

variables shared by the two phases:
- Calculation variables rtp(iel,ivar)

ivar = isca(ihm): gas-coal mixture enthalpy

ivar = isca(immel): molar mass of the gas mixture

variables specific to the dispersed phase:
- Calculation variables rtp(iel,ivar)

ivar = isca(ixck(icla)): coke mass fraction related to the class icla

ivar = isca(ixch(icla)): reactive coal mass fraction related to the class icla

ivar = isca(dinp(icla)): number of particles of the class icla per kg of air-coal
mixture

ivar = isca(ih2(icla)): mass enthalpy of the coal of class icla, if we are in

permeatic conditions

- Properties propce(iel, ipproc(iprop))

iprop = immel: molar mass of the gas mixture

iprop = itemp2(icla): temperature of the particles of the class icla

iprop = irom2(icla): density of the particles of the class icla

iprop = idiam2(icla): diameter of the particles of the class icla

iprop = igmdch(icla): disappearance rate of the reactive coal of the class icla

iprop = igmdv1(icla): mass transfer caused by the release of light volatiles from
the class icla

iprop = igmdv2(icla): mass transfer caused by the release of heavy volatiles
from the class icla

iprop = igmhet(icla): coke disappearance rate during the coke burnout of the
class icla

iprop = 1ix2(icla): solid mass fraction of the class icla

variables specific to the continuous phase:
- Calculation variables rtp(iel,ivar)

ivar = isca(ifim(icha)): mean value of the tracer 1 representing the light
volatiles released by the coal icha

ivar = isca(if2m(icha)): mean value of the tracer 2 representing the heavy
volatiles released by the coal icha

ivar = isca(if3m): mean value of the tracer 3 representing the carbon released
as CO during coke burnout

ivar = isca(ifdpm): variance of the tracer 4 representing the air

ivar = isca(if3p2m): variance of the tracer 3

- Properties propce(iel,ipproc(iprop))

iprop = itempl: temperature of the gas mixture

iprop = iym1(1): mass fraction of CHx1,, (light volatiles) in the gas mixture

iprop = iym1(2): mass fraction of C'Hxa,, (heavy volatiles) in the gas mixture

iprop = iym1(3): mass fraction of CO in the gas mixture

iprop = iym1(4): mass fraction of O3 in the gas mixture

iprop = iym1(5): mass fraction of CO; in the gas mixture

iprop = iym1(6): mass fraction of HyO in the gas mixture

iprop = iym1(7): mass fraction of Ny in the gas mixture

e set the relaxation coefficient of the density srrom, with

p" ! = srrom * p" + (1 — srrom)p

n+1

(by default, the adopted value is srrom = 0.8. At the beginning of a calculation, a sub-relaxation
of 0.95 may reduce the numerical “schocks”).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 99/186

e set the dynamic viscosity dift10. By default dift10= 4.25 kgm~1s~! (the dynamic diffusivity
being the ratio between the thermal conductivity A and the mixture specific heat C}, in the
equation of enthalpy).

e set the value of the constant cebu of the Eddy Break Up model (only in usebul. By default
cebu=2.5)

6.35 Management of Boundary Conditions of the electric arc: uselcl

sub routine called at each time step.

As in the usinil and usppmo, the use of usecl is required to run an electric calculation. The main
use is the same as occurs in usclim for the standard Code_Saturne calculations, for which different
loops on the boundary faces is defined. Each faces list is built with the use of selection criteria (cf.
§6.2), and is referenced by their group(s), their color(s) or geometrical criterions. The face type, the
boundary conditions for each variable, and finally the value of each variable or imposed flow are fixed.

WARNING:for the electric module, , the boundary conditions of all the variables are defined here, even
those of the eventual user scalars: usclim is not used at all.

For the electric module, each boundary face is associated with a number izone ®7(the color icoul for
example) in order to group together all the boundary faces of the same type. In the report usclim,
the main change from the users point of view concerns the specification of the boundary conditions of
the potential, which isn’t implied by default. The Dirichlet and Neumann conditions must be imposed

explicitly using icodcl and rcodcl (as would be done for the classical scalar).

Whats more, if one wishes to slow down the power dissipation(Joule module effect) or the current
(electric arc module) from the imposed values (puismp and couimp respectively), they can be changed
by the potential scalar as shown below:

- For the electric arc, the imposed potential difference can be a fixed variable: for example, the
cathode can be fixed at 0 and the potential at the anode contains the variable dpot. This variable
is initialised in uselil by an estimated potential difference. If ielcor=1 (see uselil), dpot is
updated automatically during the calculation to obtain the required current.

- For the Joule module effect, dpot is again used with the same signification as in the electric arc
module. If dpot is not wanted in the setting of the boundary condtions, the variable coejou can
be used. coejou is the coefficient by which the potential difference is multiplied to obtain the
desired power dissipation. By default this begins at 1 and is updated automatically. If ielcor=1
(see uselil), multiply the imposed potentials in uselcl by coejou at each time step to achieive
the desired power dissipation.

WARNING: In alternative current, attention should be paid to the values of potential imposed at the
limits: the variable named “real potential” represents an affective value if the current is in single phase,
and a “real part” if not.

- For the Joule studies, a complex potential is someitmes needed (ippmod(ieljou)=2): this is the
case in particular where the current has 3 phases. To have access to the phase of the potential,
and not just its amplitude, the 2 variables must be deleted: in Code_Saturne, there are 2 arrays
specified for this role, the real part and the imaginary part of the potential. For use in the
code, these variables are named “real potential” and “imaginary potential”. For an alternative
sinusoidal potential Pp, the maximum value is noted as Ppy.x, the phase is noted as ¢, the real
potential and the imaginary potential are respecively Ppmax cos¢ and Ppyax sine.

37izone must be less than the maximum value allowed by the code, nozzppm. This is fixed at 2000 in ppvar.h and

cannot be modified.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 100/186

6.36

- For the Joule studies in which one does not have access to the phases, the real potential (imaginary

part =0) will suffice (ippmod(ieljou)=1): this is obviously the case with continous current,
but also with single phase alternative current. In Code_Saturne there is only 1 varialbe for the
potential, called ”real potential”. Pay attention to the fact that in alternate current, the "real
potential” represents a effective value of potential , % Pppax (in continous current there is no

such ambiguity).

Initialisation of the variables in the electric module

subroutine called only at the initialisation of the calculation

This subroutine allows the user to initialise some of the specific physics variables prompted via usppmo
. The user has access, as usual, to many geometric variables so that the zones can be differentiated if
needed.

WARNING: For the specific physics, it is here that all varialbes are initialsed: usiniv is not used

This subroutine works like usiniv. The values of potential and its constiuents are initialised if required.

It should be noted that the enthalpy is important.

6.37

- For the electric arc module, the enthalpy value is taken from the temperature of reference

t0(iphas) (given is usinil) from the temperature-enthalpy tables supplied in the data file
dp_ELE. The user must not intervene here.

- For the Joule effect module, the value of enthalpy must be specified by the user . An example

is given of how to obtain the enthalpy from the temperature of reference TO (IPHAS)(given in
usinil), the the temperature-enthalpy low must be supplied. A code is suggested in the sub
routine usthht(which is there for the determination of physical properties).

Initialisation of the variable options in the electric module

subroutine called at each time step

This subroutine is completed in usinil for the specific physics. It allows:

e Activates the variables in the specific physics module, the chronolgical outputs (ichrvr (ipp)

indicators), the listings (ilisvr(ipp) indicators) and the historical exits at the probes defined
in usinil (ihisvr(ipp) indicators). The functions are the same as in usinil and the script
frequency of the exits are fixed using usinil. The indicators ipp are for the value ipp=ipppro
(ipproc(ivar), with ivar, the number of specific physics varibles. With the main variables
which concern the user (velocity, pressure, etc), the user must always use usinil if the his-
tory,the listings or the chronological files are required. The variables which the user can acti-
vate are marked out. The number of variables in the calculation is given in ivar (defined by
propce(iel,ipproc(iprop) for cell iel):

— Electric Arc Module:

- Calculation variables rtp(iel,ivar)
ivar = isca(ihm) enthalpy

ivar = isca(ipotr) real potentiel

ivar = isca(ipotva(i)) solved components of the potential vector.

ivar = isca(iycoel(iesp)) the mass fraction of ngazg composites if there are more
than 1

- Properties propce(iel,ipproc(iprop))
iprop = itemp temperature

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 101/186
iprop = iefjou power dissipation by the Joule effect.
iprop = ilapla(i) components of the laplace forces.

— Joule Module effect :

- Calculation variables rtp(iel,ivar)

ivar = isca(ihm) enthalpy
ivar = isca(ipotr) real potential
ivar = isca(ipoti) imaginary potential if its to be taken into account
ivar = isca(iycoel(iesp)) the mass fraction of ngazg composites if there are more
than 1
- Properties propce(iel,ipproc(iprop))
iprop = itemp temperature
iprop = iefjou volumic power dissipation by Joule effect.

e to give the coefficient of relaxation of the density srrom:
p" 1 = srrom * p" + (1 — srrom)p”
(for the electric arc, the sub-relaxation is taken into account during the 2nd time step; for the
Joule effect the sub relaxation is not accounted for unless the user specifies in uselph

e indicates if the data will be fixed in the power dissipation or in the current, done in ielcor.

e target current fixed as couimp (electric arc module) or the power dissipation puism (Joule module
effect).

e Fix the initial value of potential difference dpot, the for the calculations with a single fixed
parameter as couimp or puism.

6.38 Management of variable physical properties in the electric mod-
ule

Subroutine called at each time step

All the laws of the variation of physical data of the fluid are written (where neccessary) in this sub-
routine... The subroutine replaces usphyyv and a similar component.

WARNING: For the electric module, it is here that all the physical variables are defined (including the
relative cells and the eventuel user scalars):usepelph is not used.

The user should ensure that the defined variation laws are valid for the whole range of variables.
Particular attention should be taken with the non-linear laws (for example, a 3rd degree polynomial
law giving negative values of density)

WARNING: with the electric module, all the physical propertie are assumed as variables and so are
stored in the propce array. cp0, visclsO, visclO are not used

For the Joule effect, the user is required to supply the physical properties in the sub- routine. Examples
are given which are to be adapted by the user. If the temperature is to be determined to calculate
the physical properties, the solved variable, enthalpy must be deduced. The preffered temperature-
enthalpy law can be selected in the subruotine usthht (an example of the interpolation is given from
the law table. This subroutine can be re-used for the initialisation of the variables(useliv)) For the
elecrtic arc module, the physical properties are intepolated from the data file dp_ELE supplied by the
user. Modification is not generally necessary.

6.39 Management of the post-processing output in the electric mod-
ule: uselen

Subroutine called at each chronological output

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 102/186

This subroutine allows the addition on n variables in the preprocessing output and works like the
subroutine usvpst (with the electric module, it is however also possible to use usvpst.

The algebraic variables related to the electric module are provided by default provided that they are
not explicitely contained in the propce array:

- gradient of real potential in Vm ™! (grad Potg = —E)

- density of real current in Am=? (j = oE)
specifically for the Joule module effect with ippmod(ieljou)=2 :

- gradient of imaginary potential in Vm ™!

- density of real current in Am =2
specifically for the electric arc module with ippmod(ielarc)=2:
- magnetic field in T (B = rot A)

If it is convenient for the user, there is no need to add this subroutine into the SRC directory: the
post-processing will be done automatically (at the same frequency (NTCHR) as the other calculation
variables)

6.40 Compressible module

When the compressible module3® is activated, it is recommended to:

- use the option “time step variable in time and uniform in space” (idtvar=1) with a maximum
Courant number of 0.4 (coumax=0.4): these choices must be written in usinii

- keep the convective numerical schemes proposed by default.

6.40.1 Initialisation of the options of the variables related to the compressible
module: uscfx1 and uscfx2
Subroutine called every time step.
These subroutines complete usinil.

uscfxl allows to set non standard calculation options related to the compressible module, and in
particular to fill in the key word icfgrp allowing to take into account the hydrostatic equilibrium in
the boundary conditions.

uscfx2 allows to specify for the molecular thermal conductivity and the volumetric viscosity the
following pieces of information:

- variable or not (iviscv)

- reference value (viscv0)

38For more details concerning the compressible version, the user may refer to the document “Implantation d’un
algorithme compressible dans Code_Saturne”, Rapport EDF 2003, HI-83/03/016/A, P. Mathon, F. Archambeau et J.-M.
Hérard.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 103/186

6.40.2 Management of the boundary conditions related to the compressible mod-
ule: uscfcl

Subroutine called every time step.

The use of uscfcl is obligatory to run a calculation using the compressible module just as it is in both
usinil and usppmo . The way of using it is the same as the way of using usclim in the framework of
standard calculations, that is to say several loops on the boundary faces lists (cf. §6.2) marked out by
their colors, groups, or geometrical criterion, where the type of face, the type of boundary condition
for each variable and eventually the value of each variable are defined.

WARNING: in the case of a calculation using the compressible module, the boundary conditions of all
the variables are defined here, even those of the eventual user scalars: usclim is not used at all.

In the compressible module, the different available boundary conditions are the followings:

- inlet/outlet for which everything is known
- supersonic outlet

- subsonic inlet

- subsonic wall

- wall

- symmetry

6.40.3 Ininitialisation of the variables related to the compressible module: uscfxi

Subroutine called only during calculation initialisation.

This subroutine is used to initialise some variables specific to the specific physics activated via usppmo.
As usual, the user may have access to several geometric variables to discriminate between different
initialisation zones if needed.

WARNING: in the case of a specific physics modeling, all the variables are initialised here: usiniv is
not used at all.

This subroutine works like usiniv for velocity, turbulence and passive scalars. Concerning pressure,
density, temperature and specific total energy, only 2 variables out of the 4 are independant. The
user may also initialise the variable pair he wants (apart from temperature-energy) and the two other
variables will be calculated automatically by giving the right value to the variable iccfth used for the
call to uscfth.

6.40.4 Compressible module thermodynamics: uscfth

This subroutine is called several times every time step (boundary conditions, physical properties, solving
of the energy equation, ...).

This subroutine is used to set the thermodynamics parameters. By default, the perfect gas laws are
implemented. If the user needs to use other laws (perfect gas with variable Gamma, Van der Waals),
he must modify this subroutine.

6.40.5 Management of the variable physical properties in the compressible mod-
ule: uscfpv

Subroutine called every time step.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 104/186

If necessary, all the variation laws of the fluid physical properties (viscosity, specific heat, ...) are
described here. This subroutine replaces and is similar to usphyv.

The user should make sure that the defined variation laws are valid for the whole variation range of
the variables.

6.41 Lagrangian modeling of multiphasic flows with dipersed inclu-
sions

6.41.1 Initialisation of the main key words in the Lagrangian modeling: uslagl

Subroutine called only during calculation initialisation.

This is one of the two subroutines which must be completed in the case of a calculation modeling a
Lagrangian multiphasic flow. This subroutine gathers in different headings all the key word which are
necessary to configure the Lagrangian module. The different headings refer to:

e the global configuration parameters

e the specific physical models describing the particle behaviour

e the backward coupling (influence of the dispersed phase on the continuous phase)
e the numerical parameters

e the volumetric statistics

e the boundary statistics

e the postprocessing in trajectory mode

For more details about the different parameters, the user may refer to the key word list (§7.8).

The results of the lagangian module consist in some information about the particle cloud. These pieces
of information are displayed in the form of statistics. It is therefore necessary to activate the calcula-
tion of the statistics at a given instant during the simulation. To do so, there are different strategies
which are strongly related to the flow nature, stationary or not.

Except from the cases where the injection conditions depend on the time, it is generally recommended
to realise a first Lagrangian calculation whose aim is to get a nearly constant particle number in the
calculation domain. In a second step, a calculation restart is done to calculate the statistics.

When the single-phase flow is steady and the inclusion presence rate is low enough to neglect their
influence on the continuous phase behaviour, it is better to realise a Lagrangian calculation on a fixed
field. It is then possible to calculate stationary volumetric statistics and to give a statistical weight
higher than 1 to the particles, in order to reduce the number to treat while keeping the right concen-
trations.

Otherwise, when the continuous phase flow is stationary, but the backward coupling must be taken
into consideration, it is still possible to activate stationary statistics.

When the continuous phase flow is non-stationary, it is no longer possible to use stationary statistics.
To have correct statistics at every moment in the whole calculation domain, it is imperative to have
an established particle seeding and it is recommended (when it is possible) not to impose statistical
weights different from the unity.

Finally, when the complete model is used for the turbulent dispersion modeling, the user must make
sure that the volumetric statistics are directly used for the calculation of the locally undisturbed fluid
flow field.

When the thermal evolution of the particles is activated, the associated particulate scalars are always
the inclusion temperature and the locally undisturbed fluid flow temperature expressed in degrees

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 105/186

Celsius, whatever the thermal scalar associated with the continuous phase is (temperature or enthalpy).
If the thermal scalar associated with the continuous phase is the temperature in Kelvin, the unit change
is done automatically. If the thermal scalar associated with the continuous phase is the enthalpy, the
enthalpy-temperature conversion subroutine usthht must be completed for mode=1, and must express
temperatures in degrees Celsius.

In all cases, the thermal backward coupling of the dispersed phase on the continuous phase is adapted
to the thermal scalar transported by the fluid.

WARNING: Up to now, parallelism and periodicity are not compatible with the Lagrangian module.
This compatibility will be soon implemented. It is however possible, in the framework of a Lagrangian
calculation on a fized field, to realise in a first step the calculation of the continuous phase using
parallelism, and to conduct in a second step the Lagrangian calculation by doing a restart on only one
processor.

6.41.2 Management of the boundary conditions related to the particles: uslag?
and uslain

In the framework of the multiphasic lagrangrian modeling, the management of the boundary conditions
concerns the particle behaviour when there is an interaction between its trajectory and a boundary
face. These boundary conditions may be imposed independently of those concerning the eulerian fluid
phase (they are of course generally coherent). The boundary condition zones are actually redefined by
the Lagrangian module (cf. §6.2), and a type of particle behaviour is associated with each one.

The management of the Lagrangian boundary conditions is done by means of several user subroutines:
uslag? for the classic conditions and uslain to specify profiles if necessary. Otherwise, the subroutine
uslabo allows to define the type of particle/wall interaction. It will be described in a specific paragraph.

SUBROUTINE USLAG2

Subroutine called every time step.

It is the second indispensable subroutine for every calculation using the Lagrangian module. The main
numerical variables and “pointers” are described below.

ifrlag(nfabor) [ia]: In the Lagrangian module, the user defines nfrlag boundary zones from the
color of the boundary faces, or more generally from their properties (colors, groups ...),
from the boundary conditions defined in usclim, or even from their coordinates. To do
so, the array ifrlag(nfabor) giving for each face ifac the number ifrlag(ifac) corre-
sponding to the zone to which it belongs, is completed. The zone numbers (i.e. the values
of ifrlag(ifac)) are chosen freely by the user, but must be strictly positive integers infe-
rior or equal to nflagm (parameter stored in lagpar.h, whose default value is 100). A zone
type is associated with every zone; it will be used to impose global boundary conditions.
WARNING: it is essential that every boundary face belongs to a zone..

iusncl(nflagm) [ia]: For all the nfrlag boundary zones previously identified, the number of classes
nbclas®® of entering particles is given: iusncl(izone) = nbclas. By default, the number
of particle classes is zero. The maximum number of classes is nclagm (parameter stored in
lagpar.h, whose default value is 20)..

iusclb(nflagm) [ia]: For all the nfrlag boundary zones previously identified, a particle boundary
condition type is given. There are two categories of particle boundary condition types: those
predefined in the subroutine uslabo (marked out by the key words ientrl, isortl, irebol,
idepol, idepo2, idepo3, iencrl) and the user boundary condition types (marked out by
the key words jbordl to jbord5), whose corresponding particle behaviour must be defined
in the subroutine uslabo.

394 class is a set of particles sharing the same physical properties and the same characteristics concerning the injection
in the calculation domain

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 106/186

if iusclb(izone) = ientrl, izone is a particle injection zone. For each particle class associated
with this zone, some pieces of information must be given (see below). If a particle trajectory
crosses an injection zone, then we consider that this particle leaves the calculation domain.

if iusclb(izone) = isortl, the particles interacting with the zone izone leave the calculation
domain.

if iusclb(izone) = irebol, the particles undergo an elastic rebound on the boundary zone
izone.

if iusclb(izone) = idepol, the particles settle definitevely on the boundary zone izone. These
particles can not be put in suspension again, and we consider that they leave the calculation
domain.

if iusclb(izone) = idepo2, the particles settle definitevely on the boundary zone izone, but
they are kept in the calculation domain. This distinction with the type idepo1 is useful only when
post-processings in movement mode (ifensi2 = 1) are realised: the particles do not disappear
after touching the boundary zone. However, using idepo2 type zones necessitates more memory
than using idepol type zones.

if iusclb(izone) = idepo3, the particles settle on the boudary zone izone, but can be put in
suspension again depending on the local description of the continuous phase flow.

if iusclb(izone) = iencrl, the particles which are coal particles (if iphyla = 2) can become
fouled up on the zone izone. The slagging is a idepol type deposit of the coal particle if a
certain criterion is respected. Otherwise, the coal particle rebounds (irebol type behaviour).
This boundary condition type is available if iencra = 1. A limit temperature tprenc, a critical
viscosity visref and the coal composition in mineral matters must be given in the subroutine
uslagl. The slagging criterion given by default may be modified in the subroutine uslabo.

if iusclb(izone) = jbordl to jbord5, then the particle interaction with the boundary zone
izone is given by the user. The particle behaviour associated with each type jbord* must be
defined in the subroutine uslabo.

iuslag(nclagm, nflagm, ndlaim) [ia]: Some pieces of information must be given for each particle

class associated with an injection zone. The first part consists in integers contained in the
array iuslag. There are at the most ndlaim integers. These pieces of information must be
provided for each class iclas and each particle injection zone izone. They are marked out
by means of “pointers”:

— iuslag(iclas,izone,ijnbp): number of particles to inject in the calculation domain per class

and per zone.

— iuslag(iclas,izone,ijfre): injection period (expressed in number of time steps). If the

period is null, then there is injection only at the first absolute Lagrangian time step (including
the restart calculations).

— iuslag(iclas,izone,ijuvw): type of velocity condition:

- if iuslag(iclas,izone,ijuvw) = 1, the particle velocity vector is imposed, and its com-
ponents must be given in the array ruslag (see below).

- if iuslag(iclas,izone,ijuvw) = 0, the particle velocity is imposed perpendicular to the
injection boundary face and with the norm ruslag(iclas,izone,iuno).

- if iuslag(iclas,izone,ijuvw) = -1, the particle injection velocity is equal to the fluid
velocity at the center of the cell neighboring the injection boundary face.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 107/186

— iuslag(iclas,izone,inuchl): when the particles are coal particles (iphyla = 2), this part
of the array contains the coal index-number, between 1 and ncharb (defined by the user in the
thermo-chemical file dp_FCP, with ncharb<ncharm = 3).

ruslag(nclagm, nflagm, ndlagm) [ral]: Some pieces of information must be given for each particle
class associated with an injection zone. The second and last part consists in real numbers
contained in the array ruslag. There are at the most ndlagm such real numbers. These
pieces of information must be provided for each class iclas and each particle injection zone
izone. They are marked out by means of “pointers”:

— ruslag(iclas,izone,iuno): norm of the injection velocity,
useful if iuslag(iclas,izone,ijuvw) = 0.

— ruslag(iclas,izone,iupt), ruslag(iclas,izone,ivpt),
ruslag(iclas,izone,iwpt): components of the particle injection vector,
useful if iuslag(iclas,izone,ijuvw) = 1.

— ruslag(iclas,izone,idebt): allows to impose a particle mass flow. According to the number
of injected particles, the particle statistical weight tepa(npt, jrpoi) is recalculated in order to
respect the required mass flow (the number of injected particles does not change). When the
mass flow is null, it is not taken into account.

— ruslag(iclas,izone,ipoit): particle statistical weight per class and per zone.

— ruslag(iclas,izone,idpt): particle diameter. When the particles are coal particles (iphyla
= 2), this diameter is provided by the thermo-chemical file dp_FCP wvia the array diam20(iclg),
where iclg is the “pointer” on the total class number (i.e. for all the coal types). When the
standard deviation of the particle diameter is different from zero, this diameter becomes a mean
diameter.

— ruslag(iclas,izone,ivdpt): standard deviation of the injection diameter. To impose this
standard deviation allows to respect granulometric distribution: the diameter of each particle
is calculated from the mean diameter, the standard deviation and a gaussian random number.
In this case, it is strongly recommended to intervene in the subroutine uslain to restrict the
diameter variation range, in order to avoid aberrant values. If this standard deviation is null,
then the particle diameter is constant per class and per zone.

— ruslag(iclas,izone,iropt): particle density. When the particles are coal particles (iphyla
= 2), this density is set in the thermo-chemical file dp_FCP wvia the array rhoOch(icha), where
icha is the coal number.

— ruslag(iclas,izone,itpt): particle injection temperature in °C. Useful if iphyla = 1 and if
itpvar = 1.

— ruslag(iclas,izone,icpt): particle injection specific heat. Useful if iphyla = 1 and if itpvar
= 1. When the particles are coal particles (iphyla = 2), the specific heat is set in the thermo-
chemical file dp_FCP via the array cp2ch(icha).

— ruslag(iclas,izone,iepsi): particle emissivity. Useful if iphyla = 1 and if itpvar = 1, and
if the radiation module is activated for the continuous phase (note: when iphyla = 2, the coal
particle emissivity is given the value 1).

— ruslag(iclas,izone,ihpt): particle injection temperature in °C when these particles are coal
particles. The array ruslag(iclas,izone,itpt) is then no longer active. Useful if iphyla =
2.

— ruslag(iclas,izone,imcht): mass of reactive coal. Useful if iphyla = 2.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 108/186

— ruslag(iclas,izone,imckt): mass of coke. This mass is null if the coal did not begin to burn
before its injection. Useful if iphyla = 2.

iusvis(nflagm) [ia]: In order to display the variables at the boundaries defined in the subroutine
uslagl, this array allows to select the boundary zones on which a display is wanted. To
do so, a number is associated with each zone izone. If this number is strictly positive,
the corresponding zone is selected; if it is null, the corresponding zone is eliminated. If
several zones are associated with the same number, they will be displayed together in the
same selection with EnSight. Each selection will be split in EnSight parts according to the
geometric types of the present boundary faces ((i.e. 'tria3’, ’quad4’ and 'nsided’)..

SUBROUTINE USLAIN

Subroutine called every time step.
It is not obligatory to intervene in this subroutine.

uslain is used to complete uslag2 when the particles must be injected in the domain according to fine
constraints (profile, position, ...): the arrays ettp, tepa and itepa can be modified here for the new
particles (these arrays were previously completed automatically by the code from the data provided
by the user in uslag?2).

In the case of a more advanced utilisation, it is possible to modify here all the arrays ettp, tepa and
itepa. The particles already present in the calculation domain are marked out by an index varying
between 1 and nbpart. The particles entering the calculation domain at the current iteration are
marked out by an index varying between nbpart+1 and nbpnew.

6.41.3 Treatment of the particle/boundary interaction: uslabo

Subroutine called at every particle/boundary interaction.
It is not obligatory to intervene in this subroutine, but it is required in four different cases.

Firstly, an intervention is required when jbord* type boundary conditions are used: it is then necessary
to code in this subroutine the corresponding particle/boundary interactions.

Secondly, it is possible to select the particle/boundary interaction types (irebol, idepol, ...) for
which the user wants to save the wall statistics activated in the subroutine uslagi.

Thirdly, if user boundary statistics are activated via the key word nusbor in the subroutine uslagi,
it is then necessary to program them in the subroutine uslabo. When the boundary statistics are
stationary, these new boundary statistics are added using the array parbor. When they are non-
stationary (number of Lagrangian iterations lower than nstbor, or isttio = 0), the array parbor is
reset at every iteration.

Fourthly, when the user wants to modify the formulation of the wall slagging by the coal particles, it
is then necessary to program the new laws in the subroutine uslabo.

CONSTRUCTION RULES OF A NEWTPARITCLE/BOUNDARYINTERACTTON

1. The real numbers kx, ky, kz provide the coordinates of the intersection point between the current
particle trajectory and the interacting boundary face.

2. If the user wants to modify the particle position, it can be done directly via the arrays ettp and
ettpa:

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 109/186

- new departure point of the current trajectory segment:
ettpa(npt,jxp), ettpalnpt, jyp), ettpa(npt, jzp)

- new arrival point of the current trajectory segment:
ettp(npt, jxp), ettp(npt, jyp), ettp(npt,jzp)

3. The particle and the fluid velocities may be modified according to the desired interaction via the
arrays vitpar and vitflu, they must not be modified via ettp and ettpa in this subroutine.

4. For a given interaction, it is necessary to specify the key word isuivi:

- isuivi = 0 if the particle does not need to be followed in the mesh after the interaction
between its trajectory and the boundary face (by default, it is the case for ientrl, isortl,
idepol, idepo2);

- isuivi = 1 to continue to follow the particle in the mesh after its interaction (by default, it
is the case for irebol and idepo3). The value of isuivi may be a function of the particle
and boundary state (for instance, isuivi = 0 or 1 depending on the physical properties for
the interaction type iencrl).

5. The array zone itepa(npt, jisor), containing the index-number of the cell where the particle
is, must be updated. Generally:

- itepa(npt, jisor) = ifabor(kface) when the particle stays in the calculation domain
(kface is the number of the interacting boundary face).

- itepa(npt,jisor) = 0 to eliminate definitively the particle from the calculation domain.

NOTE: ORDER OF THE NUMERICAL SCHEME AFTER A PARTICLE/BOUNDARY INTERACTION

When a particle interacts with a boundary face, the integration order of the associated stochastic
equations is always a first-order, even if a second-order scheme is used elsewhere.

6.41.4 Option for particle cloning/merging: uslaru

Subroutine called every Lagrangian iteration.

An intervention in this subroutine is required if the particle cloning/merging option is activated via
the key word iroule. The importance function croule must then be completed.

The aim of this technique is to reduce the number of particles to treat in the whole flow and to refine the
description of the particle cloud only where the user wants to get volumetric statistics more accurate
than in the rest of the calculation domain.

The values given to the importance function are strictly positive real numbers allowing to classify the
zones according to their importance. The higher the value given to the importance function, the more
important the zone.

For instance, when a particle moves from a zone of importance 1 to a zone of importance 2, it undergoes
a cloning: the particle is replaced by two identical particles, whose statistical weight is the half of the
initial particle. When a particle moves from a zone of importance 2 to a zone of importance 1, it
undergoes a fusion: the particle survives to its passing through with a probability of 1/2. A random
dawing is used to determine if the particle will survive or disappear.

In the same way, when a particle moves from a zone of importance 3 to a zone of importance 7, it
undergoes a cloning. The particle is cloned in Int(7/3)=2 or Int(7/3)+1=3 particles with a probability
of respectively 1-(7/3-Int(7/3))=2/3 and 7/3-Int(7/3)=1/3. If the particle moves from a zone of
importance 7 to a zone of importance 3, it undergoes a fusion: it survives with a probability of 3/7.

WARNING: The importance function must be a strictly positive real number in every cell

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 110/186

6.41.5 Manipulation of particulate variables at the end of an iteration and user
volumetric statistics: uslast and uslaen
uslast: subroutine called at the end of every Lagrangian iteration
uslaen: subroutine called at every chronological output and every listing printing

The subroutine uslast is called at the end of every Lagrangian iteration, it allows therefore the
modification of variables related to the particles, or the extraction and preparation of data to display
in the listing or the post-processing.

An intervention in both subroutines uslast and uslaen is required if supplementary user volumetric
statistics are wanted.

USER VOLUMETRIC STATISTICS:

The volumetric statistics are calculated by means of the array statis. Two situations may happen:

- the calculation of the statistics is not stationary: statis is reset at every Lagrangian iteration;

- the calculation of the statistics is stationary: the array statis is used to store cumulated values
of variables, which will be averaged at the end of the calculation in the subroutine uslaen.

According to the user parameter settings, it may happen that during the same calculation, the statistics
will be non-stationary in a first part and stationary in second part.

e USER VOLUMETRIC STATISTICS: SUBROUTINE USLAST

In this subroutine, the variable whose volumetric statistic is wanted is stored in the array statis.
In the framework of stationary statistics, the average itself is calculated in the subroutine uslaen.
This average is obtained through the division of the cumulated value by:
- either the duration of the stationary statistics calculation stored in the variable tstat,
- or the number of particles in statistical weight.
This method of averaging is applied to every piece in the listing and to the post-processing
outputs.

e USER VOLUMETRIC STATISTICS: SUBROUTINE USLAEN

In this subroutine is calculated the average corresponding to the cumulated value obtained in the
subroutine uslast. This subroutine is also used for the standard volumetric statistics. Several
examples are therefore described.

6.41.6 User stochastic differential equations: uslaed

Subroutine called every Lagrangian sub-step.

An intervention in this subroutine is required if supplementary user variables are added to the particle
state vector (arrays ettp and ettpa).

The integration of the stochastic differential equations associated with supplementary particulate vari-
ables is done in this subroutine.

When the integration scheme of the stochastic differential equations is a first-order (nordre = 1), this
subroutine is called once every Lagrangian iteration, if it is a second-order (nordre = 2), it is called

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 111/186

twice.

The solved stochastic differential equations must be written in the form:

e, @, 11

dt T¢

where @, is the Ith supplementary user variable (nvls in total) available in ettp(nbpmax, jvls(i))
and in ettpa(nbpmax, jvls(i)), 74 is a quantity homogen to a characteristic time, and II is a coefficient
which may be expressed as a function of the other particulate variables contained in ettp and ettpa.
In order to do the integration of this equation, the following parameters must be provided:

- Ty, equation characteristic time, in the array auxl1 for every particle,

- II , equation coefficient, in the array aux12. If the integration scheme is a first-order, then IT
is expressed as a function of the particulate variables at the previous iteration, stored in the
array ettpa. If the chosen scheme is a second-order, then IT is expressed at the first call of
the subroutine (prediction step nor = 1) as a function of the variables at the previous iteration
(stored in ettpa), then at the second call (correction step nor = 2) as a function of the predicted
variables stored in the array ettp.

If necessary, the thermal characteristic time 7., whose calculation can be modified by the user in the
subroutine uslatc, is stored for each particle in the part tempct (nbpmax,1) of the array tempct.

6.41.7 Particle relaxation time: uslatp

Subroutine called every Lagrangian sub-step.
An intervention in this subroutine is not obligatory.

In this subroutine, the particle relaxation time may be modified according to the chosen formulation
of the drag coefficient.
The particle relaxation time, modified or not by the user, is available in the array taup.

6.41.8 Particle thermal characteristic time: uslatc

Subroutine called every Lagrangian sub-step.
An intervention in this subroutine is not obligatory.

In this subroutine, the particle thermal characteristic time may be modified according to the chosen
correlation for the calculation of the Nusselt number.

The thermal characteristic time, modified or not by the user, is available in the zone tempct (nbpmax, 1)
of the array tempct.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 112/186

7 Key word list

The key words are classified under headings. For each key word of the Kernel of Code_Saturne, the
following data are given:

Variable name Type Allowed values [Default) 0/C Level
Description
Potential dependences

e Variable name: Name of the variable containing the key word.
e Type: a (Array), i (Integer), r (Real number), ¢ (Character string).
e Allowed values: list or range of allowed values.

e Default: value defined by the code before any user modification (every key word has one). In
some cases, a non-allowed value is given (generally —999 or —10'2), to force the user to specify
a value. If he does not do it, the code may:

- automatically use a recommended value (for instance, automatical choice of the variables
for which chronological records will be generated).

- stop, if the key word is essential (for instance, value of the time step).
e O/C: Optional/Compulsory
- O: optional key word, whose default value may be enough.
- C: key word which must imperatively be specified (for instance, the time step).

e Level: L1, L2 or L3

- L1 (level 1): the users will have to modify it in the framework of standard applications.
The L1 key words are written in bold.

- L2 (level 2): the users may have to modify it in the framework of advanced applications.
The L2 key word are all optional.

- L3 (level 3): the developers may have to modify it ; it keeps its default value in any other
case. The L3 key word are all optional.

e Description: key word description, with its potential dependences.
The L1 key words can be modifed through the Graphical Use Interface or in the usinii subroutine.
L2 and L3 key words can only be modified through the usiniil subroutine, even if they do not appear

in the version proposed as example it the SRC/REFERENCE/base directory.
It is however recommended not to modify the key words which do not belong to the L1 level.

The alphabetical key word list is displayed in the index, in the end of this report.

NOTES
e The notation “d” refers to a double precision real. For instance, 1.8d-2 means 0.018.
e The notation “grand” (which can be used in the code) corresponds to 102,

7.1 Input-output

NOTES

e Two different files can have neither the same unit number nor the same name.

EDF R&D

Code_Saturne version 2.0.0-rc2 practical

user’s guide

Code_Saturne
documentation
Page 113/186

7.1.1 "Calculation” files

GENERAL

impgeo

ficgeo

impstp

ficstp

ficamo

ficamx

ficava

ficavx

i strictly positive integer [10]
unit of the geometric file (if the Preprocessor is not used)
useful if and only if SOLCOM = 1

¢ string of 6 characters [geomet]
name of the geometric file (if the Preprocessor is not used)
useful if and only if SOLCOM = 1

i strictly positive integer [12]
unit of the calculation interactive stop file
always useful (because of the interactive character)

c string of 6 characters [ficstpl]
name of the calculation interactive stop file (see p.16)
always useful (because of the interactive characteristic)

c string of 13 characters [suiamo]

o)

L3

L3

L3

L3

L3

name of the main upstream restart file. As with all restart files, its “format” (current

or version 1.3) is automatically determined by the code.
useful if and only if isuite = 1

¢ string of 13 characters [suiamx]
name of the auxiliary upstream restart file.
useful if and only if isuite = 1

c string of 13 characters [suiava]
name of the main downstream restart file
always useful

c string of 13 characters [suiavx]
name of the auxiliary downstream restart file
always useful

1D WALL THERMAL MODULE

ficmti

ficvtl

c string of 13 characters [t1damo]
name of the upstream restart file for the 1D wall thermal module.
useful if and only if isuitl = 1 and nfpt1d>0

¢ string of 13 characters [tldava]
name of the upstream restart file for the 1D wall thermal module
useful if and only if nfpt1d>0

L3

L3

L3

L3

L3

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 114/186

VORTEX METHOD FOR LES

impmvo i strictly positive integer [impmvo] 0 L3
unit of the upstream restart file for the vortex method
useful if and only if isuivo = 1 and ivrtex=1

ficmvo ¢ string of 13 characters [voramo] 0] L3
name of the upstream restart file for the vortex method
This is always a text file (this file has a different structure from the other restart files)
useful if and only if isuivo = 1 and ivrtex=1

impvvo i strictly positive integer [impvvo] O L3
unit of the downstream restart file for the vortex method
useful if and only if ivrtex=1

ficvvo ¢ string of 13 characters [vorava] 0] L3
name of the upstream restart file for the vortex method
This is always a text file (this file has a different structure from the other restart files)
useful if and only if ivrtex=1

impdvo i strictly positive integer [impdvo] O L3
unit of the ficvor data files for the vortex method. These files are text files. Their
number and names are specified by the user in the usvort subroutine.
(Although it corresponds to an “upstream” data file, impdvo is initialized to 20 be-
cause, in case of multiple vortex entries, it is opened at the same time as the ficmvo
upstream restart file, which already uses unit 11)
useful if and only if ivrtex=1

RADIATION

ficamr c string of 13 characters [rayamo] 0O L3
name of the radiation upstream restart file.
useful if and only if isuird = 1

ficavr ¢ string of 13 characters [rayaval @) L3
name of the radiation downstream restart file
always useful in case of radiation modeling

THERMOCHEMISTRY

impfpp i strictly positive integer [25] 0] L3
unit of the thermochemical data file
useful in case of gas or pulverised coal combustion or electric arc

ficfpp ¢ string of 6 characters [dp_tch] 0O L3

name of the thermochemical data file. The launch script is designed to copy the user
specified thermochemical data file in the temporary execution directory under the
name dp_tch, for Code_Saturne to open it properly. Should the value of ficfpp be

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 115/186

changed, the launch script would have to be adapted.
useful in case of gas or pulverised coal combustion

impjnf i strictly positive integer [impfpp] O L3
unit of the JANAF data file
useful in case of gas or pulverised coal combustion

ficjnf ¢ string of 5 characters [JANAF] @) L3
name of the JANAF data file. The launch script is designed to copy the user specified
JANAF data file in the temporary execution directory under the name JANAF, for
Code_Saturne to open it properly. Should the value of ficjnf be changed, the launch
script would have to be adapted.
useful in case of gas or pulverised coal combustion

LAGRANGIAN

ficaml c string of 6 characters [Lagamo] @) L3
name of the upstream restart file in case of Lagrangian modeling.
useful if and only if isuila = 1

ficmls ¢ string of 13 characters [Lasamo] Q) L3
name of the upstream restart file for the statistics in case of Lagrangian modeling.
useful if and only if isuist = 1

ficavl ¢ string of 13 characters [lagaval @) L3
name of the downstream restart file in case of Lagrangian modeling
always useful in case of Lagrangian modeling

ficvls ¢ string of 6 characters [lasava] 0] L3
name of the downstream restart file for the statistics in case of Lagrangian modeling
useful in case of Lagrangian modeling with statistics

implal i strictly positive integer [50] 0 L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling

impla?2 i strictly positive integer [51] 0] L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling

impla3 i strictly positive integer [52] O L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling

implad i strictly positive integer [53] 0 L3
unit of a file specific to Lagrangian modeling
useful in case of Lagrangian modeling

implab ia strictly positive integer [54 to 68] 0] L3

units of files specific Lagrangian modeling, 15-dimension array
useful in case of Lagrangian modeling

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 116/186

7.1.2 Post-processing for EnSight or other tools

NOTES

e The format depends on the user choices.

e The post-processing files, directly generated by the Kernel through the FVM library, can be of the
following formats: Ensight Gold, MED_fichier or CGNS. The use of the two latter formats depends on
the installation of the corresponding external libraries.

e For each quantity (problem unknow, preselected numerical variable or preselected physical param-
eter), the user specifies if a post-processing output is wanted. The output frequency can be set.

ichrvl

ichrbo

ichrsy

ichrmd

fmtchr

optchr

i Oorl [1] 0] L3
indicates whether post-processing outputs are wanted (=1) or not (=0) on the 3D
volume mesh
always useful

i Oorl [0] 0] L2
indicates whether post-processing outputs are wanted (=1) or not (=0) on the 2D
boundary mesh
always useful

i 0or 1 0] 0 L2
indicates whether post-processing outputs are wanted (=1) or not (=0) on the 2D
boundary mesh patches coupled with the SYRTHES conjugate heat trabsfer code
always useful

i 0,1,2,10, 11 or 12 [0] O L2
indicates whether the post-processing geometry varies with time:

= 0: time independent

= 1: deforming or moving mesh

= 2: changing vertex coordinates and topology

= 10: time independent base, with time dependent nodal displacement field

= 11: deforming or moving mesh, plus nodal displacement field

= 12: changing vertex coordinates and topology, plus nodal displacement field

c string of less than 32 characters [Ensight Gold] O L1
name of the output format, among the following:

e “Ensight Gold”

e “MED fichier” (if available)

e “CGNS” (if available)

c string of less than 96 characters [binary] @) L2
options associated to the selected output format. The string is given as a series of key
words, separated by a comma (and optional spaces). The key words are among the
following:

o text for a text format (for EnSight)

e binary for a binary format (default choice)

e big_endian to force outputs to be in big-endian mode; this can be useful
when using ParaView, which uses this mode by default.

e discard_polygons to prevent from exporting faces with more than four edges

(which may not be recognised by some post-processing tools); such faces will therefore
appear as “holes” in the post-processing mesh.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 117/186
e discard_polyhedra to prevent from exporting elements which are neither
tetrahedra, prisms, pyramids nor hexahedra (which may not be recognised by some
post-processing tools); such elements will therefore appear as “holes” in the post-
processing mesh
o divide_polygons to divide faces with more than four edges into triangles,
so that any post-processing tool can recognise them
e divide_polyhedra to divide elements which are neither tetrahedra, prisms,
pyramids nor hexahedra into simpler elements (tetrahedra and pyramids), so that any
post-processing tool can recognise them
e split_tensors to export the components of a tensor variable as a series of
independent variables (always the case for now)
ntchr i -1 or strictly positive integer [-1]) L1
output period for the post-processing
= -1: only at the end of the calculation
> 0: period (every ntchr time step)
always useful
ichrvr ia -999, 0 or 1 [-999] 0] L1
for each quantity defined at the cell centers (physical or numerical variable), indicator
of whether it should be post-processed or not
= -999: not initialised. By default, the post-processed quantities are the
unknowns (pressure, velocity, k, €, R;;, w, ¢, f, scalars), density, turbulent viscosity
and the time step if is not uniform
= 0: not post-processed
= 1: post-processed
useful if and only if the variable is defined at the cell centers: calculation variable,
physical property (time step, density, viscosity, specific heat) or turbulent viscosity if
iturb(iphas) > 10
ipstdv i integer > 1: see below [ipstyp*ipstcl*ipstft] O L1

indicates the data to post-process on the boundary mesh (the boundary mesh must
have been activated with ichrbo=1). The value of ipstdv is the product of the
following integers, depending on the variables that should be post-processed:

ipstyp: y* at the boundary

ipstcl: value of the variables at the boundary (using the boundary conditions
but without reconstruction)

ipstft: thermal flux at the boundary (W m™2), if a thermal scalar has been
defined (iscalt)
For instance, with ipstdv=ipstyp*ipstcl, y* and the variables will be post-processed
at the boundaries.
With ipstdv=1, none of these data are post-processed at the boundaries.
always useful if ichrbo=1

7.1.3 Chronological records of the variables on specific points

STANDARD USE THROUGH INTERFACE OR USINI1

For each quantity (problem unknown, preselected numerical variable or preselected physical parame-
ter), the user indicates whether chronological records should be generated, the output period and the
position of the probes. The code produces chronological records at the cell centers located closest to
the geometric points defined by the user by means of their coordinates. For each quantity, the number

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 118/186

of probes and their index-numbers must be specified (it is not mandatory to generate all the variables
at all the probes).

ncapt

Xyzcap

ihisvr

imphis

emphis

exthis

i positive or null integer [0] 0] L1
total number of probes (limited to ncaptm=100)
always useful

ra real numbers [0.0] @) L1
3D-coordinates of the probes

the coordinates are written: xyzcap(i,j), with¢ =1, 2 or 3 and j < ncapt

useful if and only if ncapt > 0

ia -999, -1 or positive or null integer [-999] O L1
number ihisvr(n, 1) and index-numbers ihisvr(n, j>1) of the record probes to
be used for each variable, i.e. calculation variable or physical property defined at the
cell centers. With ihisvr(n, 1)=-999 or -1, ihisvr(n, j>1) is useless.
e ihisvr(n, 1): number of record probes to use for the variable N

= -999: by default: chronogical records are generated on all the probes if N
is one of the main variables (pressure, velocity, turbulence, scalars), the local time
step or the turbulent viscosity. For the other quantities, no chronological record is
generated.

= -1: chronological records are produced on all the probes

= 0: no chronological record on any probe

> 0: chronological record on ihisvr(n, 1) probes to be specified with
ihisvr(n, j>1)
always useful, must be inferior or equal to ncapt

e ihisvr(n, j>1): index-numbers of the probes used for the variable n

(with j<ihisvr(n,1)+1)

=-999: by default: if ihisvr(n, 1) # -999, the code stops. Otherwise, refer
to the description of the case ihisvr(n, 1)=-999
useful if and only if ihisvr(n, 1) >0
The condition ihisvr(n, j) <ncapt must be respected.
For an easier use, it is recommended to simply specify ihisvr(n,1)=-1 for all the
interesting variables.

ia strictly positive integer [30 and 31] 0 L3
working units for the production of chronological record files by the Kernel
useful if and only if chronological files are produced (i.e. there is n for which ihisvr(a,

1) # 0)

c string of less than 80 characters [./] 0] L3
directory in which the potential chronological record files generated by the Kernel will
be written (path related to the execution directory)
it is recommended to keep the default value and, if necessary, to modify the launch
script to copy the files in the alternate destination directory
useful if and only if chronological record files are generated (i.e. there is n for which
ihisvr(n, 1) # 0)

c string of less than 80 characters [hst] 0 L3
extension of the chronological record files

useful if and only if chronological record files are generated (i.e. there is n for which
ihisvr(n, 1) # 0)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 119/186

nthist i -1 or strictly positive integer [1 or -1] 0] L1

output period of the chronological record files

= -1: no output

> 0: period (every nthist time step)
The default value is -1 if there is no chronological record file to generate (if there is
no probe, ncapt = 0, or if ihisvr(n, 1)=0 for all the variables) and 1 otherwise
If chronological records are generated, it is usually wise to keep the default value
nthist=1, in order to avoid missing any high frequency evolution (unless the total
number of time steps is much too big)
useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) there is n for which ihisvr(a, 1) # 0)

nthsav i -1 or positive or null integer [0] Q) L3

saving period the chronological record files (they are first stored in a temporary file
and then saved every nthsav time step)

= 0: by default (4 times during a calculation)

= -1: saving at the end of the calculation

> 0: period (every nthsav time step)
During the calculation, the user can read the chronological record files in the ex-
ecution directory when they have been saved, i.e. at the first time step, at the
tenth time step and when the time step number is a multiple of nthsav (multiple
of (ntmabs-ntpabs)/4 if nthsav=0)
Note: using the ficstp file allows to update the value of ntmabs. Hence, if the cal-
culation is at the time step n, the saving of the chronological record files can be forced
by changing ntmabs to ntpabs+4(n+1) using ficstp; after the files have been saved,
ntmabs can be reset to its original value, still using ficstp.
useful if and only if chronological record files are generated (i.e. there are probes
(ncapt>0) there is n for which ihisvr(n, 1) # 0)

NON-STANDARD USE THROUGH USHIST

(see p.72)

impush ia strictly positive integer [33 to 324+nushmx=49] O L3
units of the user chronological record files
useful if and only if the subroutine ushist is used

ficush ca strings of 13 characters [ush* or ush*.n_x| 0) L2

names of the user chronological record files. In the case of a non-parallel calculation,
the suffix applied the file name is a three digit number: ush001, ush002, ush003...

In the case of a parallel-running calculation, the processor index-number is added to
the suffix. For instance, for a calculation running on two processors: ush001.n_0001,
ush002.n_0001, ush003.1n_0001... and ush001.n_0002, ush002.n_0002, ush003.n_0002...
The opening, closing, format and location of these files must be managed by the user.
useful if and only if the subroutine ushist is used

7.1.4 Time averages

The code allows the calculation of time averages of the type < f1 * fs... x f, >. The variables f;
(defined at the cell centers) which may be taken into account are the followings:

- the solved calculation variables (velocity, pressure ...),

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 120/186

- the auxiliary variables from the array propce (density and physical properties when they are
variable in space).

The averages are treated like auxiliary variables defined at the cell centers and stored in the propce
array. The standard post-processing actions may therefore be activated, like the writing in the listing
or the output of result files (EnSight, MED, ...). However, if the user wants to manipulate the averages
in a more advanced way, it is recommended to refer first to the user subroutines usproj and usvpst
which provide examples. Indeed, the propce array does not contain the time averages directly, but
only the cumulated value of the product fi * fs... x f,, of the selected variables f;. The division by the
cumulated duration is done only before the writing of the results. See also page 49.

To calculate p time averages of the type < fi * fo... ¥ fi(imom) >, the user must:

- make sure that p <nbmomx (do not overstep the maximum number of averages),

- make sure that n(imom) <ndgmox for every average imom (do not overstep the maximum degree,
i.e the maximum number of variables which may compose an average),

- define every average imom (1<imom< p, without skipping any index-number) by marking out the
n(imom) variables which form it by means of the array idfmom(ii,imom) (with 1<ii<n(imom)),

- define for each average imom the time step number at which the calculation of the cumulated
value must begin, by means of the array ntdmom(imom).

The total number of averages (p=nbmomt) is automatically determined by the code from the values of
idtmom. The user must not specify specify it.

idfmom

ntdmom

imoold

ia 0, £ variable index-number [0]) L1
Index-number of the variables composing a time average of the type < fi* fo...* f, >.
For every time average imom to calculate:

- if idfmom(ii,imom) is positive, it refers to the index-number of a solved
variable (stored in the array rtp), like for instance a velocity component (iu(iphas),
iv(iphas), iw(iphas)) or the pressure (ipr (iphas))

-if idfmom (ii,imom) is negative, it refers to the index-number of an auxiliary
variable (stored in propce), like for instance the density
(idfmom(ii,imom)=-irom(iphas))
useful if and only if the user wants to calculate time averages

ia integer [-1] O L1
For every average imom to calculate, absolute time step number at which the calculation
should begin. The value -1 means “never”. Every strictly negative value (in particular
-1) will considered an error and cause the calculation to stop (because the user is
supposed to want to calculate the averages he has defined)

useful if and only if the user wants to calculate time averages

ia -2, 1< integer < jbmomt [-2] O L1
Correspondence table of the averages in the case of a calculation restart. In this case,
for every average imom in the current calculation (1<imom<nbmomx), imoold(imom)
gives the index-number of the corresponding average in the previous calculation (in
which jbmomt averages were calculated).

- if imoold(imom) = -2, the user lets the code automatically determine the
correspondence. By default, the average ii in the current calculation will correspond
to the average ii in the previous calculation, if it existed. Otherwise, ii will be a new
average.

- if imoold(imom) = -1, the average is reset to zero.

- if imoold(imom) = kk, the average imom will correspond to the average

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 121/186

7.1.5 Others

impusr

ficusr

ilisvr

iwarni

nomvar

ntlist

kk=imoold(imom) in the previous calculation.

useful if and only if the user wants to calculate averages. Allows to add or suppress
some averages, to reset them, to change their order, ...

Warning: if the calculation is not a restart, imoold must not be specified (its value
must remain -2)

ia strictly positive integer [70 to 69+nusrmx=79] O L3
unit numbers for potential user specified files
useful if and only if the user needs files (therefore always useful, by security)

ca string of 13 characters [usrf* or usrf*.n*] O L1
name of the potential user specified files. In the case of a non-parallel calculation, the
suffix applied the file name is a two digit number: from usrf01 to usrf10. In the case
of a parallel-running calculation, the four digit processor index-number is added to the
suffix. For instance, for a calculation running on two processors: from usrf01.n_0001
to usrf10.n_0001 and from usrf01.n_0002 to usrf10.n_0002. The opening, closing,
format and location of these files must be managed by the user.

useful if and only if the user needs files (therefore always useful, by security)

ia -999,1or 0 [-999] Q) L1
for every quantity (variable, physical or numerical property ...), indicator concerning
the writing in the execution report file

= -999: automatically converted into 1 if the concerned quantity is one of
the main variables (pressure, velocity, turbulence, scalar), the density, the time step if
idtvar # 0 or the turbulent viscosity. Otherwise converted into 0.

= 1: writing in the execution listing.

= 0: no writing.
always useful

ia integer [0] @) L1
iwarni (ivar) characterises the level of detail of the outputs for the variable ivar
(from 1 to nvar). The quantity of information increases with its value.

Impose the value 0 or 1 for a reasonable listing size. Impose the value 2 to get a
maximum quantity of information, in case of problem during the execution.

always useful

ca string of less than 80 characters [“7] 0) L1
name of the variables (unknowns, physical properties ...): used in the execution listing,
in the post-processing files, etc.

“7: not initialised (the code chooses the manes by default)

It is recommended not to define variable names of more than 8 characters, to get a
clear execution listing (some advanced writing levels take into account only the first 8
characters).

always useful

i -1 or strictly positive integer 1] 0O L1
writing period in the execution report file

= -1: no writing

> 0: period (every ntlist time step)

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 122/186

ntsuit

The value of ntlist must be adapted according to the number of iterations carried
out in the calculation. Keeping ntlist to 1 will indeed provide a maximum volume
of information, but if the number of time steps is too large, the execution report file
might become too big and unusable (problems with disk space, memory problems
while opening the file with a text editor, problems finding the desired information in
the file, ...).

always useful

i -1, 0 or positive or null integer [0] O L3
saving period of the restart files

= -1: only at the end of the calculation

= 0: by default (four times during the calculation)

> 0: period
always useful

7.2 Numerical options

7.2.1 Calculation management

iecaux

ileaux

inpdt0

isuite

ntcabs

i Oor 1 1] 0 L2
indicates the writing (=1) or not (=0) of the auxiliary calculation restart file
always useful

i Oorl [1] 0] L2
indicates the reading (=1) or not (=0) of the auxiliary calculation restart file
useful if and only if isuite=1

i Oorl [0] O L1
indicates the calculation mode: 1 for a zero time step control calculation, i.e. without
solving the transport equations, and 0 for a standard calculation.

In case of a calculation using the control mode (inpdt0=1), when the calculation is not

a restart, the equations are not solved, but the physical properties and the boundary
conditions are calculated. When the calculation is a restart, the physical properties
and the boundary conditions are those read from the restart file (note: in the case of
a second-order time scheme, the mass flow is modified as if a normal time step was
realised: the mass flow generated in an potential post-processing is therefore not the
mass flow read from the restart file).

In the control mode (inpdt0=1), the variable ntmabs is not used.

In the standard mode (inpdt0=0), the code solves the equations at least once, even
if ntmabs=0.

always useful

i Oorl [0] C L1
indicator of a calculation restart (=1) or not (=0)
always useful

i integer [ntpabs] 0 L3
current time step number

always useful

ntcabs is initialised and updated automatically by the code, its value is not to be
modified by the user

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 123/186
ntmabs i integer > ntpabs [10] C L1
number of the last time step after which the calculation stops. It is an absolute
number: for the restart calculations, ntmabs takes into account the number of time
steps of the previous calculations. For instance, after a first calculation of 3 time steps,
a restart file of 2 time steps is realised by setting ntmabs=3+2=>5
always useful
ntpabs i integer [0, read] @) L3
number of the last time step in the previous calculation. In the case of a restart
calculation, ntpabs is read from the restart file. Otherwhise it is initialised to 0
always useful
ntpabs is initialised automatically by the code, its value is not to be modified by the
user
tmarus r -1 or strictly positive real [-1] 0] L3
margin in seconds on the remaining CPU time which is necessary to allow the calcula-
tion to stop automatically and write all the required results (for the machines having
a queue manager)
= -1: calculated automatically
> 0: margin defined by the user
always useful, but the default value should not be changed unless absolutely necessary.
ttcabs r positive or null real number [ttpabs] O L3
physical simulation time at the current time step. For the restart calculations, ttcabs
takes into account the physical time of the previous calculations.
If the time step is uniform (idtvar=0 or 1), ttcabs increases of dt (value of the time
step) at each iteration. If the time step is non-uniform (idtvar=2), ttcabs increases
of dtref at each time step.
always useful
ttcabs is initialised and updated automatically by the code, its value is not to be
modified by the user
ttpabs r positive or null real number [0, read] 0] L3

simulation physical time at the last time step of the previous calculation. In the case
of a restart calculation, ttpabs is read from the restart file. Otherwhise it is initialised
to 0.

always useful

ttcabs is initialised automatically by the code, its value is not to be modified by the
user

7.2.2 Scalar unknowns

iscold

ia -999, 1< integer < jscal [-999] 0) L1
correspondence table of the scalars in the case of a calculation restart. For a calcu-
lation restart with nscal scalars, iscold(iscal) gives, for every scalar iscal of the
current calculation (1<iscal<nscal), the index-number of the corresponding scalar
in the previous calculation (in which jscal scalars were taken into account).

iscold(iscal) = -999: the code automatically determines the correspon-
dence. By default, the following rules are applied:

- the user scalar ii of the current calculation is initialised by the the

user scalar ii of the previous calculation, if this scalar existed already (otherwise, ii
is a new scalar).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 124/186
- the particular physics scalar jj is initialised by the particular physics
scalar jj of the previous calculation if this scalar existed already (otherwise, jj is a
new scalar).
iscold(iscal) = kk: the scalar iscal (user or particular physics scalar) is
initialised by the scalar kk=iscold(iscal) of the previous calculation.
always useful. Allows to add or remove some scalars, to change the solving order, to
change the physics, ...
nscaus i 0< integer < nscmax [0] @) L1
number of user scalars solutions of an advection equation
always useful
iscavr ia 0, 1 < integer < nscal [0] (@) L1
if the scalar iscal is the average of the square of the fluctuations of a scalar kk, then
iscavr(iscal)=kk. Otherwise iscavr(iscal)=0. For iscal and kk, the user can
only use index-numbers refering to user scalars (< nscaus).
always useful
iphsca ia 1 < integer < nphas [0] 0) L3
for every scalar iscal, iphsca(iscal) is the index-number of the associated phase
always useful
iscalt ia -1 or integer > 0 [-1] O L1
for every phase iphas, iscalt(iphas) is the index-number of the scalar represent-
ing the temperature or the enthalpy. If iscalt(iphas)=-1, no scalar represents the
temperature nor the enthalpy. When a specific physics module is activated (gas com-
bustion, pulverised coal, electricity or compressible), the user must not modify iscalt
(the choice is made automatically)4?.
useful if and only if nscal > 1
iscsth ia -1,0,1,20r 3 [-10] 0] L1

type of scalar

= -10: not specified. By default, the code chooses iscsth(iscal)=0 for the
scalars apart from iscalt(iphas)

= -1: temperature in degrees Celsius (use only in case of radiation modeling)

= 0: passive scalar

= 1: temperature (in Kelvin if the radiation modeling is activated)

= 2: enthalpy

= 3: total energy (this value is automatically chosen by the code when using
the compressible module, it must never be used otherwise and must never be specified
by the user)
useful if and only if nscal > 1. The distinction between iscsth(iscal) = -1 or 1
(respectively degrees Celsius or Kelvin) is useful only in case of radiation modeling.
For calculations without radiation modeling, use iscsth(iscal)=1 for the tempera-
ture. When a particular physics module is activated (gas combustion, pulverised coal,
electricity or compressible), the user must not modify iscsth (the choice is made au-
tomatically: the solved variable is the enthalpy or the total energy).
It is also reminded that, in the case of a coupling with SYRTHES, the solved ther-
mal variable should be the temperature (iscsth(iscalt(iphas))=1 or -1). More
precisely, everything is designed in the code to allow for the running of a calculation
coupled with SYRTHES with the enthalpy as thermal variable (the correspondence

40in the case of the compressible module, iscalt does not correspond to the temperature nor enthalpy but to the total

energy

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 125/186

iclvfl

itbrrb

icpsyr

and conversion is then specified by the user in the subroutine usthht). However this
case has never been used in practice and has therefore not been tested. With the
compressible model, it is possible to carry out calculations coupled with SYRTHES,
although the thermal scalar represents the total energy and not the temperature.

ia -1,0,1o0r 2 [-1] 0] L3
for every scalar iscal representing the average of the square of the fluctuations of
another scalar ii=iscavr(iscal) (noted f), indicator of the clipping method

= -1: no clipping because the scalar does not represent the average of the
square of the fluctuations of another scalar

= 0: clipping to 0 for lower values

= 1: clipping to 0 for lower values and to (f — fin)(fmaz — f) for higher
values, where f is the associated scalar, f,;, and fi,e; its minimum and maximum
values specified by the user (i.e. scamin(ii) and scamax(ii))

= 2: clipping to max (0, scamin(iscal)) for lower values and to scamax (iscal)
for higher values. scamin and scamax are limits specified by the user
useful for the scalars iscal for which iscavr(iscal)>0.

i Oor1 [0] 0O L3
Reconstruction (=1) or not (=0) of the temperature, enthalpy or total energy value in
the boundary cells. Useful in the case of coupling with SYRTHES and with radiation.

ia -999,0,1 [-999] @) L3
For each scalar iscal, icpsyr(iscal) indicates if it is coupled with SYRTHES (=1)
or not (=0). There can be only one coupled scalar per calculation.
=-999: by default
e icpsyr(iscal)=1 for the thermal scalar iscal=(iscalt(iphas))
when a coupling with SYRTHES has been specified in the Interface or the launch
script
e icpsyr(iscal)=0 otherwise
= 0: the scalar iscal is not coupled with SYRTHES
= 1: the scalar iscal is coupled with SYRTHES
useful in case of coupling with SYRTHES

7.2.3 Definition of the equations

istat

iconv

idiff

ia Oorl [1 or 0] @) L2
for each unknown ivar to calculate, indicates if non-stationary terms are present
(istat(ivar)=1) or not (0) in the matrices.

By default, istat is set to 0 for the pressure (variable ivar=ipr (iphas)) or f in v2f
modeling (variable ivar=ifb(iphas)) and set to 1 for the other unknowns.

useful for all the unknowns

ia Oorl [1 or 0] Q) L2
for each unknown ivar to calculate, indicates if the convection is taken into account
(iconv(ivar)=1) or not (0).

By default, iconv is set to 0 for the pressure (variable ivar=ipr(iphas)) or f in v2f
modeling (variable ivar=ifb(iphas)) and set to 1 for the other unknowns.

useful for all the unknowns

ia Oorl [1] 0) L2
for each unknown ivar to calculate, indicates if the diffusion is taken into account

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 126/186

(idiff (ivar)=1) or not (0)
useful for all the unknowns

idifft ia Oorl [1] 0] L3
for each unknown ivar to calculate, when diffusion is taken into account (idiff (ivar)=1),
idifft (ivar) indicates if the turbulent diffusion is taken into account (idifft (ivar)=1)
or not (0)
useful for all the unknowns

idircl ia Oor1l [1 or 0] 0] L3
for each unknown ivar to calculate, indicates whether the diagonal of the matrix
should be slightly shifted (idircl(ivar)=1) or not (0) if there is no Dirichlet bound-
ary condition and if istat=0. Indeed, in such a case, the matrix for the general
advection/diffusion equation is singular. A slight shift in the diagonal will make it
invertable again.
By default, idircl is set to 1 for all the unknowns, except f in v2f modeling, since
its equation contains another diagonal term that ensures the regularity of the matrix.
useful for all the unknowns

ivisse ia Oorl [1] 0) L3

for each phase iphas, indicates whether the source terms in transposed gradient and
velocity divergence should be taken into account in the momentum equation. In the
compressible module, these terms also account for the volume viscosity (cf. viscvO
and iviscv):
0: (k= 2/3 (1 + 10))OWUi] + 05 [(1 +) U

= 0: not taken into account

= 1: taken into account
always useful

7.2.4 Definition of the time advancement

idtvar i -1,0,1,2 [0] O L1

type of time step

= 0: constant in time and spatially uniform

= 1: variable in time and spatially uniform

= 2: variable in time and in space

= -1: steady-state algorithm
If the numerical scheme is a second-order in time, only the option 0 is allowed.
always useful

iptlro i Oorl [0] 0] L2
when density gradients and gravity are present, a local thermal time step can be cal-
culated, based on the Brunt-Vaissala frequency. In numerical simulations, it is usually
wise for the time step to be lower than this limit, otherwise numerical instabilities
may appear
iptlro indicates whether the time step should be limited to the local thermal time
step (=1) or not (=0)
when iptlro=1, the listing shows the number of cells where the time step has been
clipped due to the thermal criterium, as well as the maximum ratio between the time
step and the maximum thermal time step. If idtvar=0, since the time step is fixed
and cannot be clipped, this ratio can be larger than 1*'. When idtvar>0, this ratio

41it is then the user’s choice to decide whether he should diminish DTREF or not

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 127/186

will be smaller than 1, except if the constraint dtmin has prevented the code from
reaching a sufficiently low value for dt
useful when density gradients and gravity are present

cdtvar ra strictly positive real number [1] o) L1
multiplicative factor applied to the time step for each scalar
Hence, the time step used when solving the evolution equation for the variable is the
time step used for the dynamic equations (velocity /pressure) multiplied by cdtvar.
The size of the array cdtvar is nvar. For instance, the multiplicative coefficient
applied to the scalar 2 is cdtvar (isca(2))). Yet, the value of cdtvar for the velocity
components and the pressure is not used. Also, although it is possible to change the
value of cdtvar for the turbulent variables, it is highly unrecommended
useful if and only if nscal > 1

coumax r strictly positive real number [1] @) L1
target local or maximum Courant number in case of non-constant time step
useful if idtvar # 0

foumax r strictly positive real number [10] O L1
target local or maximum Fourier number in case of non-constant time step
useful if idtvar # 0

dtref r strictly positive real number [-grand*10] C L1
reference time step
always useful.
It is the time step value used in the case of a calculation run with a uniform and
constant time step, i.e. idtvar=0 (restart calculation or not). It is the value used
to initialise the time step in the case of an initial calculation (isuite=0) run with a
non-constant time step (idtvar=1 or 2). It is also the value used to initialise the time
step in the case of a restart calculation (isuite=1) in which the type of time step has
been changed (for instance, idtvar=1 in the new calculation and idtvar=0 or 2 in
the previous calculation): see usiniv

dtmin T positive or null real number [0.1*dtref] @) L2
lower limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0

dtmax T strictly positive real number [1000*dtref] O L2
upper limit for the calculated time step when non-constant time step is activated
useful if idtvar # 0

varrdt r strictly positive real number [0.1] O L3

maximum allowed relative increase in the calculated time step value between two
succesive time steps (to ensure stability, any decrease in the time step is immediate
and without limit)

useful if idtvar # 0

NON-CONSTANT TIME STEP

The calculation of the time step uses a reference time step DTREF (at the calculation beginning).
Later, every time step, the time step value is calculated by taking into account the different existing

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 128/186

limits, in the following order:

e coumax, foumax: the more restrictive limit between both is used (in the compressible module,
the acoustic limitation is added),

e varrdt: progressive increase and immediate decrease in the time step,

e iptlro: limitation by the thermal time step,

e dtmax and dtmin: clipping of the time step to the maximum, then to the minimum limit.

7.2.5 Turbulence

iturb ia 0, 10, 20, 21, 30, 31, 40, 41, 50 or 60 [-999)] 0 L1

for each phase iphas, indicator of the turbulence model iturb(iphas)

= -999: not initalised. This value is not allowed and must be modified by the
user

= 0: laminar

= 10: mixing length (not valided)

=20: k—¢

= 21: k — e with linear production (Laurence & Guimet)

= 30: R;; — ¢ “standard” LRR (Launder, Reece & Rodi)

= 31: R;; — e SSG (Speziale, Sarkar & Gatski)

= 40: LES (Smagorinsky model)

= 41: LES (dynamic model)

= 50: v2-f, p-model version

= 60: k — w, SST version
always useful

The k — ¢ (standard and linear production) and R;; — e (LRR and SSG) turbulence models imple-
mented in Code_Saturne are “High-Reynolds” models. It is therefore necessary to make sure that the
thickness of the first cell neighboring the wall is larger than the thickness of the viscous sublayer (at
the wall, y* > 2.5 is required as a minimum, and preferably between 30 and 100)*2. If the mesh does
not respect this condition, the results may be biased (particularly if thermal processes are involved).
Using scalable wall-functions (cf. key word ideuch) may help avoiding this problem.

The v2-f model is a “Low-Reynolds” model, it is therefore necessary to make sure that the thickness
of the first cell neighboring the wall is smaller than the thickness of the viscous sublayer (y* < 1).
The k — w SST model provides correct results whatever the thickness of the first cell. Yet, it requires
the knowledge of the distance to the wall in every cell of the calculation domain. The user may refer
to the key word icdpar for more details about the potential limitations.

The k — € model with linear production allows to correct the known flaw of the standard k& — ¢ model
which overestimates the turbulence level in case of strong velocity gradients (stopping point).

With LES, the wall functions are usually not greatly adapted. It is generally more advisable (if pos-
sible) to refine the mesh towards the wall so that the first cell is in the viscous sublayer, where the
boundary conditions are simple natural no-slip conditions.

Concerning the LES model, the user may refer to the subroutine ussmag for complements about the
dynamic model. Its usage and the interpretation of its results require particular attention. In addi-
tion, the user must pay further attention when using the dynamic model with the least squares method
based on a partial extended neighborhood (imrgra=3). Indeed, the results may be degraded if the
user does not implement his own way of averaging the dynamic constant in ussmag (i.e. if the user
keeps the local average based on the extended neighborhood).

ideuch ia 0,1or2 [0 or 1] 0) L2
for each phase iphas, indicates the type of wall function is used for the velocity

*

42While creating the mesh, y* = yz is generally unknown. It can be roughly estimated as y—[{/, where U is the
characteristic velocity, v is the kinematic viscosity of the fluid and y is the mid-height of the first cell near the wall.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 129/186

boundary conditions on a frictional wall.

= 0: one-scale model

= 1: two-scale model

= 2: scalable wall function
ideuch is initialised to 0 for iturb(iphas)=0, 10, 40 or 41 (laminar, mixing length,
LES).
ideuch is initialised to 1 for iturb(iphas)=20, 21, 30, 31 or 60 (k —¢, R;; — ¢ LRR,
R;; — ¢ SSG and k — w SST models).
The v2f model (iturb(iphas)=50) is not designed to use wall functions (the mesh
must be “low Reynolds”).
The value ideuch(iphas)=1 is not compatible with iturb(iphas)=0, 10, 40 or 41
(laminar, mixing length and LES).
Concerning the k — ¢ and R;; — € models, the two-scales model is usually at least as
satisfactory as the one-scale model.
The scalable wall function allows to virtually “shift” the wall when necessary in order
to be always in a logarithmic layer. It is used to make up for the problems related to
the use of High-Reynolds models on very refined meshes.
useful if iturb(iphas) is different from 50

ilogpo ia Oorl [1] @) L3
for each phase iphas, type of wall function used for the velocity: power law (ilogpo (iphas)=0)
or logarithmic law (ilogpo(iphas)=1)
always useful

ypluli ra real number > 0 [1/xkappa, 10.88] O L3
for each phase iphas, limit value of y™ for the viscous sublayer
ypluli depends on the chosen wall function: it is initialised to 10.88 for the scalable
wall function (ideuch(iphas)=2), otherwise it is initialised to 1/ = 2,38
In LES, ypluli is taken by default to be 10.88
always useful

k —e, k — e WITH LINEAR PRODUCTION, V2-F AND k —w SST

igrake ia Oorl [1] 0] L1
for each phase iphas, indicates if the terms related to gravity in the equations of k
and ¢ or w are taken into account (igrake(iphas)=1) or not (0)
useful if and only if iturb(iphas) = 20, 21, 50 or 60, (gx, gy, gz) # (0,0,0) and the
density is not uniform

igrhok ia Oorl [0] 0O L2
for each phase iphas, indicates if the term %g@ pk is taken into account
(igrhok (iphas)=1) or not (0) in the velocity equation
useful if and only if iturb(iphas) = 20, 21, 50 or 60.
This term may generate non-physical velocities at the wall. When it is not explicitely
taken into account, it is implicitely included into the pressure.

ikecou ia Oor1 [0 or 1] 0O L3
for each phase iphas, indicates if the coupling of the source terms of k and € or k and
w is taken into account (ikecou(iphas)=1) or not (0)
if ikecou=0 in k — € model, the term in € in the equation of k in made implicit
ikecou(iphas) is initialised to O if iturb(iphas) = 21 or 60, and to 1 if

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 130/186
iturb(iphas)= 20
ikecou(iphas)=1 is forbidden when using the v2f model (iturb(iphas)=>50)
useful if and only if iturb(iphas) = 20, 21 or 60 (k — ¢ and k — w models)
relaxk ra 0<real <1 [0.7] Q) L3
for each phase iphas, relaxation coefficient of the turbulent variables (k and € or w)
when ikecou(iphas) = 0. If ikecou(iphas)=1, relaxk is not used, whatever its
value may be.
useful if and only if iturb(iphas) = 20, 21, 50 or 60 and ikecou(iphas)=0 (k — ¢,
v2f or k — w models without coupling)
iclkep ia Oorl [0] 0O L3

for each phase iphas, indicates the clipping method used for k& and ¢, for the k — ¢
and v2f models

= 0: clipping in absolute value

= 1: clipping from physical relations
useful if and only if iturb(iphas) = 20, 21 or 50 (k — e and v2f models). The results
obtained with the method corresponding to iclkep(iphas)=1 showed in some cases
a substantial sensitivity to the values of the length scale almax (iphas).
The option iclkep(iphas)=1 is therefore not recommended, and, if chosen, must be
used cautiously.

R;; —e¢ (LRR AND SSG)

iclptr

iclsyr

idifre

igrari

irijec

ia Oorl [0] 0] L3
for each phase iphas, indicates if R;; is made partially implicit (iclptr (iphas)=1)
or not (0) in the wall boundary conditions.

useful if and only if iturb(iphas) = 30 or 31 (R;; — ¢ model)

ia Oorl [0] O L3
for each phase iphas, indicates if R;; is made partially implicit (iclsyr(iphas)=1)
or not (0) in the symmetry boundary conditions.

useful if and only if iturb(iphas) = 30 or 31 (R;; — ¢ model)

ia Oorl [1] 0 L3
for each phase iphas, complete (idifre(iphas)=1) or simplified (0) taking into ac-
count of the diagonals of the diffusion tensors of R;; and ¢, for the LLR model.
useful if and only if iturb(iphas) = 30 (LLR R;; — € model)

ia Oorl [1] @) L1
for each phase iphas, indicates if the terms related to gravity are taken into account
(igrari(iphas)=1) or not (0) in the equations of R;; — ¢.

useful if and only if iturb(iphas) = 30 or 31 and (gx, gy, gz) # (0,0,0) (R;; — ¢
model with gravity) and the density is not uniform

ia Oorl [0] 0) L2
for each phase iphas, indicates if the wall echo terms in R;; —¢ LRR model are taken
into account (irijec(iphas)=1) or not (0).

useful if and only if iturb(iphas) = 30 (R;; — ¢ LRR).

It is not recommended to take these terms into account: they have an influence only

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 131/186

near the walls, their expression is hardly justifiable according to some authors and, in
the configurations studied with Code_Saturne, they did not bring any improvement in
the results.
In addition, their use induces an increase in the calculation time.
The wall echo terms imply the calculation of the distance to the wall for every cell in
the domain. See icdpar for potential restrictions due to this.

irijnu ia Oorl [0] 0] L3
for each phase iphas, addition (irijnu(iphas)=1) or not (0) of a turbulent viscosity
in the matrix of the incermental system solved for the velocity in R;; —e models. The
goal is to improve the stability of the calculation. The usefulness of irijnu(iphas)=1
has however not been clearly demonstrated.
Since the system is solved in incremental form, this extra turbulent viscosity does not
change the final solution for steady flows. However, for unsteady flows, the parameter
nswrsm should be increased.
useful if and only if iturb(iphas) = 30 or 31 (R;; — ¢ model).

irijrb ia Oorl [0] 0] L3
for each phase iphas, reconstruction (irijrb(iphas)=1) or not (0) of the boundary
conditions at the walls for R;; and e.
useful if and only if iturb(iphas) = 30 or 31 (R;; — ¢ model)

LES

ivrtex i Oor1l [0] 0O L1
activates (=1) or not (=0) the generation of synthetic turbulence at the different inlet
boundaries with the LES model (generation of unsteady synthetic eddies)
useful if iturb(iphas)=40 or 41
this key word requires the completion of the routine usvort

isuivo i Oorl [isuite] O L1
for the vortex method, indicates whether the synthetic vortices at the inlet should be
initialised (=0) or read form the restart file ficmvo.
useful if iturb(iphas)=40 or 41 and ivrtex=1

idries ia Oorl [0,1] @) L2
for each phase iphas, idries(iphas) activates (1) or not (0) the van Driest wall-
damping for the Smagorinsky constant (the Smagorinsky constant is multiplied by the
damping function 1 —e~¥"/cdries(irhas) where y+ designates the adimensional distance
to the nearest wall). The default value is 1 for the Smagorinsky model and 0 for the
dynamic model.
the van Driest wall-damping requires the knowledge of the distance to the nearest wall
for each cell in the domain. Refer to key word icdpar for potential limitations
useful if and only if iturb(iphas) = 40 or 41

cdries ra real number > 0 [26] 0 L3

for each phase iphas, cdries(iphas) is the constant appearing in the van Driest

damping function applied to the Smagorinsky constant: 1 — e~y /cdries(iphas)
useful if and only if iturb(iphas) = 40 or 41

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 132/186
csmago ra real number > 0 [0.065] 0] L2
for each phase iphas, csmago (iphas) is the Smagorinsky constant used in the Smagorin-
sky model for LES
the sub-grid scale viscosity is calculated by psq = pC’fmagOAQ\ /25;;S;; where A is the
width of the filter and Sij the filtered strain rate
useful if and only if iturb(iphas) = 40
smagmx ra real number > 0 [10*csmago] O L3
for each phase iphas, smagmx(iphas)2 is the maximum allowed value for the vari-
able C' appearing in the LES dynamic model (the “square” comes from the fact that
the variable of the dynamic model corresponds to the square of the constant of the
Smagorinsky model). Any larger value yielded by the calculation procedure of the
dynamic model will be clipped to smagmx(iphas)’
useful if and only if iturb(iphas) = 41
xlesfl ra real number > 0 [2] 0] L3
for each phase iphas, xlesfl(iphas) is a constant used to define, for each cell €2;,
the width of the (implicit) filter:
A = zlesfl(iphas)(ales(iphas) * |Q;])ves(Phas)
useful if and only if iturb(iphas) = 40 or 41
ales ra real number > 0 [1] 0] L3
for each phase iphas, ales(iphas) is a constant used to define, for each cell €2;, the
width of the (implicit) filter:
A = zlesfl(iphas)(ales(iphas) * |Q;])ves(Phas)
useful if and only if iturb(iphas) = 40 or 41
bles ra real number > 0 [1/3] @) L3
for each phase iphas, bles(iphas) is a constant used to define, for each cell ;, the
width of the (implicit) filter:
A = zlesfl(iphas)(ales(iphas) * |Q;])ves(iPhas)
useful if and only if iturb(iphas) = 40 or 41
xlesfd ra real number > 0 [1.5] 0] L3

for each phase iphas, xlesfd(iphas) is the constant used to define, for each cell €2;,
the width of the explicit filter used in the framework of the LES dynamic model:

A = zlesfd(iphas)A
useful if and only if iturb(iphas) = 41

7.2.6 Time scheme

By default, the standard time scheme is a first-order. A second-order scheme is activated automatically
with LES modeling. On the other hand, when “specific physics” (gas combustion, pulverised coal,
compressible module) are activated, the second-order scheme is not allowed.

In the current version, the second-order time scheme is not compatible with the estimators (iescal),
the velocity-pressure coupling (ipucou), the modeling of hydrostatic pressure (icalhy and iphydr)
and the time- or space-variable time step (idtvar).

Also, in the case of a rotation periodicity, a proper second-order is not ensured for the velocity, but
calculations remain possible.

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 133/186

It is recommended to keep the default values of the variables listed below. Hence, in standard cases,
the user does not need to specify these options.

ischtp

istmpf

isno2t

ia 1or2 [1 or 2] 0] L2
for each phase iphas, ischtp(iphas) indicates the order of the activated time scheme
(this indicator allows the code to automatically complete the other indicators related
to the time scheme)

= 1: first-order

= 2: second-order
when ischtp(iphas)=2, the physical properties are by default not second-order. It
it possible to modify this by means of the following indicators.
due to specific coupling between certain variables, the source terms in the turbulence
equations (except convection and diffusion) cannot be second order, except with the
R;; models (cf. key word isto2t)
by default, ischtp(iphas) is initialised to 2 with the LES model and 1 otherwise
always useful

ia 0,1o0r2 [0 or 1] 0] L3
for each phase iphas, istmpf (iphas) specifies the time scheme activated for the mass
flow. The chosen value for istmpf (iphas) will automatically determine the value
given to the variable thetfl (iphas)

= 0: "explicit” first-order: the mass flow calculated at the previous time step
(“n”) is used in the convective terms of all the equations (momentum, turbulence and
scalars

= 1. “standard” first-order: the mass flow calculated at the previous time
step (“n”) is used in the convective terms of the momentum equation, and the up-
dated mass flow (time “n+1”) is used in the equations of turbulence and scalars

= 2: second-order: the mass flow used in the momentum equations is ex-
trapolated at “n+thetfl” (=n+1/2) from the values at the two former time steps
(Adams Bashforth); the mass flow used in the equations for turbulence and scalars is
interpolated at time “n+thetfl” (=n+1/2) from the values at the former time step
and at the newly calculated “n+1” time step.
by default, istmpf (iphas)=2 is used in the case of a second-order time scheme (if
ischtp(iphas)=2) and istmpf (iphas)=1 otherwise
always useful

ia 0,1or2 [0 or 1] 0) L3
for each phase iphas, isno2t (iphas) specifies the time scheme activated for the source
terms of the momentum equation, apart from convection and diffusion (for instance:
head loss, transposed gradient, ...).

= (0: ”standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)"*% = SP[(1 — 0)¢™ + 0¢"*1], 0 being given by the value of thetav
associated with the variable ¢) ; the other terms S, are expressed as second-order
terms by extrapolation (according to the formula (S.)"T? = [(1 + 6)S? — 0S?71], 0
being given by the value of thetsn(iphas)=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isno2t=1; the
other terms S, are extrapolated according to the same formula as when isno2t=1,
but with §=thetsn(iphas)=1
by default, isno2t (iphas) is initialised to 1 (second-order) when the selected time
scheme is second-order (ischtp=2), otherwise to 0.
always useful

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 134/186

isto2t

isso2t

iroext

iviext

ia 0,1or2 [0] 0O L3
for each phase iphas, isto2t(iphas) specifies the time scheme activated for the
source terms of the turbulence equations (related to k, R;j, €, w, ¢, ?), apart from
convection and diffusion.

= (0: ”standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)"+? = SP[(1 — 0)¢™ + 6¢"*1], § being given by the value of thetav
associated with the variable ¢); the other terms S, are expressed as second-order terms
by extrapolation (according to the formula (S.)"*? = [(1 + 0)S? — 05"~ 1], 6 being
given by the value of thetst (iphas)=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isto2t=1; the
other terms S, are extrapolated according to the same formula as when isto2t=1,
but with §=thetst (iphas)=1
due to certain specific couplings between the turbulence equations, isto2t (iphas) is
allowed the value 1 or 2 only for the R;; models (iturb(iphas)=30 or 31); hence, it
is always initialised to 0.
always useful

ia 0,1or2 [0 or 1] @) L3
for each scalar iscal, isso2t(iscal) specifies the time scheme activated for the
source terms of the equation for the scalar, apart from convection and diffusion (for
instance: variance production, user-specified terms, ...).

= 0: “standard” first-order: the terms which are linear functions of the solved
variable are implicit and the others are explicit

= 1: second-order: the terms of the form S;¢ which are linear functions of the
solved variable ¢ are expressed as second-order terms by interpolation (according to
the formula (S;¢)" % = SP[(1 — 0)¢" + 6¢" 1], § being given by the value of thetav
associated with the variable ¢) ; the other terms S, are expressed as second-order
terms by extrapolation (according to the formula (S.)"T? = [(1 + 6)S? — 0S?71], 6
being given by the value of thetss(iscal)=0.5)

= 2: the linear terms S;¢ are treated in the same way as when isso2t=1; the
other terms S, are extrapolated according to the same formula as when isso2t=1,
but with f=thetss(iscal)=1
by default, isso2t(iscal) is initialised to 1 (second-order) when the selected time
scheme is second-order (ischtp=2), otherwise to 0.
always useful

ia 0,1or2 [0] 0 L3
for each phase iphas, iroext(iphas) specifies the time scheme activated for the
physical property ¢ “density”.

= 0: “standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" ¥ = [(1+60)¢"™ — 0" 1], § being given by the value of thetro (iphas)=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when iroext=1 but with #=thetro(iphas)=1
always useful

ia 0,1or2 [0] Q) L3
for each phase iphas, iviext(iphas) specifies the time scheme activated for the
physical property ¢ “total viscosity” (molecular+turbulent or sub-grid viscosities).

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 135/186

icpext

ivsext

thetav

thetfl

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" ¢ = [(1+60)¢"™ — 0" 1], § being given by the value of thetvi (iphas)=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when iviext=1, but with #=thetvi(iphas)=1
always useful

ia 0,1or2 [0] 0O L3
for each phase iphas, icpext(iphas) specifies the time scheme activated for the
physical property ¢ “specific heat”.

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" % = [(1+60)¢" —0¢™ 1], § being given by the value of thetcp (iphas)=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when icpext=1, but with §=thetcp(iphas)=1
always useful

ia 0,1o0r2 [0] O L3
for each scalar iscal, ivsext(iscal) specifies the time scheme activated for the
physical property ¢ “diffusivity”.

= 0: 7standard” first-order: the value calculated at the beginning of the
current time step (from the variables known at the end of the previous time step) is
used

= 1: second-order: the physical property ¢ is extrapolated according to the
formula ¢" ¢ = [(1+60)¢™ —0¢™ 1], § being given by the value of thetvs (iscal)=0.5

= 2: first-order: the physical property ¢ is extrapolated at n+ 1 according to
the same formula as when ivsext=1, but with 6=thetvs(iscal)=1
always useful

ra 0 <real <1 [1 or 0.5) (0] L3
for each variable ivar, thetav(ivar) is the value of # used to express at the second-
order the terms of convection, diffusion and the source terms which are linear functions
of the solved variable (according to the formula ¢" % = (1 —0)¢" +0¢"). Generally,
only the values 1 and 0.5 are used. The user is not allowed to modify this variable.
= 1: first-order
= 0.5: second-order
Concerning the pressure, the value of thetav is always 1. Concerning the other vari-
ables, the value thetav=0.5 is used when the second-order time scheme is activated
by ischtp=2 (standard value for LES calculations), otherwise thetav is set to 1.
always useful

ra 0 <real <1 [0 or 0.5 0] L3
for each phase iphas, thetfl(iphas) is the value of 6 used to interpolate the convec-
tive fluxes of the variables when a second-order time scheme has been activated for
the mass flow (see istmpf)
generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0.0: “explicit” first-order (corresponds to istmpf (iphas)=0 or 1)
= 0.5: second-order (corresponds to istmpf (iphas)=2). The mass flux will
be interpolated according to the formula Q"¢ = ;1 Qn+! 4 =6Qn+1-9),
always useful

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 136/186

thetsn ra 0 <real <1 [0, 0.5 or 1] O L3

for each phase iphas, thetsn(iphas) is the value of 8 used to extrapolate the non
linear explicit source terms S, of the momentum equation, when the source term
extrapolation has been activated (see isno2t), following the formula
(S.)"F0 = (1+6)S2 — 4501
the value of f=thetsn(iphas) is deduced from the value chosen for isno2t(iphas).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isno2t (iphas)=0)
= 0.5: second-order (used when isno2t (iphas)=1)
= 1: first-order (used when isno2t (iphas)=2)
always useful

thetst ra 0 < real <1 [0, 0.5 or 1] Q) L3
for each phase iphas, thetst(iphas) is the value of 6 used to extrapolate the non
linear explicit source terms S, of the turbulence equations, when the source term
extrapolation has been activated (see isto2t), following the formula
R Y
the value of f=thetsn(iphas) is deduced from the value chosen for isto2t (iphas).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isto2t (iphas)=0)
= 0.5: second-order (used when isto2t (iphas)=1)
= 1: first-order (used when isto2t (iphas)=2)
always useful

thetss ra 0 < real <1 [0, 0.5 or 1] 0) L3
for each scalar iscal, thetss(iscal) is the value of 6 used to extrapolate the non
linear explicit source terms S, of the scalar equation, when the source term extrapo-
lation has been activated (see isso2t), following the formula
(Se)"t? = (1 +6)Sr —0Sr—1
the value of #=thetss(iscal) is deduced from the value chosen for isso2t(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to isso2t (iscal)=0)
= 0.5: second-order (used when isso2t(iscal)=1)
= 1: first-order (used when isso2t(iscal)=2)
useful if nscal>1

thetro ra 0 <real <1 [0, 0.5 or 1] 0] L3
for each phase iphas, thetro(iphas) is the value of 8 used to extrapolate the physical
property ¢ “density” when the extrapolation has been activated (see iroext),according
to the formula ¢"? = (14)™ — "
the value of §=thetro (iphas) is deduced from the value chosen for iroext (iphas).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to iroext (iphas)=0)
= 0.5: second-order (corresponds to iroext (iphas)=1)
= 1: first-order (corresponds to iroext (iphas)=2)
always useful

thetvi ra 0 <real <1 [0, 0.5 or 1] 0] L3
for each phase iphas, thetvi(iphas) is the value of 8 used to extrapolate the physical
property ¢ “total viscosity” when the extrapolation has been activated (see iviext),according
to the formula ¢" % = (14)™ — "
the value of §=thetvi (iphas) is deduced from the value chosen for iviext (iphas).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 137/186
= 0: first-order (unused, corresponds to iviext (iphas)=0)
= 0.5: second-order (corresponds to iviext (iphas)=1)
= 1: first-order (corresponds to iviext (iphas)=2)
always useful
thetcp ra 0 < real <1 [0, 0.5 or 1] 0] L3
for each phase iphas, thetcp(iphas) is the value of 6 used to extrapolate the physical
property ¢ “specific heat” when the extrapolation has been activated (see icpext),according
to the formula ¢" % = (14)™ — Gp" !
the value of §=thetcp(iphas) is deduced from the value chosen for icpext (iphas).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.
= 0: first-order (unused, corresponds to icpext (iphas)=0)
= 0.5: second-order (corresponds to icpext(iphas)=1)
= 1: first-order (corresponds to icpext (iphas)=2)
always useful
thetvs ra 0 <real <1 [0, 0.5 or 1] O L3

for each scalar iscal, thetvs(iscal) is the value of 6 used to extrapolate the physical
property ¢ “diffusivity” when the extrapolation has been activated (see ivsext),according
to the formula ¢" % = (14 0)¢™ — fpn 1
the value of #=thetvs(iscal) is deduced from the value chosen for ivsext(iscal).
Generally, only the value 0.5 is used. The user is not allowed to modify this variable.

= 0: first-order (unused, corresponds to ivsext(iscal)=0)

= 0.5: second-order (corresponds to ivsext(iscal)=1)

= 1: first-order (corresponds to ivsext(iscal)=2)
useful if nscal>1

7.2.7 Gradient reconstruction

imrgra

nswrgr

i 0,1,2,30r4 [0] O L2
indicates the type of gradient reconstruction (one method for all the variables)

= 0: iterative reconstruction of the non-orthogonalities

= 1: least squares method based on the first neighbor cells (cells which share
a face with the treated cell)

= 2: least squares method based on the extended neighborhood (cells which
share a node with the treated cell)

= 3: least squares method based on a partial extended neighborhood (all first
neighbors plus the extended neighborhood cells that are connected to a face where the
non-orthogonality angle is larger than parameter anomax)

= 4: iterative reconstruction with initialisation using the least squares method
(first neighbors)
if imrgra fails due to probable mesh quality problems, it is usually effective to use
imrgra=3. Moreover, imrgra=3 is usually faster than imrgra=0 (but with less feed-
back on its use).
it should be noted that imrgra=1, 2 or 3 automatically triggers a gradient limitation
procedure. See imligr.
useful if and only if there is n so that nswrgr(n) > 1

ia positive integer [100] 0 L3
for each unknown ivar, nswrgr(ivar) < 1 indicates that the gradients are not recon-
structed

if imrgra = 0 or 4, nswrgr (ivar) is the number of iterations for the gradient

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 138/186

reconstruction

if imrgra = 1, 2 or 3, nswrgr(ivar) > 1 indicates that the gradients are
reconstructed (but the method is not iterative, so any value larger than 1 for nswrgr
yields the same result)
useful for all the unknowns

epsrgr ra real number > 0 [1079] 0 L3
for each unknown ivar, relative precision for the iterative gradient reconstruction:
epsrgr(ivar)

useful for all the unknowns when imrgra = 0 or 4

imligr ia -1,00r1 [-1 or 1] 0] L3
for each unknown ivar, indicates the type of gradient limitation: imligr (ivar)
=-1: no limitation
= 0: based on the neighbors
= 1: superior order
for all the unknowns, imligr is initialised to -1 if imrgra=0or 4 and to 1 if imrgra = 1, 2 or 3
useful for all the unknowns

climgr ra real number > 0 [1.5] 0] L3
for each unknown ivar, factor of gradient limitation: climgr(ivar) (high value means
little limitation)
useful for all the unknowns ivar for which imligr(ivar) # -1

extrag ra 0,05 0r 1 [0] 0] L3

for the variable “pressure” ivar=ipr (iphas), extrapolation coefficient of the gradi-
ents at the boundaries. It affects only the Neumann conditions. The only possible
values of extrag(ipr(iphas)) are:

= 0: homogeneous Neumann calculated at first-order

= 0.5: improved homogeneous Neumann, calculated at second-order in the
case of an orthogonal mesh and at first-order otherwise

= 1: gradient extrapolation (gradient at the boundary face equal to the gra-
dient in the neighbor cell), calculated at second-order in the case of an orthogonal
mesh and at first-order otherwise
extrag often allows to correct the non-physical velocities that appear on horizontal
walls when density is variable and there is gravity. It is strongly advised to keep
extrag=0 for the variables apart from pressure. See also iphydr.
In practice, only the values 0 and 1 are allowed. The value 0.5 isn’t allowed by default
(but the lock can be overridden if necessary, contact the development team).
always useful

anomax r 0 <real < m/2 [7/4] 0) L3
limit non-orthogonality angle used to restrict the extended neighborhood for the gra-
dient calculation with imrgra=3.
anomax=0 will yield the same result as imrgra=2 (full extended neighborhood). anomax=m/2
will yield the same result as imrgra=1 (first neighbors only)*3
useful if and only if imrgra=3

43except for pathological cases where the non-orthogonality angle of a face would be larger than /2

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 139/186

7.2.8 Solution of the linear systems

iresol

nitmax

epsilo

imgr

ncegrm

ncymax

ia -1, ipo1*1000+j [-1] 0) L3
for each unknown ivar, iresol(ivar) determines the method used for the solution
of the linear system
= -1: automatically managed by the code (conjugate gradient for the pres-
sure ivar=ipr(iphas) or any variable which is not convected, Jacobi for the others.
Diagonal preconditioning with conjugate gradient).
= ipol*1000+j with j= 0: conjugate gradient
j= 1: Jacobi
j= 2: stabilised bi-conjugate gradient (BI-CGSTAB)
ipol is the degree of the Neumann polynomial used for the preconditioning®*.
ipol is necessarily 0 with the Jacobi algorithm.
Concerning the computational time, the performance depends on the case. If a precon-
ditioning method different from the diagonal preconditioning is to be used, it seems to
be better to restrict to a first-order preconditioning (ipol=1). This preconditioning
may slightly increase performance in some cases but may decrease it in others.
always useful

ia integer > 0 [10000] O L3
for each unknown ivar, maximum number of iterations for the solution of the linear
systems: nitmax(ivar)

when the algebraic multigrid option is activated for the variable ivar (imgr (ivar)=1),
nitmax(ivar) is the maximum number of iterations for the solution on the coarsest
mesh

always useful

ra real number > 0 [1078,1079] 0] L3
for each unknown ivar, relative precision for the solution of the linear system. The
default value is epsilo(ivar)=10"8. This value is set low on purpose. When there
are enough iterations on the reconstruction of the right-hand side of the equation, the
value may be increased (by default, in case of second-order in time, with nswrsm = 5
or 10, epsilo is increased to 107°).

always useful

ia Oorl [0] O L3
for each unknown ivar, indicates the use (imgr (ivar)=1) or not (=0) of the algebraic
multigrid method for the solution of the linear systems

imgr(ivar) can be set independently for every variable

always useful. Generally, its use is designed for the variable “pressure” in case of
meshes with strongly stretched cells. It is recommended not to modify imgr

i integer > 0 [30] 0] L3
for the multigrid method, maximum number of cells on the coarsest grid
useful if and only if imgr(ivar) = 1 for at least one variable ivar

ia integer > 0 [100] O L3
for each unknown ivar, ncymax(ivar) is the maximum number of cycles when using

44D being the diagonal part of A and X its extra-diagonal part, it can be written A = D(Id + D’lX). There-
fore A=1 = (Id+ D~'X)~1D~1. A series development of Id + D~!'X can then be used which yields, symbolically,

I1POL I
Id+ Y (-D7'X)".
I=1

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 140/186
the multigrid method.
useful if and only if imgr (ivar) =1
ngrmax i 1< integer <ngrmmx [ngrmmx| 0 L3
when using the multigrid method, maximum number of grid levels
useful if and only if imgr(ivar) = 1 for at least one variable ivar
ncymax ia integer > 0 [10] Q) L3
for each unknown ivar, ncymax(ivar) is the maximum number of multigrid cycles.
useful if and only if imgr(ivar) =1
nitmgf ia integer > 0 [10]) L3
for each unknown ivar, nitmgf (ivar) is the maximum number of iterations on all
grids except for the coarsest when the multigrid method is used; the resolution on the
coarsest grid uses nitmax.
useful if and only if imgr(ivar) =1
WARNING

The algebraic multigrid method has only been tested for the “pressure” variable (imgr (ipr (iphas))=1).

7.2.9 Convective scheme

blencv

ischcv

isstpc

ra 0<real <1 [0 or 1] 0] L1
for each unknown ivar to calculate, blencv(ivar) indicates the proportion of second-
order convective scheme (0 corresponds to an “upwind” first-order scheme) ; in case
of LES calculation, a second-order scheme is recommended and activated by default
(blencv=1)

useful for all the unknowns ivar for which iconv(ivar) =1

ia Oorl [1] 0) L2
for each unknown ivar to calculate, ischcv(ivar) indicates the type of second-order
convective scheme

= 0: Second Order Linear Upwind

= 1: Centered
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0)

ia Oorl [0] 0) L2
for each unknown ivar to calculate, isstpc(ivar) indicates whether a “slope test”
should be used to switch from a second-order to an “upwind” convective scheme under
certain conditions, to ensure stability.

= 0: “slope test” activated for the considered unknown

= 1: “slope test” deactivated for the considered unknown
useful for all the unknowns ivar which are convected (iconv(ivar)=1) and for which
a second-order scheme is used (blencv(ivar) > 0).
the use of the “slope test” stabilises the calculation but may bring the order in space
to decrease quickly.

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 141/186

7.2.10 Pressure-continuity step

iprco

arak

relaxp

irevmc

iphydr

icalhy

i Oorl [1] 0) L3
indicates if the pressure-continuity step is taken into account (1) or not (0)
always useful

ra 0 <real <1 [1] 0] L3
for each phase iphas, arak(iphas) is the Arakawa coefficient before the Rhie& Chow
filter

always useful

ra 0 <real <1 [1] 0] L2
for each phase iphas, relaxation of the pressure increment during the solution of the
system (relaxp(iphas)=1: no relaxation)

can improve the convergence in case of meshes of insufficient quality

always useful

ia 0,1or2 [0] 0O L3
for each phase iphas, method used to update the velocity after the pressure correction:
- standard gradient of pressure increment (irevmc (iphas)=0)
- least squares on the pressure increment (irevmc (iphas)=1)
-“rt0” i.e. least squares on the updated mass flux (irevmc (iphas)=2)
the method irevmc (iphas)=2 is generally not recommended
always useful

i Oorl [0] 0] L2
method for taking into account the balance between the pressure gradient and the
source terms (gravity and head losses): by extension it will be referenced as “taking
into account of the hydrostatic pressure”

= 0: standard algorithm

= 1: improved algorithm
always useful
When the density effects are important, the choice of iphydr=1 allows to improve the
interpolation of the pressure and correct the non-physical velocities which may appear
in highly stratified areas or near horizontal walls (thus avoiding the use of extrag if
the non-physical velocities are due only to gravity effects).
The improved algorithm also allows to eradicate the velocity oscillations which tend
to appear at the frontiers of areas with high head losses.
In the case of a stratified flow, the calculation cost is higher when the improved
algorithm is used (about 30% depending on the case) because the hydrostatic pressure
must be recalculated at the outlet boundary conditions: see icalhy.
On meshes of insufficient quality, in order to improve the convergence, it may be useful
to increase the number of iterations for the reconstruction of the pressure right-hand
member, i.e. nswrsm(ipr (iphas)).
If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities.

i Oorl [0 or 1] 0] L3
activates the calculation of hydrostatic pressure boundary conditions at outlet bound-
aries

= 0: no calculation of the hydrostatic pressure at the outlet boundary
= 1: calculation of the hydrostatic pressure at the outlet boundary

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 142/186

always useful

This option is automatically specified depending on the choice of iphydr and the
value of gravity (icalhy=1 if iphydr=1 and gravity is different from 0; otherwise
icalhy=0). The activation of this option generates an additional calculation cost
(about 30% depending on the case).

If head losses are present just along an outlet boundary, it is necessary to specify
icalhy=0 in order to deactivate the recalculation of the hydrostatic pressure at the
boundary, which may otherwise cause instabilities

7.2.11 Error estimators for Navier-Stokes

There are currently nestmx=4 types of local estimators provided at every time step, with two possible
definitions for each?®. These scalars indicate the areas (cells) in which some error types may be
important. They are stored in the array propce containing the properties at the cells (see iestim).
For each estimator, the code writes the minimum and maximum values in the listing and generates
post-processing outputs along with the other variables.

The additional memory cost is about one real number per cell and per estimator. The additional
calculation cost is variable. For instance, on a simple test case, the total estimator iestot generates
an additional cost of 15 to 20 % on the CPU time?6 ; the cost of the three others may be neglected. If
the user wants to avoid the calculation of the estimators during the computation, it is possible to run
a calculation without estimators first, and then activate them on a restart of one or two time steps.

It is recommended to use the estimators only for visual and qualitative analysis. Also, their use is
compatible neither with a second-order time scheme nor with a calculation with a frozen velocity field.

iest = iespre: prediction (default name: EsPre). After the velocity prediction step (yielding u*),
the estimator 7?7 (u*), local variable calculated at every cell Q;, is created from RP™%(u*), which

represents the residual of the equation solved during this step:

ut —u"
At

— rest of the right-hand member (u", P, other variables™)

RPNt = p" +p"u" - grad(u®) — div ((u + ut)"gmd(y*)) + grad (P")

By definition:
nipi};ed(y*) _ |Q’L‘ (k—2)/2 HEpred(g*)HlLQ(Qi)

e The first family, k¥ = 1, suppresses the volume |Q;| which intrinsicly appears with the norm
IL2 ().

e The second family, k = 2, exactly represents the norm IL? (€;). The size of the cell therefore
appears in its calculation and induces a weighting effect.
ny "d(y*) is ideally equal to zero when the reconstruction methods are perfect and the associated

system is solved exactly.

iest = iesder: drift (default name: EsDer). The estimator nfj;(y "+1) is based on the following

quantity (intrinsic to the code):

nflj{’“(u D =y (k_z)/2||div(corrected mass flow after the pressure step) — I'[|z2(q,)

B [oH (1-k)/2 (4)

|div(corrected mass flow after the pressure step) — T'|

Ideally, it is equal to zero when the Poisson equation related to the pressure is solved exactly.
iest = iescor: correction (default name: EsCor). The estimator nfi”(g”“) comes directly from

the mass flow calculated with the updated velocity field:

e (W) = Q|2 |div(p"u™) — T

45choice made by the user
46indeed, all the first-order in space differential terms have to be recalculated at the time ¢™+1

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 143/186

The velocities u™ ! are taken at the cell centers, the divergence is calculated after projection on the
faces.
09, represents the Kronecker symbol.

e The first family, k = 1, is the absolute raw value of the divergence of the mass flow minus the
mass source term.

e The second family, k£ = 2, represents a physical property and allows to evaluate the difference in
kg.s 1.
Ideally, it is equal to zero when the Poisson equation is solved exactly and the projection from the mass
flux at the faces to the velocity at the cell centers is made in a set of functions with null divergence.

iest = iestot: total (default name: EsTot). The estimator 7{% (u"*"), local variable calculated at

every cell 2;, is based on the quantity R (u"*'), which represents the residual of the equation using
the updated values of u and P:

n+1

EtOt(Qn+l) — pn% _’_pnun—i-l -grad(g”"'l) — div ((/Jf‘f',ut)ngrad(ﬂn—i_l)) _’_g@ (Pn+1)

rest of the right-hand member (z" ™!, P! other variables™)

By definition:
o n k—2)/2 o n
ni%) = |2 TR) | na(a,

The mass flux in the convective term is recalculated from u™! expressed at the cell centers (and not
taken from the updated mass flow at the faces).

As for the prediction estimator:

e The first family, ¥ = 1, suppresses the volume |Q;| which intrinsicly appears with the norm
IL2(9).

e The second family, k = 2, exactly represents the norm IL? (€2;). The size of the cell therefore
appears in its calculation and induces a weighting effect.

The estimators are evaluated depending on the values of iescal.

iescal ia 0,1or2 [0] @) L1
for each phase iphas, iescal(iest,iphas) indicates the calculation mode for the er-
ror estimator iest (iespre, iesder, iescor or iestot), for the Navier-Stokes equa-
tion:
iescal = 0: estimator not calculated,
iescal = 1: the estimator n;, is calculated, without contribution of the volume,
iescal = 2: the estimator)], is calculated, with contribution of the volume ("norm
L?”), except for iescor, for which Q] n{9™" is calculated.

The name of the estimators appearing in the listing and the post-processing is made up of the default
name (given before), followed first by the value of iescal, then by the phase number. For instance,
EsPre201 is the estimator iespre calculated with iescal=2 for the phase 01.

always useful

7.2.12 Calculation of the distance to the wall

icdpar i -1,1,-20r 2 [-1] 0] L2
specifies the method used to calculate the distance to the wall y and the adimensional

distance y* for all the cells of the calculation domain (when necessary):
= 1: standard algorithm (based on a Poisson equation for y and convection

equation for y™), with reading of the distance to the wall from the restart file if pos-
sible

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 144/186

=-1: standard algorithm (based on a Poisson equation for y and convection
equation for yT), with systematic recalculation of the distance to the wall in case of
calculation restart

= 2: former algorithm (based on geometrical considerations), with reading of
the distance to the wall from the restart file if possible

=-2: former algorithm (based on geometrical considerations) with systematic
recalculation of the distance to the wall in case of calculation restart
In case of restart calculation, if the position of the walls haven’t changed, reading the
distance to the wall from the restart file can save a fair amount of CPU time.
Useful in R;; — ¢ model with wall echo (iturb(iphas)=30 and irijec=1), in LES
with van Driest damping (iturb(iphas)=40 and idries(iphas)=1) and in k — w
SST (iturb(iphas)=60).
By default, icdpar is initialised to -1, in case there has been a change in the definition
of the boundary conditions between two computations (change in the number or the
positions of the walls). Yet, with the &k — w SST model, the distance to the wall is
needed to calculate the turbulent viscosity, which is done before the calculation of the
distance to the wall. Hence, when this model is used (and only in that case), icdpar
is set to 1 by default, to ensure total continuity of the calculation at restart.
As a consequence, with the k — w SST model, if the number and positions
of the walls are changed at a calculation restart, it is mandatory for the
user to set icdpar explicitly to -1, otherwise the distance to the wall used will not
correspond to the actual position of the walls.
The former algorithm is not compatible with parallelism nor periodicity. Also, what-
ever the value chosen for icdpar, the calculation of the distance to the wall is made at
the most once for all a the beginning of the calculation. It is therefore not compatible
with moving walls. Please contact the development team if you need to override this
limitation.

The following options are related to icdpar=1 or -1. The options of level 2 are described first. Some
options are used only in the case of the calculation of the adimensional distance to the wall y* (LES
model with van Driest damping). Most of these key words are simple copies of the key words for
the numerical options of the general equations, with a potentially specific value in the case of the
calculation of the distance to the wall.

iwarny

ntcmxy

nitmay

nswrsy

i integer [0] @) L2
specifies the level of the output writing concerning the calculation of the distance to
the wall with icdpar=1 or -1. The higher the value, the more detailled the outputs
useful when icdpar=1 or -1

i positive integer [1000] 0] L2
number of pseudo-time iterations for the calculation of the adimensional distance to
the wall yT
useful when icdpar=1 or -1 for the calculation of y*

i integer > 0 [10000] 0) L3
maximum number of iterations for the solution of the linear systems
useful when icdpar=1 or -1

i positive integer [1] 0] L3
number of iterations for the reconstruction of the right-hand members: corresponds
to nswrsm
useful when icdpar=1 or -1

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 145/186

nswrgy i positive integer [100] 0] L3
number of iterations for the gradient reconstruction: corresponds to nswrgr
useful when icdpar=1 or -1

imligy i -1,00r1 [-1 or 1] @) L3
type of gradient limitation: corresponds to imligr
useful when icdpar=1 or -1

ircfly i Oorl [1] 0] L3
indicates the reconstruction of the convective and diffusive fluxes at the faces: corre-
sponds to ircflu
useful when icdpar=1 or -1

ischcey i Oorl [1] 0] L3
type of second-order convective scheme: corresponds to ischcv
useful when icdpar=1 or -1 for the calculation of y*

isstpy i Oor1 [0] O L3
indicates if a “slope test” should be used for a second-order convective scheme: corre-
sponds to isstpc
useful when icdpar=1 or -1 for the calculation of y*

imgrpy i Oorl [0]) L3
indicates whether the algebraic multigrid method should be used (imgr(ivar)=1) or
not (0): corresponds to imgr
useful when icdpar=1 or -1

blency r 0<real <1 [0] 0] L3
proportion of second-order convective scheme: corresponds to blencv
useful when icdpar=1 or -1 for the calculation of y™

epsily r real number > 0 [10~8] @) L3
relative precision for the solution of the linear systems: corresponds to epsilo
useful when icdpar=1 or -1

epsrgy r real number > 0 [1079] O L3
relative precision for the iterative gradient reconstruction: corresponds to epsrgr
useful when icdpar=1 or -1

climgy r real number > 0 [1.5] 0] L3
limitation factor of the gradients: corresponds to climgr
useful when icdpar=1 or -1

extray r 0,0.50r1 [0] 0] L3
extrapolation coefficient of the gradients at the boundaries: corresponds to extrag
useful when icdpar=1 or -1

coumxy T strictly positive real number [5000] 0 L3

Target Courant number for the calculation of the adimensional distance to the wall
useful when icdpar=1 or -1 for the calculation of y*

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 146/186

epscvy r strictly positive real number [1078] 0 L3

relative precision for the convergence of the pseudo-transient regime for the calculation

of the adimensional distance to the wall

useful when icdpar=1 or -1 for the calculation of y*
yplmxy r real number [200] 0] L3

7.2.13 Others

iccvfg

ipucou

isuitl

imvisf

ircflu

value of the adimensional distance to the wall above which the calculation of the
distance is not necessary (for the damping)
useful when icdpar=1 or -1 for the calculation of y*

i Oorl [0] 0] L1
indicates whether the dynamic field should be frozen (1) or not (0)

in such a case, the values of velocity, pressure and the variables related to the potential
turbulence model (k, R;j, €, ¢, f, w, turbulent viscosity) are kept constant over time
and only the equations for the scalars are solved

also, if iccvfg=1, the physical properties modified in usphyv will keep being updated.
Beware of non-consistencies if these properties would normally affect the dynamic field
(modification of density for instance)

useful if and only if nscal > 0 and isuite=1

i Oor1l [0] 0] L1
indicates the algorithm for velocity/pressure coupling

= 0: standard algorithm

= 1: reinforced coupling in case calculation with long time steps
always useful (it is seldom advised, but it can prove very useful, for instance, in case
of flows with weak convection effects and highly variable viscosity)

i Oorl [0] 0 L1
for the 1D wall thermal module, activation (1) or not(0) of the reading of the mesh
and of the wall temperature from the ficmt1 restart file

useful if nfpt1d>0.

i Oor1 [0] O L3
indicates the interpolation method used to project variables from the cell centers to
the faces

= 0: linear

= 1: harmonic
always useful

ia Oor1 [1] 0] L2
for each unknown ivar, ircflu(ivar) indicates whether the convective and diffusive
fluxes at the faces should be reconstructed:

= 0: no reconstruction

= 1: reconstruction
deactivating the reconstruction of the fluxes can have a stabilising effect on the cal-
culation. It is sometimes useful with the k& — ¢ model, if the mesh is strongly non-
orthogonal in the near-wall region, where the gradients of k£ and ¢ are strong. In such a
case, setting ircflu(ik(iphas))=0 and ircflu(iep(iphas))=0 will probably help
(switching to a first order convective scheme, blencv=0, for k and £ might also help

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 147/186

in that case)
always useful

nswrsm ia positive integer [1, 2, 5 or 10] 0] L3
for each unknown ivar, nswrsm(ivar) indicates the number of iterations for the
reconstruction of the right-hand members of the equations
with a first-order scheme in time (standard case), the default values are 2 for pressure
and 1 for the other variables. With a second-order scheme in time (ischtp=2) or
LES, the default values are 5 for pressure and 10 for the other variables.
useful for all the unknowns

epsrsm ra real number > 0 [1078,1079) 0] L3
for each unknown ivar, relative precision on the reconstruction of the right hand-side.
The default value is epsrsm(ivar)=10"8. This value is set low on purpose. When
there are enough iterations on the reconstruction of the right-hand side of the equation,
the value may be increased (by default, in case of second-order in time, with nswrsm
=5 or 10, epsrsm is increased to 107°).
always useful

7.3 Numerical, physical and modeling parameters
7.3.1 Numeric Parameters

These parameters correspond to numeric reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

zero r 0 [0] @) L3
Parameter containing the value 0

epzero r 10~12 [10712] @) L3
“Small” real parameter, used for the comparisons of real numbers (absolute value of
the difference lower than epzero)

pi r 3.141592653589793 [3.141592653589793] Q) L3
Parameter containing an approximate value of 7

grand r 10'2 (1012 0 L3
“Large” real parameter, generally used by default as a non physical value for the
initialisations of variables which have to be modified by the user

rinfin r 1030 (1039 0 L3
Real parameter used to represent “infinity”

7.3.2 Physical parameters

These parameters correspond to physical reference values in the code. They can be used but shall not
be modified (they are defined as parameter).

tkelvi r 273.15 [273.15] 0] L3
Temperature in Kelvin correponding to 0 degrees Celsius.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 148/186

tkelvn r -273.15 [-273.15] O L3
Temperature in degrees Celsius corresponding to 0 Kelvin.

rr T 8.31434 [8.31434] 0O L3
Perfect gas constant in J/mol/K

trefth r 25 + tkelvi [25 4 tkelvi] 0] L3
Reference temperature for the specific physics, in K

prefth r 101325 [101325] O L3
Reference pressure for the specific physics, in Pa

volmol r 22.41.1073 [22.41.1073] 0 L3
Molar volume under normal pressure and temperature conditions (1 atmosphere, 0°C)
in m~3

stephn r 5.6703.108 [5.6703.10~8] 0 L3
Stephan constant for the radiative module ¢ in W.m=2. K4

permvi r 1.2566.10~6 [1.2566.10~°] 0 L3
Vacuum magnetic permeability po (=47.1077) in kg.m.A=2.5s72

epszer r 8.854.10712 [8.854.10712] 0] L3

Vacuum permittivity e¢ in Fom ™!

7.3.3 Physical variables

gX,8Y,82

irovar

ivivar

ro0

r 3 real numbers [0,0,0] @) L1
gravity components
always useful

ia Oorl [-1] C L1
for each phase iphas, irovar (iphas)=0 indicates that the density is constant. Its
value is the reference density ro0O(iphas).

irovar(iphas)=1 indicates that the density is variable: its variation law must be
given in the user subroutine usphyv

negative value: not initialised

always useful

ia Oorl [-1] C L1
for each phase iphas, ivivar (iphas)=0 indicates that the molecular dynamic viscos-
ity is constant. Its value is the reference molecular dynamic viscosity visc10(iphas).
ivivar (iphas)=1 indicates that the molecular dynamic viscosity is variable: its vari-
ation law must be given in the user subroutine usphyv

negative value: not initialised

always useful

ra real number > 0 [-grand*10] C L1
for each phase iphas, ro0O(iphas) is the reference density

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 149/186

visclO

srrom

pO

predo0

negative value: not initialised

its value is not used in gas or coal combustion modeling (it will be calculated following
the perfect gas law, with PO and 70). With the compressible module, it is also not
used by the code, but it may be (and often is) referenced by the user in user subrou-
tines; it is therefore better to specify its value.

always useful otherwise, even if a law defining the density is given by the user subrou-
tine usphyv or uselph

indeed, except with the compressible module, Code_Saturne does not use the total pres-
sure P when solving the Navier-Stokes equation, but a reduced pressure

P* =P —pog.(x —zy) + Py — P

where g is a reference point (see xyzp0) and Py and P, are reference values (see pred0
and p0). Hence, the term —grad P + pg in the equation is treated as —grad P* +
(p — po)g. The closer ro0 is to the value of p, the more P* will tend to represent
only the dynamic part of the pressure and the faster and more precise its solution
will be. Whatever the value of ro0, both P and P* appear in the listing and the
post-processing outputs.

with the compressible module, the calculation is made directly on the total pressure

ra real number > 0 [~grand*10] C L1
for each phase iphas, viscl0(iphas) is the reference molecular dynamic viscosity
negative value: not initialised

always useful, it is the used value unless the user specifies the viscosity in the subroutine
usphyv

r 0<réel <1 [-grand or 0] corO
With gas combustion, pulversied coal or the electric module, srrom is the sub-relaxation
coefficient for the density, following the formula:

p" 1 =srrom p"+(1-srrom) p" 1

hence, with a zero value, there is no sub-relaxation. With combustion and pulversied
coal, srrom is initialised to —grand and the user must specify a proper value through
the Interface or the initialisation subroutines (usd3pl, usebul, uslwcl, uscpil or
uscpll).With the electric module, srrom is initialised in to 0 and may be modified by
the user in uselil.

With gas combustion, pulverised coal or electric arc, ssrom is automatically used after
the second time-step. With Joule effect, the user decides whether or not it will be
used in uselph from the coding law giving the density.

always useful with gas combustion, pulversized coal or the electric module.

ra real number [1.013¢ — 5] 0O L1
for each phase iphas, pO(iphas) is the reference pressure for the total pressure
except with the compressible module, the total pressure P is evaluated from the re-
duced pressure P* so that P is equal to pO at the reference position z, (given by
xyzpO0)

with the compressible module, the total pressure is solved directly

always useful

ra real number [0] 0) L3
for each phase iphas, predO(iphas) is the reference value for the reduced pressure
P* (see ro0)

it is especially used to initialise the reduced pressure and as a reference value for the
outlet boundary conditions

for an optimised precision in the resolution of P*, it is wiser to keep pred0 to 0

with the compressible module, the “pressure” variable appearing in the equations

L1

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 150/186

xyzp0

t0

cpO

icp

directly represents the total pressure. It is therefore initialised to pO and not pred0
(see ro0)
always useful, except with the compressible module

ra 3 real numbers [0,0,0] 0] L1
for each phase iphas, xyzp0(ii,iphas) is the ii coordinate (1<II<3) of the reference
point z, for the total pressure

when there are no Dirichlet conditions for the pressure (closed domain), xyzpO does
not need to be specified (unless the total pressure has a clear physical meaning in the
configuration treated)

when Dirichlet conditions on the pressure are specified but only through stantard
outlet conditions (as it is in most configurations), xyzp0 does not need to be specified
by the user, since it will be set to the coordinates of the reference outlet face (i.e. the
code will automatically select a reference outlet boundary face and set xyzpO so that
P equals pO at this face). Nontheless, if xyzp0 is pecified by the user, the calculation
will remain correct

when direct Dirichlet conditions are specified by the user (specific value set on specific
boundary faces), it is better to specify the corresponding reference point (i.e. specifiy
where the total pressure is p0). This way, the boundary conditions for the reduced
pressure will be close to pred0, ensuring an optimal precision in the resolution. If
xyzpO is not specified, the reduced pressure will be shifted, but the calculations will
remain correct.

with the compressible module, the “pressure” variable appearing in the equations
directly represents the total pressure. xyzpO is therefore not used.

always useful, except with the compressible module

ra real number [0] 0) L1
for each phase iphas, t0(iphas) is the reference temperature

useful for the specific physics gas or coal combustion (initialisation of the density), for
the electricity modules to initialise the domain temperature and for the comperssible
module (initialisations). It must be given in Kelvin.

ra real number > 0 [-grand*10] @) L1
for each phase iphas, cpO(iphas) is the reference specific heat

useful if there is 1<n<nscaus?” so that iscsth(n)=1 (there is a scalar “temperature”),
unless the user specifies the specific heat in the user subroutine usphyv*® (icp(iphas)
> 0)

with the compressible module or coal combustion, cp0 is also needed even when there
is no user scalar

ia Oorl [0] 0] L1
for each phase iphas, indicates if the specific heat C), is variable (icp(iphas)=1) or
not (0)

When gas or coal combustion is activated, icp is automatically set to 0 (constant
Cp). With the electric module, it is automatically set to 1. The user is not allowed to
modify these default choices.

When icp(iphas)=1 is specified, the code automatically modifies this value to make
icp(iphas) designate the effective index-number of the property “specific heat of the
phase iphas”. For each cell iel, the value of C), is then specified by the user in the
appropriate subroutine (usphyv for the standard physics) and stored in the array

47

none of the scalars from the specific physics is a temperature

48when using the Graphical Interface, cp0 is also used to calculate the diffusivity of the thermal scalars, based on their
conductivity; it is therefore needed, unless the diffusivity is also specified in usphyv

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 151/186

vislsO

ivisls

diftlo

scamin

scamax

propce(iel,ipproc(icp(iphas))) (see p.71 for specific conditions of use)
useful if there is 1<N<nscal so that iscsth(n)=1 (there is a scalar “temperature”)
or with the compressible module for non perfect gases

ra real number > 0 [-grand*10] C L1
visls0(j): reference molecular diffusivity related to the scalar J (kg.m~1.s71)
negative value: not initialised

useful if 1<J< nscal, unless the user specifies the molecular diffusivity in the appro-
priate user subroutine (usphyv for the standard physics) (ivisls(iscal) > 0)
Warning: vislsO corresponds to the diffusivity. For the temperature, it is therefore
defined as \/C, where A and C,, are the conductivity and specific heat. When using
the Graphical Inteface, A and C, are specified separately, and vislsO is calculated
automatically

With the compressible module, vislsO (given in uscfzi2) is directly the thermal con-
ductivity Wom~ ' K1

With gas or coal combustion, the molecular diffusivity of the enthalpy (kg.m=1.s71)
must be specified by the user in the variable diftl0 (usebul, usd3pl, uslwecl, uscpil,
uscpll)

With the electric module, for the Joule effect, the diffusivity is specified by the user in
uselph (even if it is constant). For the electric arc, it is calculated from the thermo-
chemical data file

ia positive or zero integer [0] @) L1
indicates if the viscosity related to the scalar iscal is variable (ivisls(iscal)=1) or
not (0). The user must specify ivisls only for the user scalars (iscal < nscaus).
When ivisls(iscal)=1 is specified, the code automatically modifies this value to
make ivisls(iscal) designate the effective index-number of the property “diffusivity
of the scalar iscal”. For each cell iel, the value is then specified by the user in the
appropriate subroutine (usphyv for the standard physics) and stored in the array
propce(iel,ipproc(ivisls(iphas))) (see p.71 for specific conditions of use)
useful if 1<n<nscal

r real number > 0 [-grand] C L1
molecular diffusivity for the enthalpy (kg.m~'.s™1) for gas or coal combustion (the
code then automatically sets vislsO to diftlO for the scalar representing the en-
thalpy)

always useflu for gas or coal combustion

ra real number [grand] 0] L1
scamin(iscal) is the lower limit value for the scalar iscal. At each time step,
in every cell where the calculated value for rtp(iel,isca(iscal)) is lower than
scamin(iscal), rtp(iel,isca(iscal)) will be reset to scamin(iscal)

there is no limitation if scamin(iscal) >scamax(iscal)

scamin shall not be specified for non-user scalars (specific physics) or for scalar vari-
ances

useful if and only if 1<iscal< nscaus

ra real number [-grand] 0] L1
scamax(iscal) is the higher limit value for the scalar iscal. At each time step,
in every cell where the calculated value for rtp(iel,isca(iscal)) is higher than
scamax (iscal), rtp(iel,isca(iscal)) will be reset to scamax(iscal)

there is no limitation if scamin(iscal) >scamax(iscal)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 152/186
scamax shall not be specified for non-user scalars (specific physics) or for scalar vari-
ances
useful if and only if 1<iscal< nscaus
sigmas ra real number > 0 [1] 0] L2
sigmas(iscal): turbulent Prandtl (or Schmidt) number for the scalar iscal
useful if and only if 1<iscal< nscaus
rvarfl ra real number > 0 [0.8] 0] L2
when iscavr(iscal) >0, rvarfl(iscal) is the coefficient R in the dissipation term
p

€ . . .
R of the equation concerning the scalar iscal, which represents the root mean
f
square of the fluctuations of the scalar iscavr(iscal)
useful if and only if there is 1<iscal< nscal such as iscavr(iscal) >0

7.3.4 Modeling parameters

xlomlg

almax

uref

ra real number > 0 [~grand*10] Q) L1
for each phase iphas, xlomlg(iphas) is the mixing length
useful if and only if there is a phase iphas so that iturb(iphas)= 10 (mixing length)

ra -grand, real number > 0 [-grand*10] 0] L2
for each phase iphas, almax(iphas) is a characteristic macroscopic length of the
domain, used for the initialisation of the turbulence and the potential clipping (with
iclkep(iphas)=1)

negative value: not initialised (the code then uses the cubic root of the domain volume)
useful if and only if there is a phase iphas such as turb(iphas)= 20, 21, 30, 31, 50
or 60 (RANS models)

ra real number > 0 [-grand*10] C L1
for each phase iphas, uref (iphas) is the characteristic flow velocity, used for the
initialisation of the turbulence

negative value: not initialised

useful if and only if there is a phase iphas such that iturb(iphas)= 20, 21, 30, 31,
50 or 60 (RANS model) and the turbulence is not initialised somewhere else (restart
file or subroutine usiniv)

BASIC CONSTANTS OF THE k — € AND THE OTHER RANS MODELS

xkappa

cstlog

cmu

r real number > 0 [0.42] 0] L3
Karmén constant

useful if and only if there is a phase iphas such as iturb(iphas)>10 (mixing length,
k—e¢, Rij —e, LES, v2f or k —w)

r real number > 0 [5.2] 0] L3
constant of the logarithmic wall function

useful if and only if there is a phase iphas such as iturb(iphas)>10 (mixing length,
k—e, Rjj —e, LES, v2for k —w)

r real number > 0 [0.09] 0] L3
constant C), for all the RANS turbulence models except for the v2f model (see cv2fmu

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 153/186
for the value of C), in case of v2f modeling)
useful if and only if there is a phase iphas such as iturb(iphas)= 20, 21, 30, 31 or
60 (k—¢, Rjj —cork—w)
cel r real number > 0 [1.44]) L3
constant C.1 for all the RANS turbulence models except for the v2f and the k — w
models
useful if and only if there is a phase iphas such as iturb(iphas)= 20, 21, 30 or 31
(k—cor R —¢)
ce2 r real number > 0 [1.92] 0] L3
constant C,y for the k — ¢ and R;; — ¢ LRR models
useful if and only if there is a phase iphas such as iturb(iphas)= 20, 21 or 30 (k —¢
or R;; —e LRR)
ced r real number > 0 [1.2] 0] L3
constant C¢4 for the interfacial term (Lagrangian module) in case of two-way coupling
useful in case of Lagrangian modeling, in k — ¢ and R;; — ¢ with two-way coupling
sigmak T real number > 0 [1.0] 0O L3
Prandt]l number for k with £ — € and v2f models
useful if and only if there is a phase iphas such as iturb(iphas)=20, 21 or 50 (k —¢
or v2f)
sigmae T real number > 0 [1.3] @) L3

Prandt]l number for
useful if and only if there is a phase iphas such as iturb(iphas)= 20, 21, 30, 31 or
50 (k — ¢, R;j — € or v2f)

CONSTANTS SPECIFIC TO THE R;; — ¢ LRR MODEL (iturb=30)

criji

crij2

crij3

crijep

csrij

r real number > 0 [1.8] 0] L3
constant Cp for the R;; — e LRR model
useful if and only if there is a phase iphas such as iturb(iphas)=30 (R;; — ¢ LRR)

r real number > 0 [0.6] 0] L3
constant Cs for the R;; — e LRR model
useful if and only if there is a phase iphas such as iturb(iphas)=30 (R;; — ¢ LRR)

r real number > 0 [0.55] 0] L3
constant Cs for the R;; — e LRR model
useful if and only if there is a phase iphas such as iturb(iphas)=30 (R;; — ¢ LRR)

r real number > 0 [0.18] 0) L3
constant C; for the R;; — ¢ LRR model
useful if and only if there is a phase iphas such as iturb(iphas)=30 (R;; — ¢ LRR)

r real number > 0 [0.22] @) L3
constant C for the R;; — ¢ LRR model
useful if and only if there is a phase iphas such as iturb(iphas)=30 (R;; — ¢ LRR)

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 154/186
crijpl r real number > 0 [0.5] 0] L3
constant C] for the R;; — ¢ LRR model, corresponding to the wall echo terms
useful if and only if there is a phase iphas such as iturb(iphas)=30 and irijec(iphas)=1
(Rij — & LRR)
crijp2 r real number > 0 [0.3] 0] L3

constant C% for the R;; — ¢ LRR model, corresponding to the wall echo terms

useful if and only if there is a phase iphas such as iturb(iphas)=30 and irijec(iphas)=1

(Rij — & LRR)

CONSTANTS SPECIFIC TO THE R;; — ¢ SSG MODEL

cssgsl

cssgs2

cssgril

cssgr2

cssgr3

cssgré

cssgrb

cssge?2

r real number > 0 [1.7]

constant Cy; for the R;; — e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0 [-1.05]

constant Cso for the R;; —e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0 [0.9]

constant C,q for the R;; — e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0 [0.8]

constant Cyo for the R;; —e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0
constant C3 for the R;; — e SSG model

[0.65]

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0 [0.625]

constant C,4 for the R;; —e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

0.2]

r real number > 0
constant Cyq for the R;; — e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

r real number > 0 [1.83]

constant C,o for the R;; — e SSG model

useful if and only if there is a phase iphas such as iturb(iphas)=

CONSTANTS SPECIFIC TO THE V2F ©-MODEL

cv2fal

r real number > 0
constant a; for the v2f p-model

[0.05]

useful if and only if there is a phase iphas such as iturb(iphas)=

0] L3

31 (R;; — ¢ SSG)
0 L3
31 (R;; — ¢ SSG)
0 L3
31 (R;; — ¢ SSG)
0 L3
31 (R;; — ¢ SSG)
0 L3
31 (R;; — = SSG)
0 L3
31 (R;; — ¢ SSG)
0 L3
31 (R;; — ¢ SSG)

Q) L3

31 (Ri]’ — & SSG)

O L3

50 (v2f p-model)

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 155/186

cv2fe2 r real number > 0 [1.85] 0] L3

constant C.o for the v2f p-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f ¢-model)
cv2fmu r real number > 0 [0.22] @) L3

constant C), for the v2f p-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f p-model)
cv2fcl r real number > 0 [1.4]) L3

constant C; for the v2f p-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f ¢-model)
cv2fc2 r real number > 0 [0.3] 0] L3

constant Cy for the v2f p-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f ¢-model)
cv2fct r real number > 0 [6] 0] L3

constant Cr for the v2f ¢-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f p-model)
cv2fcl r real number > 0 [0.25] 0) L3

constant C, for the v2f ¢-model

useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f p-model)
cv2fet r real number > 0 [110] 0] L3

constant C,, for the v2f ¢-model
useful if and only if there is a phase iphas such as iturb(iphas)=50 (v2f ¢-model)

CONSTANTS SPECIFIC TO THE k£ — w SST MODEL

ckwskl

ckwsk2

ckwswl

ckwsw2

ckwbtl

r real number > 0 [1/0.85] 0 L3
constant o for the k — w SST model

useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

r real number > 0 2] 0) L3
constant oo for the k — w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

r real number > 0 [2]) L3
constant o, for the k — w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

r real number > 0 [1/0.856] 0] L3
constant o9 for the £ — w SST model

useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

r real number > 0
constant Jy for the k — w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

0.075] 0 L3

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 156/186

ckwbt2 r real number > 0 [0.0828] 0] L3

constant 5 for the k —w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

ckwgml r real number > 0 [g—l —] 0] L3

CLow1
constant ~y; for the kK —w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)
Warning: v1 s calculated before the call to usinil. Hence, if 31, Cyu, Kk or o1 is
modified in usintl, CKWGMI1 must also be modified in accordance

[—

2
Cu CLowa

) L3

ckwgm?2 r real number > 0

constant 7y for the £ —w SST model

useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)
Warning: 2 s calculated before the call to usinil. Hence, if B2, Cyu, Kk or oug is
modified in usinil, ckwgm2 must also be modified in accordance

ckwal r real number > 0 [0.31] 0] L3
constant aq for the k — w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

ckwcl r real number > 0 [10] 0) L3
constant ¢; for the k — w SST model
useful if and only if there is a phase iphas such as iturb(iphas)=60 (k —w SST)

7.4 ALE

iale i Oorl [C] o) L1
activates (=1) or not (=0), activate the ALE module

nalinf i 0 or positive integer [0] C L2
The number of sub-iterations of initialization of the fluid

nbstr i 0 or positive integer [0] C L1
number of structures

alpnmk r real [0] C L3
alpha newmark’s method

betnmk r real [~grand] C L3
beta newmark’s method

gamnmk r real [~grand] C L3
gamma newmark’s method

nalimx i positive integer [15] C L2
maximum number of imlicitation iterations of of the structure displacement

epalim r positive real [1.1075] C L2
Relative precision of implicitation of the structure displacement

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 157/186

7.5 Thermal radiative transfers: global settings

All the following key words may be modified in the user subroutines usray* (or, for some of them, by
through the thermochemical data files). It is however not recommended to modify those which do not
belong to level L1.

irayon

iraypp

imodak

isuird

ia 0,1,2 [0] 0 L1
for each phase iphas, irayon(iphas) activates (> 0) or deactivates (=0) the radiation
module
if a specific physics is activated (in that case, nscapp>0), irayon(iphas) must be
kept to 0 (see iraypp)
The different values correspond to the following modelings:

= 1 discrete ordinates (standard option for radiation in semi-transparent
media)

= 2 “P-1” model
Warning: the P-1 model allows faster computations, but it may only be applied to media
with uniform large optical thickness, such as some cases of pulverised coal combustion

i 0,1,2,30r4 [0] 0O L1
when a specific physics is activated*® (nphas=1, compulsory) iraypp indicates if ther-
mal radiative transfers are calculated (> 0) or not (=0).

The value of iraypp is given via a data file (gas combustion: dp_C3P, dp_C3PSJ, or
dp_C4P; pulverised coal combustion: dp_FCP; electric module: dp_ELE)

iraypp allows to choose between the discrete ordinates method and the P-1 method
(see irayon) and to choose the method used to calculate the absorption coefficient.
The absorption coefficient may be set by the user in the data file (then, imodak=0) or
calculated using “Modak®®” (then, imodak=1). The options are the followings:

= 1 discrete ordinates method with the absorption coefficient given by the
user in the data file (imodak=0)

= 2 discrete ordinates method using Modak for the calculation of the absorp-
tion coefficient (imodak=1)

= 3 “P-1” model with the absorption coefficient given by the user in the data
file (imodak=0)

= 4 “P-1” model using Modak for the calculation of the absorption coefficient

(imodak=1)

For the electric module, iraypp is not set directly in the data file, but deduced from
the type of xkabel specified in the file (given by ixkabe). In that case, iraypp can
only be equal to 0 (ixkabe=0 or 2) or 1 (ixkabe=1)

i Oorl [0] 0 L3
when gas or coal combustion is activated, imodak indicates whether the absorption
coefficient shall be calculated “automatically” (=1) or read from the data file (=0)
(see iraypp)

useful if the radiation module is activated; imodak is then automatically set from the
value of IRAYPP, without intervention of the user

i Oorl [isuite] C L1
indicates whether the radiation variables should be initialised (=0) or read from a
restart file (=1)

useful if and only if the radiation module is activated (in this case, a restart file rayamo
must be available)

49

except with the compressible module, which is not compatible with radiation

50for details about the calculation of the absorption coefficient, please refer to Modak A.T., “Radiation from products

of combustion”

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 158/186
nfreqr i strictly positive integer [1] @) L1
period of the radiation module
the radiation module is called every nfreqr time steps (more precisely, every time
ntcabs is a multiple of nfreqr). Also, in order to have proper initialisation of the
variables, whatever the value of nfreqr, the radiation module is called at the first
time step of a calculation (restart or not)
useful if and only if the radiation module is activated
ndirec i 32 or 128 [32] 0] L1
number of directions for the angular discretisation of the radiation propagation with
the DOM model (irayon=1)
no other possible value, because of the way the directions are calculated
the calculation with 32 directions may break the symmetry of physically axisymmetric
cases (but the cost in CPU time is much lower than with 128 directions)
useful if and only if the radiation module is activated with the DOM method
xnplmx T real number [10] 0O L3
with the P-1 model (irayon=2), xnpimx is the percentage of cells of the calculation
domain for which it is acceptable that the optical thickness is lower than unity®!,
although it is not to be desired
useful if and only if the radiation module is activated with the P-1 method
idiver i 0,1or2 2] C L1
indicates the method used to calculate the radiative source term:
= 0: semi-analytic calculation (compulsory with transparent media)
= 1: conservative calculation
= 2: semi-analytic calculation corrected in order to be globally consevative
useful if and only if the radiation module is activated
Note: if the medium is transparent, the choice has no effect on the calculation
iimpar i 0,1or2 [1] 0] L1
choice of the display level in the listing concerning the calculation of the wall temper-
atures:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated
iimlum i 0,1or2 [1] 0) L1
choice of the display level in the listing concerning the solution of the radiative transfer
equation:
= 0: no display
= 1: standard
= 2: complete
useful if and only if the radiation module is activated
nbrvap ca string of less than 80 characters [name_iphas] O L1

name associated for the post-processing to each of the following variables, defined at
the cell centers (see [5] for more details concerning their definitions):
nbrvap (itsray,iphas): radiative source term (W/m?)

51

more precisely, where K L is lower than 1, where K is the absorption coefficient of the medium and L is a characteristic

length of the domain

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 159/186
nbrvap (iqrayp,iphas): radiative flux density vector (W/m?)
nbrvap (iabsp,iphas): absorption part in the source term (W/m?)
nbrvap(iemip,iphas): emission part in the source term (W/m?)
nbrvap (icakp,iphas): absorption coefficient of the medium (m~1)
the default values are:
nbrvap(itsray,iphas) = Srad_iphas
nbrvap(iqrayp,iphas) = Qrad_iphas
nbrvap(iabsp,iphas) = Absorp_iphas
nbrvap(iemip,iphas) = Emiss_iphas
nbrvap (icakp,iphas) = CoefAb_iphas
useful if and only if the radiation module is activated
irayvp ia -lorl [-1]) L1
activates (=1) or deactivates (=-1) the post-processing for the each of the followiing
variables defined at the cell centers:
irayvp(itsray,iphas): radiative source term (W/m3)
irayvp(iqrayp,iphas): radiative flux density vector (W/m?)
irayvp(iabsp,iphas): absorption part in the source term (W/m3)
irayvp(iemip,iphas): emission part in the source term (W/m?)
irayvp(icakp,iphas): absorption coefficient of the medium (m=1!)
useful if and only if the radiation module is activated
nbrvaf ca string of less than 80 characters [name_iphas] @) L1
name associated for the post-processing to each of the following variables, defined at
the boundary faces (see [5] for more details concerning their definitions):
nbrvaf (itparp, iphas): wall temperature at the boundary faces (K)
nbrvaf (igincp,iphas): radiative incident flux density (W/m?)
nbrvaf (ixlamp,iphas): thermal conductivity of the boundary faces (W/m/K)
nbrvaf (iepap,iphas): wall thickness (m)
nbrvaf (iepsp,iphas): wall emissivity
nbrvaf (ifnetp,iphas): net radiative flux density (W/m?)
nbrvaf (ifconp,iphas): convective flux density (W/m?)
nbrvaf (ihconp, iphas): convective exchange coefficient (W/m?/K)
The default values are:
nbrvaf (itparp) = Wall_temp
nbrvaf (igincp) = Incident_flux
nbrvaf (ixlamp) = Th_conductivity
nbrvaf (iepap) = Thickness
nbrvaf (iepsp) = Emissivity
nbrvaf (ifnetp) = Net_flux
nbrvaf (ifconp) = Convective flux
nbrvaf (ihconp) = Convective_exch_coef
useful if and only if the radiation module is activated
irayvf ia -lorl [-1] 0) L1

activates (=1) or deactivates (=-1) the post-processing for each of the followiing vari-
ables defined at the boundary faces:

irayvf (itparp): wall temperature at the boundary faces (K)

irayvf (iqincp): radiative incident flux density (W/m?)

irayvf (ixlamp): thermal conductivity of the boundary faces (W/m/K)

irayvf (iepap): wall thickness (m)

irayvf (iepsp): wall emissivity

irayvf (ifnetp): net radiative flux density (W/m?)

irayvf (ifconp): convective flux density (W/m?)

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 160/186
irayvf (ihconp): convective exchange coefficient (W/m?/K)

useful if and only if the radiation module is activated

tmin r real number positif [0] @) L3
minimum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

tmax r real number positif [grand + 273.15] 0 L3

maximum allowed value for the wall temperatures in Kelvin
useful if and only if the radiation module is activated

7.6 Electric module (Joule effect and electric arc): specificities

The electric module is composed of a Joule effect module (ippmod (ieljou)) and an electric arc module
(ippmod(ielarc)).

The Joule effect module is designed to take into account the Joule effect (for instance in glass furnaces)
with real or complex potential in the enthalpy equation. The Laplace forces are not taken into account
in the impluse momentum equation. Specific boundary conditions can be applied to account for the
coupled effect of transformers (offset) in glass furnaces.

The electric arc module is designed to take into account the Joule effect (only with real potential) in
the enthalpy equation. The Laplace forces are taken into account in the impulse momentum equation.

The key words used in the global settings are quite few. They are found in the subroutine uselil (see
the description of this user subroutine §6.37).

ielcor

couimp

puisim

dpot

i 0,1 [0] O L1
when ielcor=1, the boundary conditions for the potential will be tuned at each time
step in order to reach a user-specified target dissipated power puisim (Joule effect) or
a user-specified target current intensity couimp (electric arc)
the boundary condition tuning is controlled by the subroutine uselrc
alway useful

r real number > 0 [0] 0) L1
with the electric arc module, couimp is the target current intensity (A) for the calcu-
lations with boundary condition tuning for the potential
the target intensity will be reached if the boundary conditions are expressed using
the variable dpot or if the initial boundary conditions are multiplied by the variable
coejou
useful with the electric arc module if ielcor=1

r real number > 0 [0] @) L1
with the Joule effect module, puisim is the target dissipated power (W) for the cal-
culations with boundary condition tuning for the potential
the target power will be reached if the boundary conditions are expressed using the
variable dpot or if the initial boundary conditions are multiplied by the variable coejou
useful with the Joule effect module if ielcor=1

r real number > 0 [0] 0] L1
dpot is the potential difference (V) which generates the current (and the Joule effect)
for the calculations with boundary conditions tuning for the potential. This value is
initialised set by the user (uselil). It is then automatically tuned depending on the

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation

user’s guide Page 161/186

value of dissipated power (Joule effect module) or the intensity of current (electric
arc module). In order for the correct power or intensity to be reached, the boundary
conditions for the potential must be expressed with dpot (uselcl). The tuning can
be controlled in uselrc

useful if ielcor=1

coejou r real number > 0 [1] 0) L2

only with the Joule effect, coejou can be used if the user does not wish to use dpot;
coejou is the coeflicient to be applied to the initial potential difference to reach the
target dissipated power. Its value is automatically initialised to 1 and is updated
during the calculation. In order for the correct power to be reached, the boundary
conditions for the potential must be expressed with coejou (uselcl). The tuning can
be controlled in uselrc

Useful if ielcor=1

7.7 Compressible module: specificities

The key words used in the global settings are quite few. They are found in the subroutines uscfx1
and uscfx2 (see the description of these user subroutines, §6.40.1).

icfgrp ia Oorl [1] C L1

for each phase iphas, icfgrp(iphas) indicates if the boundary conditions should take
into account (=1) or not (=0) the hydrostatic balance.

always useful.

In the cases where gravity is predominant, taking into account the hydrostatic pressure
allows to get rid of the disturbances which may appear near the horizontal walls when
the flow is little convective.

Otherwise, when icfgrp=0, the pressure condition is calculated from the solution of
the unidimensional Euler equations for a perfect gas near a wall, for the variables
“normal velocity”, “density” and “pressure”:

Case of an expansion (M < 0):

-1
P=0 if 14+ 15—=M <0

2y

(R SVANE :
P,=PF |1+ TM otherwise

Case of a shock (M > 0):

1 1)?
P,=P 1+MM2+7M 1_’_(’7—'—7)]\/]2
4 16
with M = & .Q, internal Mach number calculated with the variables taken in the cell adjacent
C;
to the wall.
iviscv ia Oorl [0] C L1

for each phase iphas, iviscv(iphas)=0 indicates that the volume viscosity is constant
and equal to the reference volume viscosity viscvO(iphas).

iviscv(iphas)=1 indicates that the volume viscosity is variable: its variation law
must be specified in the user subroutine uscfpv.

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 162/186
always useful
The volume viscosity « is defined by the formula expressing the stress:
t 2 .
g=—PLd+ p(grad u+ ‘grad w)+ (v — p)div(u) Id (5)
viscv0 ra real number > 0 [0] 0] L1
for each phase iphas, viscvO(iphas) is the reference volume viscosity (noted x in
the equation expressing g in the paragraph dedicated to iviscv)
always useful, it is the used value, unless the user specifies the volume viscosity in the
user subroutine uscfpv
igrdpp i Oorl [0]) L3

indicates whether the pressure should be updated (=1) or not (=0) after the solution
of the acoustic equation
always useful

7.8 Lagrangian multiphase flows

Most of these key words may be modified in the user subroutines uslagl, uslag2, uslabo, uslaen,
uslast and uslaed. It is however strongly recommended not to modify those belonging to the level

L3.

First of all, it should be noted that the Lagrangian module is compliant with all the RANS turbulence
models and with laminar flows. However, the particule turbulent diffusion is not specially adapted to
the second order R;; — € models. The same isotropic model is used as in the k — ¢ models, with %
calculated from the trace of R;;. Also, two-way coupling is not compatible with the £ —w SST model.

7.8.1 Global settings

iilagr

isuila

I 0,1,2, 3 [0] C L1
activates (>0) or deactivates (=0) the Lagrangian module
the different values correspond to the following modelings:

= 1 Lagrangian two-phase flow in one-way coupling (no influence of the par-
ticles on the continuous phase)

= 2 Lagrangian two-phase flow with two-way coupling (influence of the par-
ticles on the dynamics of the continuous phase). It must be noted that the two-way
coupling is taken into account only for the first eulerian phase. Dynamics, temperature
and mass may be coupled independently

= 3 Lagrangian two-phase flow on frozen continuous phase. This option can
only be used in case of a calculation restart (isuite = 1). All the eulerian fields are
frozen (including the scalar fields). This option automatically implies iccvig = 1
always useful

i 0,1 0] C L1
activation (=1) or not (=0) of a Lagrangian calculation restart. The calculation restart
file read when this option is activated (ficaml) only contains the data related to the
particles (see also isuist)

the global calculation must also be a restart calculation (isuite=1)

always useful

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 163/186
isuist i 0,1 [0] C L1
during a Lagrangian calculation restart, indicates whether the particle statistics (vol-
ume and boundary) and two-way coupling terms are to be read from a restart file (=1)
or reinitialised (=0). The file to be read is ficmls
useful if isuila =1
nbpmax i positive or null integer [1000] C L1
maximum number of particles allowed simultaneously in the calculation domain. It
must be reminded that the required memory evolves accordingly
nbpart i positive or null integer [0] O L3
number of particles treated during one Lagrangian time step
nbpart must always be lower than nbpmax
always useful, but initialised and updated without intervention of the user
nvls i integer between 0 and 10 [0] 0 L2
number of additional variables related to the particles
the additional variables can be accessed in the arrays ettp and ettpa by means of
the pointer jvls: ettp(nbpt,jvls(ii)) and ettpa(nbpt,jvls(ii)) (nbpt is the
index-number of the treated particle, and ii an integer between 1 and nvls)
isttio i 0,1 [0] C L1
indicates the steady (=1) or unsteady (=0) state of the continuous phase flow
in particular, isttio = 1 is needed in order to:
calculate stationary statistics in the volume or at the boundaries (starting re-
spectively from the Lagrangian iterations nstist and nstbor)
calculate time-averaged two-way coupling source terms (from the Lagrangian
iteration nstits)
useful if iilagr=1 or iilagr=2 (if iilagr=3, then isttio=1 automatically)
injcon i 0,1 [0] O L1
activates (=1) or not (=0) the continuous injection of particles
this option allows to inject particles continuously during the duration of the Lagrangian
time step dtp rather than only once at the beginning of the Lagrangian iteration. It
helps avoiding the fractioning of the particle cloud close to the injection areas
iroule i 0,1 [0] 0] L1
activates (=1) or not (=0) of the particle cloning/fusion technique (option also called
“Russian roulette”)
when iroule = 1, the importance function must be specified via the array croule in
the user subroutine uslaru
isuivi i 0,1 [0 or 1] 0] L2

specifies if a particle should be followed (=1) or will disappear from the domain (=0)
after an interaction with a boundary:

= 0: the particle must not be followed in the calculation domain after an
iteraction between its trajectory and a boundary face, for instance entry (ientrl),
outlet (isortl), definitive deposition on a wall (idepol, idepo2)

= 1: the particle must still be followed in the calculation domain after an
iteraction between its trajectory and a boundary face, for instance rebound (irebol),
deposition with potential resuspension (idepo3)
the value of isuivi (isuivi = 0 or isuivi = 1) for a type of interaction can be

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 164/186
defined as a function of the particle behaviour or properties. It is for example the
default case for the fouling interaction type (iencrl)
always useful
ttclag r positive real number [0] 0) L3
physical time of the Lagrangian simulation
always useful
iplas i integer > 0 [1] 0] L3

absolute iteration number (including the restarts) in the Lagrangian module (i.e. La-
grangian time step number)
always useful

7.8.2 Specific physics models associated with the particles

iphyla

idpvar

itpvar

impvar

tpart

cppart

i 0,1,2 [0] C L1
activates (>0) or deactivates (=0) the physical models associated to the particles:

= 1: allows to associate with the particles evolution equations on their tem-
perature (in degrees Celsius), their diameter and their mass

= 2: the particles are pulverised coal particles. Evolution equations on tem-
perature (in degree Celsius), mass of reactive coal, mass of char and diameter of the
shrinking core are associated with the particles. This option is available only if the
continuous phase represents a pulverised coal flame
always useful

i 0,1 [0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle diameter
useful if iphyla =1

i 0, 1 [0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle temperature (in
degrees Celsius)

useful if iphyla = 1 and if there is a thermal scalar associated with the continuous
phase

i 0,1 [0] 0 L1
activation (=1) or not (=0) of an evolution equation on the particle mass
useful if si iphyla =1

r real number > tkelvn [700] 0] L1
initialisation temperature (in degree Celsius) for the particles already present in the
calculation domain when an evolution equation on the particle temperature is activated
during a calculation (iphyla = 1 and itpvar = 1)

useful if isuila = 1 and itpvar = 0 in the previous calculation

r positive real number [5200] 0] L1
initialisation value for the specific heat (J.kg=1.K ') of the particles already present
in the calculation domain when an evolution equation on the particle temperature is
activated during a calculation (iphyla = 1 and itpvar = 1)
useful if isuila = 1 and itpvar = 0 in the previous calculation

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 165/186
iencra i 0,1 [0] 0] L1
activates (=1) or not (=0) the option of coal particle fouling. It then is necessary to
specify the domain boundaries on which fouling may take place.
useful if iphyla = 2
tprenc r real number > tkelvn [600] 0] L1
limit temperature (in degree Celsius) below which the coal particles do not cause any
fouling (if the fouling model is activated)
useful if iphyla = 2 and iencra =1
visref r positive real number [10000] @) L1

ash critical viscosity in kg.m~'.s7!, in the fouling mode

useful if iphyla = 2 and iencra =1

152

7.8.3 Options for two-way coupling

nstits

Itsdyn

ltsmas

Itsthe

i strictly positive integer [1] 0] L1
number of absolute Lagrangian iterations (including the restarts) after which a time-
average of the two-way coupling source terms is calculated
indeed, if the flow is steady (isttio=1), the average quantities that appear in the
two-way coupling source terms can be calculated over different time steps, in order to
get a better precision
if the number of absolute Lagrangian iterations is strictly inferior to nstits, the code
considers that the flow has not yet reached its steady state (transition period) and the
averages appearing in the source terms are reinitialised at each time step, as it is the
case for unsteady flows (isttio=0)
useful if iilagr = 2 and isttio =1

i 0, 1 [0] 0 L1
activation (=1) or not (=0) of the two-way coupling on the dynamics of the continuous
phase
useful if iilagr = 2 and iccvig =0

i 0,1 [0] 0 L1
activation (=1) or not (=0) of the two-way coupling on the mass
useful if iilagr = 2, iphyla = 1 and impvar =1

i 0,1 0] 0 L1
if iphyla =1 and itpvar = 1, 1tsthe activates (=1) or not (=0) the two-way coupling
on temperature
if iphyla = 2, 1tsthe activates (=1) or not (=0) the two-way coupling on the eulerian
variables related to pulverised coal combustion
useful if iilagr = 2

7.8.4 Numerical modeling

nordre

i 1,2 2] O L2
order of integration for the stochastic differential equations

527.D. Watt et T. Fereday (J.Inst. Fuel, Vol.42-p99)

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 166/186
= 1 integration using a first-order scheme
= 2 integration using a second-order scheme
always useful
ilapoi i 0,1 [0]) L3
activation (=1) or not (=0) of the solution of a Poisson’s equation for the correction
of the particle instantaneous velocities (in order to obtain a null divergence)
this option is not validated and reserved to the development team. Do not change the
default value
idistu i 0,1 [1] O L3
activation (=1) or not (=0) of the particle turbulent dispersion
the turbulent dispersion is compatible only with the RANS turbulent models (k — ¢,
Rij —e,v2for k —w)
(iturb(iphas)=20, 21, 30, 31, 50 or 60 with IPHAS = 1)
always useful
idiffl i 0,1 [0] 0 L3
idiff1=1 suppresses the crossing trajectory effect, making turbulent dispersion for
the particles identical to the turbulent diffusion of fluid particles
useful if idistu=1
modcpl i positive integer [0] 0] L1
activates (>0) or not (=0) the complete turbulent dispersion model
when modcpl is strictly positive, its value is interpreted as the absolute Lagrangian
time step number (including restarts) after which the complete model is applied
since the complete model uses volume statistics, modcpl must either be 0 or be larger
than idstnt
useful if istala =1
idirla i 1,2,3 [1] O L1

x, y or z direction of the complete model
it corresponds to the main directions of the flow
useful if modcpl > 0

7.8.5 Volume statistics

istala

seuil

i 0,1 [0] C L1
activation (=1) or not (=0) of the calculation of the volume statistics related to the
dispersed phase

if istala = 1, the calculation of the statistics is activated starting from the absolute
iteration (including the restarts) idstnt

by default, the statistics are not stationary (reset to zero at every Lagrangian itera-
tion). But if isttio=1, since the flow is steady, the statistics will be averaged overt
he different time steps

the statistics represent the significant results on the particle cloud

always useful

r positive real number [0] @) L1
every cell of the calculation domain contains a certain quantity of particles, repre-
senting a certain statistical weight (sum of the statistical weights of all the particles

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 167/186

present in the cell). seuil is the limit statistical weight value, below which the contri-
bution of the cell in term of statistical weight is not taken into account in the volume
statistics (for the complete turbulent dispersion model, in the Poisson’s equation used
to correct the mean velocities or in the listing and post-processing outputs)
useful if istala =1

idstnt i strictly positive integer [1] C L1
absolute Lagrangian iteration number (includings the restarts) after which the calcu-
lation of the volume statistics is activated
useful if istala =1

nstist i integer > idstnt [idstnt] 0] L1
absolute Lagrangian iteration number (includings the restarts) after which the volume
statistics are cumulated over time (they are then said to be stationary)
if the absolute Lagrangian iteration number is lower than nstist, or if the flow is
unsteady (isttio=0), the statistics are reset to zero at every Lagrangian iteration
(the volume statistics are then said to be non-stationary)
useful if istala=1 and isttio=1

nomlag ca string of less than 50 characters [VarLagXXXX]) L1
name of the volumetric statistics, displayed in the listing and the post-processing files.
The default value is given above, with “XXXX” representing a four digit number (for
instance 0001, 0011 ...)
useful if istala =1
Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, it will not be possible to
read its value from the restart file

nvlsts i 0 < integer < nussta=20 [0] @) L1
number of additional user volume statistics
the additional statistics (or their cumulated value in the stationary case) can be ac-
cessed in the array statis by means of the pointer ilvu: statis(iel,ilvu(ii))
(iel is the cell index-number and ii an integer between 1 and nvlsts)
useful if istala =1

npst i positive integer [0] 0 L3
number of iterations during which stationary volume statistics have been cumulated
useful if istala=1, isttio=1 and if nstist is inferior or equal to the current La-
grangian iteration
npst is initialised and updated automatically by the code, its value is not to be mod-
ified by the user

npstt i positive integer [0] Q) L3
number of iterations during which volume statistics have been calculated (the potential
iterations during which non-stationary statistics have been calculated are counted in
npstt)
useful if istala=1
npstt is initialised and updated automatically by the code, its value is not to be
modified by the user

tstat r positive real number [dtp]) L3

if the volume statistics are calculated in a stationary way, tstat represents the physical

EDF R&D

Code_Saturne
Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 168/186

time during which the statistics have been cumulated

if the volume statistics are calculated in a non-stationary way, then tstat=dtp (it is
the Lagrangian time step, because the statistics are reset to zero at every iteration)
useful if istala=1

tstat is initialised and updated automatically by the code, its value is not to be
modified by the user

7.8.6 Display of trajectories and particle movements

iensil

iensi2

nbvis

nvisla

liste

ivisvl

ivisv2

i 0, 1 [0] 0 L1
activation (=1) or not (=0) of the post-processing in trajectory mode

this option generates files allowing to display the trajectory of some pre-selected par-
ticles in the EnSight6 format

always useful

Warning: this option very expensive with regards to CPU time and may generate very
large files

i 0,1 [0] 0O L1
activation (=1) or not (=0) of the post-processing in movement mode

This option generates files allowing to display the movement of some pre-selected
particles in the EnSight6 format

always useful

Warning: this option very expensive with regards to CPU time and may generate very
large files

i positive integer [nliste] @) L1
number of particles selected for post-processing display in trajectory or movement
mode

nbvis must be lower than nbpmax and nliste (set to 500 in lagpar.h and not to be
modified)

useful if iensil = 1 or iensi2 =1

i strictly positive integer [1] @) L1
output period for the post-processing in trajectory or movement mode

may be useful to diminish the size of the post-processing files

useful if iensil = 1 or iensi2 =1

ia positive integers [between 1 and 500] o) L1
contains the index-numbers of the particles selected for the display in trajectory or
movement mode

useful if iensil =1 or iensi2 =1

i 0,1 0] 0 L1
associates (=1) or not (=0) the variable “velocity of the locally undisturbed fluid flow
field” with the display in trajectory or movement mode
useful if iensil = 1 or iensi2 =1

i 0,1 0] 0 L1
associates (=1) or not (=0) the variable “particle velocity” with the display in trajec-
tory or movement mode
useful if iensil = 1 or iensi2 =1

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 169/186

ivistp i 0,1 [0] 0] L1

associates (=1) or not (=0) the variable “residence time” with the display in trajectory
or movement mode
useful if iensil =1 or iensi2 =1

ivisdm i 0,1 [0] 0] L1
associates (=1) or not (=0) the variable “particle diameter” with the display in tra-
jectory or movement mode
useful if iensil =1 or iensi2 =1

iviste i 0,1 [0] @) L1
associates (=1) or not (=0) the variable “particle temperature” with the display in
trajectory or movement mode
useful if iensil = 1 or iensi2 =1

ivismp i 0,1 [0] o) L1
associates (=1) or not (=0) the variable “particle mass” with the display in trajectory
or movement mode
useful if iensil =1 or iensi2 =1

ivishp i 0,1 [0] 0) L1
associates (=1) or not (=0) the variable “temperature of the coal particles” with the
display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

ivisdk i 0,1 [0] Q) L1
associates (=1) or not (=0) the variable “shrinking core diameter of the coal particles”
with the display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

ivisch i 0,1 [0] 0) L1
associates (=1) or not (=0) the variable “mass of reactive coal of the coal particles”
with the display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

ivisck i 0,1 [0] Q) L1
associates (=1) or not (=0) the variable “mass of char of the coal particles” with the
display in trajectory or movement mode
useful if iensil = 1 or iensi2 = 1, if and only if iphyla = 2

7.8.7 Display of the particle/boundary interactions and the statistics at the bound-
aries

iensi3 i 0,1 [0] C L1
activation (=1) or not (=0) of the recording of the particle/boundary interactions in
parbor, and of the calculation of the statistics at the corresponding boundaries, for
post-processing (EnSight6 format)
By default, the statistics are non-stationary (reset to zero at every Lagrangian itera-
tion). They may be stationary if isttio=1 (i.e. calculation of a cumulated value over
time, and then calculation of an average over time or over the number of interactions

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 170/186

with the boundary)
always useful

nstbor i strictly positive integer [1] 0] L1
number of absolute Lagrangian iterations (including the restarts) after which the
statistics at the boundaries are considered stationary and are averaged (over time
or over the number of interactions)
If the number of absolute Lagrangian iterations is lower than nstbor, or if isttio=0,
the statistics are reset to zero at every Lagrangian iteration (non-stationary statistics)
useful if iensi3=1 and isttio=1

seuilf r positive real number [0]) L1
every boundary face of the mesh undergoes a certain number of interactions with
particles, expressed in term of statistical weight (sum of the statistical weights of
all the particles which have interacted with the boundary face). seuilf is the limit
statistical weight value, below which the contribution of the face is not taken into
account in the statistics at the boundaries for post-processing
useful if iensi3=1

inbrbd i 0,1 [1] 0] L1
activation (=1) or not (=0) of the recording of the number of particle/boundary
interactions, and of the calculation of the associated boundary statistics.
inbrd = 1 is a compulsory condition to use the particulate average imoybr = 2
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
useful if iensi3=1

iflmbd i 0,1 [0] O L1
activation (=1) or not (=0) of the recording of the particulate mass flow related to
the particle/boundary interactions, and of the calculation of the associated boundary
statistics
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
inbrd = 1 is a compulsory condition to use iflmbd=1
useful if iensi3=1 and inbrbd=1

iangbd i 0,1 [0] 0] L1
activation (=1) or not (=0) of the recording of the angle between a particle trajectory
and a boundary face involved in a particle/boundary interaction, and of the calculation
of the associated boundary statistics
the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo
useful if iensi3=1

ivitbd i 0,1 [0] @) L1

activation (=1) or not (=0) of the recording of the velocity of a particle involved in
a particle/boundary interaction, and of the calculation of the associated boundary
statistics

the selection of the type of interactions that are to be recorded is specified in the
subroutine uslabo

useful if iensi3=1

EDF R&D

Code_Saturne

Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 171/186

iencbd

nusbor

nombrd

imoybr

npstf

npstft

i 0,1 0] 0 L1
activation (=1) or not (=0) of the recording of the mass of coal particles stuck to the
wall due to fouling, on the boundary faces of the iencrl interaction type
useful if iensi3=1, iphyla=2, iencra=1, and if there is at least one boundary face
of the iencrl interaction type

i positive integer [0] @) L1
number additional user data to record for the calculation of additional boundary statis-
tics in parbor
useful if iensi3=1

ca string of less than 50 characters [see uslagi] 0] L1
name of the boundary statistics, displayed in the listing and the post-processing files
useful if iensi3=1

Warning: this name is also used to reference information in the restart file (isuist =1).
If the name of a variable is changed between two calculations, it will not be possible to
read its value from the restart file

ia 0,1, 2 [0,1or 2] O L1
the recordings in parbor at every particle/boundary interaction are cumulated values
(possibly reset to zero at every iteration in the non-stationary case). They must there-
fore be divided by a quantity to get boundary statistics. The user can choose between
two average types:

= 0: no average is applied to the recorded cumulated values

= 1: a time-average is calculated. The cumulated value is divided by the
physical duration in the case of stationary averages (isttio=1). The cumulated value
is divided by the value of the last time step in the case of non-stationary averages
(isttio=0), and also in the case of stationary averages while the absolute Lagrangian
iteration number is inferior to nstbor

= 2: a particulate average is calculated. The cumulated value is divided by
the number of particle/boundary interactions (in terms of statistical weight) recorded
in parbor (nfabor,inbr). This average can only be calculated when inbrbd=1. The
average is calculated if the number of interactions (in statistical weight) of the consid-
ered boundary face is strictly higher than seuilf, otherwise the average at the face is
set to zero
only the cumulated value is recorded in the restart file
useful if iensi3=1

i positive integer [0] @) L3
number of iterations during which stationary boundary statistics have been cumulated
useful if iensi3=1, isttio=1 and nstbor inferior or equal to the current Lagrangian
iteration
npstf is initialised and updated automatically by the code, its value is not to be
modified by the user

i positive integer [0] 0) L3
number of iterations during which boundary statistics have been calculated (the poten-
tial iterations during which non-stationary statistics have been calculated are counted
in npstft)
useful if iensi3=1
npstft is initialised and updated automatically by the code, its value is not to be
modified by the user

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 172/186
tstatp r positive real number [dtp] 0] L3

if the recording of the boundary statistics is stationary, tstatp contains the cumulated

physical duration of the recording of the boundary statistics

if the recording of the boundary statisticss is non-stationary, then tstat=dtp (it is
the Lagrangian time step, because the statistics are reset to zero at every time step)

useful if iensi3=1

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 173/186

8 Bibliography

[1]

ARCHAMBEAU F'., et al.,
Note de validation de Code_Saturne version 1.1.0,
Rapport EDF HI-83/04/003/A, 2004 (in french).

BENHAMADOUCHE S.,
Modélisation de sous-maille pour la LES - Validation avec la Turbulence Homogéne Isotrope (THI)

dans une version de développement de Code_Saturne,
Rapport EDF HI-83/01/033/A, 2001 (in french).

BOUCKER M., ARCHAMBEAU F., MECHITOUA N.,
Quelques éléments concernant la structure informatique du Solveur Commun - Version 1.0-init0,
Compte-rendu express EDF 181-00-8, 2000 (in french).

BOUCKER M., MATTEI J.D.,
Proposition de modification des conditions aux limites de paroi turbulente pour le Solveur Commun

dans le cadre du modéle k — ¢ standard,
Rapport EDF HI-81/00/019/A, 2000 (in french).

DoucE A., MECHITOUA N.,
Mise en ceuvre dans Code_Saturne des physiques particuliéres. Tome8 : Transfert thermique radiatif
en milieu gris semi-transparent,

Rapport EDF HI-81/02/019/A, 2002 (in french).

Doucke A.,
Physiques particuliéres dans Code_Saturne 1.1, Tome 5 : modélisation stochastique lagrangienne

d’écoulements turbulents diphasiques polydispersés,
Rapport EDF, HI-81/04/03/A, 2005 (in french).

EscaicH A., PLION P., Mise en ceuvre dans Code_Saturne des modélisations physiques particuliéres.
Tome 1 : Combustion en phase gaz,
Rapport EDF, HI-81/02/03/A, 2002 (in french).

EscaicH A., Mise en ceuvre dans Code_Saturne des modélisations physiques particuliéres. Tome 2
: Combustion du charbon pulvérisé,

Rapport EDF, HI-81/02/09/A, 2002 (in french).

FOURNIER Y.,
Code_Saturne 2.0.0-rc2 guide pratique et théorique du Preprocesseur,
on line with the release of Code_Saturne 2.0.0-rc2 (info_cs ecsmu).

[10] MECHITOUA N., ARCHAMBEAU F.,

Prototype de solveur volumes finis co-localisé sur maillage non-structuré pour les équations de
Navier-Stokes 3D incompressibles et dilatables avec turbulence et scalaire passif,
Rapport EDF HE-41/98/010/B, 1998 (in french).

[11] Code_Saturne DOCUMENTATION,

Code_Saturne 2.0.0-rc2 Theory and Programmer’s guide,
on line with the release of Code_Saturne 2.0.0-rc2 (info_cs theory).

[12] Sakiz M., EQUIPE DE VALIDATION,

Validation de Code_Saturne version 1.2 : note de synthése,
Rapport EDF H-183-2006-00818-FR, 2006 (in french).

[13] TAGORTI M., DAL-SECCO S., DOUCE A., MECHITOUA N.,

Physiques particuliéres dans Code_Saturne, tome 4 : le modéle P-1 pour la modélisation des trans-
ferts thermiques radiatifs en milieu gris semi-transparent,
Rapport EDF HI-81/03/017/A, 2003 (in french).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 174/186

[14] Code_Saturne DOCUMENTATION,
Code_Saturne version 2.0.0-rc2 turorial, on line with the release of Code_Saturne 2.0.0-rc2 (info_cs
tutorial).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 175/186

9 Appendix 1 : automatic validation procedure

9.1 Introduction

This document is the practical user guide for the autovalidation procedure associated with Code_Saturne
version 2.0.0-rc2. The aim of this document is to guide the user through all the steps necessary for the
running and the user-understanding of the autovalidation procedure. The guide describes the selected
test cases, the modifiable settings and the procedure to add a case in the reference base.

The procedure is written in python language and a XML file containing the data settings is necessary.

9.2 Practical informations on the procedure

This procedure aims to run automatically all the selected cases and to compare the obtained results with
those of the reference base. All the comparisons are summarized in a report file. If the discrepancies
between the reference and the test overpass a determined tolerance, the procedure creates an EnSight
part containing the variable differences.

For each test cases, the detailed actions are the following:

e preparation of the study with the code_saturne create command,

e copy of all the necessary files (meshes, XML data file, user fortran files) from the reference base,
e execution of the case with the runcase utility,

e comparison between the reference results and the test results,

e update of the report file.

First, an empty directory named BASETEST is generated by the user. In this directory, the command
to launch the script is the following:

autovalid -f [xml file name] [-d [tmp directoryl]

where xml file name is the data file containing the settings necessary to the autovalidation. The
reference base has to be easily updatable. The user has to copy this file, initially associated to the
directory BASEREF, in the directory BASETEST in order to modify it (for example, if the user
doesn’t want to execute all the tests or if he wants to compare only some variables).

9.3 Directories architecture
The typical architecture is given in the following section:

e a directory BASEREF containing all the reference studies (five elementary tests GRADIENT
and LAPLACIEN) and the XML data file autovalid.xml,

the user has to create a directory BASETEST and to copy the XML data file autovalid.xml in
this directory before launching the script,

a directory Autovalid containing all the python source files.

9.4 Validation base

The selected cases in the reference directory are:

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 176/186

e GRADIENT : elementary tests of gradient calculation using the different methods proposed by
Code_Saturne,

e LAPLACIEN : resolution of a laplacian equation.

9.4.1 Elementary tests : gradient calculations

The elementary tests are performed on a cubical mesh composed by hexahedrons and tetrahedrons
with non-conforming merging. The mesh is generated using Simail-6.4 mesher (file with extension
.des).

All the tests are contained in the fortran file testel.f£90 called by the fortran file caltri.f90. To
activate the elementary tests, we use the existing parameter iverif in the main program cs_solver.c;
iverif is initialised to -1 (no action).

A new keyword ARG_CS_VERIF refering to iverif is added in the universal launch script runcase,
so that the command line is: cs_solver $ARG_CS_VERIF.

The test case consists in calculating the gradient of sin(x 4+ 2y + 3z) with the different methods
implemented in Code_Saturne (boundary conditions are treated with Dirichlet condition). We compare
the result to the reference solution (not to the exact solution).

9.4.2 Laplacien calculation

The mesh is the same as for the previous elementary tests.

The case consists in the resolution of a stationary equation without convection terms for a passive scalar.
The source term and Dirichlet boundary conditions are specified so that the solution is sin(x+2y+3z).
The source term is imposed in the fortran file ustssc.£90. We compare the result with the reference
solution (not with the exact solution).

9.5 Architecture description

In the directory Autovalid, the user finds all the python source files necessary to the execution of the
procedure. The main file autovalid runs the autovalidation and manages the general printouts.

9.5.1 Python files in the modules directory

All the python files are listed here:
e Common.py: this file contains the global variables (XML file name, reference version, reference
path, temporary directory and local directory),
e CommandLine.py: this file manages the command line usage,
e Parser.py: this file defines the parser class which loads and reads the XML data file,
e Study.py: this file defines the study class which contains case objects,

e Case.py: this file defines the case class which contains the launch script and the listing and
chrono comparisons,

e Listing.py: this file defines the listing class which contains minima/maxima variables and
clippings,

e Chromno.py: this file defines the chrono class which contains a list of values and creates, if neces-
sary, a part EnSight (if tolerance > specified value).

Code_Saturne
EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 177/186

9.5.2 XML file description

The XML file contains all the data to run the different cases. It is important to note the definitions of
the following attributes:

o [abel refers to the name of the study, the name of the case, the name of the variable or the name
of the post-treatment script,

e status is ’on’ or ’off’ to activate or not the action,
e compute is ’on’ or ’off’ to run or not the calculation,
e tolerance is the maximum allowed value for the norm of the variable X defined by

|XRef - XTestI
|XmawRef - XminRef + 6|

An example of XML data file is given below:

<?xml version="1.0"7>

<autovalid name="Validation Code_Saturne V1.4">
<referencepath>/home/saturne/BASEREF</referencepath>
<referenceversion>SaturneV1l.4</referenceversion>

<study label=’LAPLACIEN’ status=’on’>

<variable label=’passif’ status=’on’>
<tolerance>0.1</tolerance>

</variable>

<variable label=’Pression’ status=’on’>
<tolerance>0.1</tolerance>

</variable>

<variable label=’VitesseX’ status=’on’>
<tolerance>0.1</tolerance>

</variable>

<case label=’CAS1’ status=’on’ compute=’on’>
<post label=’depou_elargb’ status=’off’> </post>
</case>

<case label=’VERIF’ status=’on’ compute=’on’>
<post label=’depou_elargb’ status=’off’> </post>
</case>

<case label=’2PROCS’ status=’on’ compute=’on’>
<post label=’depou_elargb’ status=’off’> </post>
<nproc>2</nproc>
</case>
</study>

</autovalid>

Note : If status is ’on’ and compute is ’off’, we compare listing files and chrono files but if there isn’t
result available, compute becomes ’on’.

Code_Saturne

EDF R&D Code_Saturne version 2.0.0-rc2 practical documentation
user’s guide Page 178/186

9.5.3 To add a new study

To add a new study in the reference base, the user has to create and run a calculation in the directory
BASEREF. He also has to add the following typical section in the XML data file:

<study label=’GRADIENT’ status=’on’>
<variable label=’gradient’ status=’on’>
<tolerance>0.1</tolerance>
</variable>

<case label=’CAS1’ status=’on’ compute=’on’>
</case>
</study>

For example, this previous sequence means that the user wants to run (compute is ’on’) and compare
the variable 'gradient’” with a tolerance 0.1 for the case CAS1 of the study GRADIENT.

9.5.4 Report files

There are three kinds of report file :

e report.txt: this general file contains just OK, NOK, ’Execution error’ or ’Compilation error’
for each case of each study,

e STUDY_listing.report: this file depends on the study and contains the listing files comparison
for each selected variable at the last time step (min/max values, min/max norms, min/max

clippings),

|Xma$Ref B XmazTesf,

Normx =
maz
‘X’mawRef - XminRef + 5|
Norm . |XminRef - XminTest,‘
Xmin —
|XmawRef - XminRef + El

e STUDY_chrono.report: this file depends on the study and contains the chrono files comparison
for each selected variable at the last time step (maximum difference, mean difference and norm),

(smaaz = max|XRef - XTest|

5 _ Z |XRef - XTest|
mean Nbvalues

5max

|XmaIRef - XminRef + 5‘

Norm =

Index of the main variables and keywords

— Symbols —
10TtV Lot 48
ASVhD oo 49
ISVED oot 49
isympa ... 50
ttclag ..o 164
COBJOU .\ttt 60
dpot ... 60
AECmOm . ove e e 49
icdpar ... 60
1Cdtmo ..ot e 49
1codCl i e 64
1dtmom ..o e 49
1ep o 45
o TP 45
< 45
ilphas ...l 56
1omg .o 45
APRI L 45
iphsca ..o 45
Ipr 45
Al 45
T 157 45
ATl 45
AT e 45
123 e 45
133 45
Iscapp cvviiii 46
18CAVT ittt 46
18Ca it 45
Itypfb 64
8 45
AV 45
AW e e 45
TCOACL .ot e 64
— A —
alch ... 93
a2ch ... 93
ahetch 93
ales ... 81, 132
almax ... 152
alpnmk ... 156
FEN0 0] 00T b P 138
AraK 141
atcoel 93
atgaze ... 91
AUX] 59
_ B _
betnmk 156
blencv ... 140
blencyccoiiiiii 145

bles ..o 81, 132
—C -
cch oo 93
CCK 93
cdgfac ..o 43
cdgfbo ... 43
CATIeS «.vvi 131
cdtvar ... 127
cel 153
CBZ 153
Ced 153
CebU ... 99
ckabsl 93
ckabsg ... 92
ckupde ... 51, 76
ckwal ... 156
ckwbtl ..o 155
ckwbt2 ..o 156
ckwel oo 156
ckwgml ... 156
ckwgm2 ... 156
ckwskl ..o 155
ckwsk2 ... 155
ckwswl .. 155
CRWSW2 o 155
climgr ... 138
cimgy ... 145
1510011 S 152
coefao 49
coefb . 49
COBJOU wvvt ettt et e 161
COIMPOZ - v vttt 91
COUIIND .« vvv ettt 99, 160
COUIMNAX « vttt e ettt e et e et 127
COUIMXY .+t vveteetetteete et eeeeeeeeaanannnnn 145
CPO 150
CP2ch o 93
cpashe ... 93
cepgdl 58
epgd2 58
cpght ..o 58
CPPATY ottt 164
crijl o 153
CIi)2 et 153
0 1 T 153
CIep o 153
Crijpl 154
CIiJP2 o 154
croule ... 59, 163
CSINAZO v vv ettt et 81, 132
CSTL] v 153

179

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 180/186
CSSEE2 it 154 ficamx ... 113
CSSEIL o 154 ficava ... 113
CSSEI2 ittt e 154 ficavl ... 115
CSSEIS vttt et e e 154 ficavr ... 114
CSSEId . 154 ficavx ..o 113
CSSETD .« ettt e 154 fiefpp oo 114
CSSESL 154 fiegeo ..o 113
CSSES2 vttt e e 154 ficinf ... 115
CStlog w 152 fiemls ..o 115
cv2fal .o 154 fiemtl ... 113
ev2fel o 155 fiemvo ... 114
ev2fC2 155 fiestp o 113
ev2fel L 155 ficush ... 119
ev2fet L. 155 fCUST «.ve 121
ev2fe2 155 fievls oo 115
ev2fet ..o 155 flevtl oo 113
ev2fmu ... 152, 155 fCVVO v 114
fment ... 95
-D - fmtchr ... o 116
diam20 ... 93 fOUMAX oo o oo oo 127
diftll ..o 99, 151 f5(1) Lot 92
distch ... 96
APOt w e 160 -G -
db o 51 gamnmk ... 156
AEMAX o 127 gradpr ... 58
dtmin ... 127 gradvl ... 58
dtp o 163, 168, 172 grandcooviuiiiiiiiii i 147
dtptld ... T8 BX,BY,BZ « oo 148
dtref ... 127
N &
- E - hOasheoooiviii i 93
elch ... 93 hbord ... 49
€2ch ... 93 hch ... 93
ehetch 93 hek ..o 93
ehgazg ... 92 heptld ... 78
emphis 118
epalim 156 -I-
epPbLd L T8 1A 52
BPSCVY oo e oot e 146 1ale ... 156
epsilo ... 139 daltyb ... 79
EDSILY 145 dangbd ... 170
EPSTEL oo et 138 ibfixe ... 79
EPSTEY 145 dcalhy ... o 141
EPSTSIIL o vt ee e e 147 Icapt ... 72
EPSZET ettt 148 deevig oo 146
EPZETO .+ oo et 147 dedpar ... 128, 143
EEED -+ttt 56, 163 iedtmo ..o 48
R 57, 163 ICEPAC vt 50
EXERIS ..t 118 deepdp ..o 76
EXETAZ .+ttt 138 deetsm ...l o1, 77
extray ... 145 defgrp ... 161
ichrbo 116
—F — ichrmd ... 116
ficamlo 115 dchrsy ..o 116
ficamo 113 ichrvl ..o 116
flcamr ... 114 ichrvr ... 97, 117

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 181/186

ickabs ... 97 delcor ... 160
ickupd ... 50 deljou ... 90, 160
ICIKED vt 130 dencbd ... 171
elptr oo 130 dencra ... 165
1] 1y J P 49 dencrl ... 105
ICISyT oo 130 densil ... 168
ieltld o T8 1eNSI2 oo 168
iclvil o 125 densid ..o 169
Ielvor ..o 69 dentat 96
ICINOINE .« vttt A8 1entCD v 96
icocel ... 56 dentfu ... 95
103D vvi 89 dentgb ... 95
1CoEDU .o 89 dentgf ... 95
icoef .o 49 HENLOX .« ettt 95
fcoefl ... o 49 1eNtTe ...t 64, 95
icolwe oo 89 dentrl ... 105
icompf ... 90 iepptl .o 51
ICOMV .ottt 125 descal ... 143
TCOUT vttt e A8 1ESCOT vttt 47, 142
ICD et 47,150 desder ... 47, 142
iep3pl o 90 IESPIE vttt e 47, 142
ICPA e A7 destim ... 47, 142
ICPEXE v 135 destot ... 47, 143
Iepl3e oo 90 Aflm ... 97, 98
1T6] 01510 SR PP 125 df2m .o 97, 98
idebty oo 68 f3m ... 97, 98
idepol oo 105 if3p2m .o 98
1depo2 o 105 fAp2m ..o 97
idepod .o 105 ifdpm ... 98
ideucho i 128 ifabor ... 43
idevel ... 53 ifacel ... 43
idfmom 120 ifinty ..o 68
idiam2 ... 98 iflmbd ... 170
idiff o 125 ifluaa ..o 47
idiffl oo 166 ifluma ... 47
idifft ... 126 ifm .o 96, 97
idifre ... 130 ifmeel ... 51
IdIpb oo 44 ifmfbr ... 49
Idipf o 44 Hoenv ... 26
IdIPAr e 5O HOUr .ot e 48
idirel ... 126 ifp2m ..o 96, 97
idirla ..o 166 ifp3m ... 97
Idist oo 44 ifrlag ..o 105
idistb ... 44 dgfuel ... 91
IdisStU oo 166 igliss . ovvvn 79
IdIiver ... 158 dgmdch 98
dofij «ovee 44 dgmdvl L. 98
dpvar ... 164 igmdv2 ... 98
idries ... 131 dgmhet ... 98
idstnt ..o 167 IBOXY ettt 91
idtvar ... 126 igrake 129
dvukw ..o D2 IGrarl ...ooiiii 130
TECAUX vttt 59, 122 1grdPD v vt 162
iefjou ..o 101 dgrhok ... 129
ielarc ..o 90, 160 1h2 ... 97, 98

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 182/186
ThiSVE .o 118 dochet ... 93
ithm ... 96-98, 100, 101 1parolueuteini e 64
ficelb ..o 44 IPaTUG oot 64
Heepd .o 0 IpCl .t 93
HCESINL + ettt e 51 dphsca ... 124
ffapa ... 50 iphydr ... 141
Hfptl o 51 dphyla ... 164
flagr ..o 162 iplas ... 164
Hmlum ... 158 Ipnfac ... 43
HMPAr « et 158 dpnfbr ... 43
findef ... 64 dpond ... 44
HSYIND «ee ettt e S50 IPOtL .o 101
HEPSI oo 51 Apotr .. 100, 101
HErif . 5O IPOLVA vttt 100
HEypL o 50 Ippmod ... 89
TKECOU v vt 129 IPPPTO « v 97
fapla(i) <o 101 Approb ... 46
POl « vt 166 IpPrOC oo 46, 97
HeauX .ot 59, 122 1pprof ... 46
HHSVE o 97, 121 IPTCO e i 141
OGP0 vttt 129 dprfml ... 50
v o 167 dprtot ... 48
IMET o 139 dpstel oo 117
IMEIPY « oo 145 ipstdv ..o 117
Imlgr oo 138 dpstft ..o 117
Imlgy ..o 145 IpStYD v 117
immel ... 98 dptlro ... 126
imodak 157 IpUCOU o 146
imoold i 120 igimp ..o 95
IMOYDT oo 171 drayonooii 157
IMPAVO e 114 0raypD vt 157
IMPIPP e 114 drayvl ..o 159
IMPEEO ..ot 113 Irayvp .« 159
imphis ... 118 drcflu .o 146
impjnf ... 115 drcfly oo 145
implal ... 115 drebol ... 105
impla2 ... 115 IrepVO et 69
implad ... 115 dresol ... 139
implad ... 115 revINe ... 141
implab ..o 115 rijec «ovn 130
IMPIMVO o ettt e 114 drfjnu ..o 131
IMPSED + e 113 drijrb oo 131
impush 119 droext ..o 134
IIPUST e e 121 drom ... 46
IIPVAT e 164 drom2 ... 98
IMPVVO « ettt e 114 droma ..o 46
Imrgra ... 137 droule ... 163
imvisf ... 146 IrOVAT ... 148
inbrbd 170 3S2KW ot 52
INdep oo 57 dscalt ... 46, 124
indjon ... 90 ISCAVT vttt 124
INJCOM .« vt v it e 163 ischev ... 140
IND et 96, 98 iSChCY ...t 145
inpdtO ... 122 dschtp ..o 133
Inpptl ... 51 iscold ... 123

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical

user’s guide Page 183/186
isesth 124 dvisdk ... 169
ISIMACE ettt ettt et e 51 dvisdm ... 169
ISMAZO .« ot 48 dvishp ... 169
ISIO2t .« 133 dvisla oo 47
ISOID vt 64 dvisls ... 47, 151
isortl ... 105 IVISINA oottt 48
Isrfan ... 44 AVISIND e 169
iSrfbn A4 IVISSA vt 48
1SS02b .o 134 IVISSE ittt 126
ISSEPC vt 140 dvista ..o 47
IS DY oot 145 IVISte . .oei i 169
istala ... 166 IVISED o ovvi 169
ISEAL vt 125 IvisvD L. 168
istmpf ... 133 IVISVZ ottt 168
ISEO2E © oo 134 dvitbd ... 170
ISEEIO ot 163 dvivar ... 148
isuila ... 162 IVITEX «.ovvniii 59, 131
ISWITA oo 157 IVSeXb oot 135
ISUISE oot 163 AW e 95
ISWIEL oo 146 IWaAIDD ...t e 121
isuite ... 122 IWAITLY vttt 144
ISUIVE « oo oo 109, 163 X2 ..iovniiiiniiiniiiiiiiiiiiiiiiiiiiiieiiens 98
ISUIVO .ot 131 ixch ... 96, 98
ISYIEt ..ottt 64 ixck ... 96, 98
63T e 97 dylch ... 93
TEAM .. 97 dy2ch ... 93
IEDITD Lo 125 dycoel ... 100, 101
Tt 97, 100, 101 iygfm ..o 96, 97
itempl ... 98 Iym(l) ... 97
temp2 ..o 98 Iym(2) ... 97
IePa o 57 lym(3) oo 97
BPVAr o 164 IymI(1) oo 98
BTEED o 50,68 Lyml(2) ... 98
ESNSA © oo 47 dyml(3) oo 98
TESSCa vttt 47 dyml(4) ..o 98
BSEUA oo 47 Gyml(B) ... 98
FEUTD .o 128 yml(6) - 98
BUSET oo 52 Gyml(7) ... 98
itycel ..o 56 IYPDAT ot 50
TEYDID -+ e et 5O LZOME ...l 95
YPSM oo 51, 77 I
1 T 95
iuetbo 50 qblo‘rdl """""""""""""""""""" 122
BUSCID .o 105 IV e
fuslag ..o 106 g
iusncl ... 105 kabse oo 91
TUSVIS oottt 108
IV 95 —L -
IVIEXE oo 134 qiste oo 168
IVIMPO « o 79 Indfac ... 41
ivisch 169 Indfbr 41
Ivisck ... 169 Indnod 56
iviscl .o A7 1ongia ..o 42
IVISCE © vt AT TONGTA © ottt e 42
IVISCV it 161 Ttsdyn ...oooeii 165

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 184/186

ltsmas ... 165 mnitmay ... 144
ltsthe ... 165 nitmgf ... 140
NIBUSE .« 52

- M — DEVED ottt 56

modepl ... 166 nnento 69
NNOA « ettt 41

nodfac ... 41, 43

nalimxooiiii 156 modfbr 41, 43
nalinf 156 mombrd 171
nato ... 91,93 nomcoe ... 91
nbmomt 42 nomeoel ... 93
DDMOMX .« ovvvt it 42 momlag ... 167
nbpart ... 163 mnomvar i 121
NDPIMAX .ttt 56, 163 mnordre i 165
nbrvaf ... 159 mphas ... 41
NDIVAD « et 158 mphsmx ... 41
NbStr .o 156 npo ..o 91, 93, 94
NbVIS .o 168 npptld ..o 78
NCAPE + vttt 118 mprfml ... 41
F0Tec7<y s 00 LA 139 nproce ... 42
neel ..o 41 mprofa ... 42
neelbr ... 41 mprofb ... 42
neelet ... 41 DPIOIMIX .ottt e 42
NCEPAC .ot OL, 76 MPSt vt 167
NCEPADP « o 76 mpstf .o 171
NICESIIID eve et et e e e e e e e T npstft ..o 171
NCEESIN v vttt OL, 77 mpstt ..o 167
ncharb ... oo 93, 107 nrdeve 52
ncharm ... oo 90, 107 NIZAZ . ontitttt it 91
NClacp oo 42,93 nrbuse ...t 52
nelagm ... 105 mscal ... 41
nelepm ..o 42 NSCAMX t ittt ettt e 41
nelpch ..o 90, 93 MSCAPD « vt 41
Nneoel ... 93 MNSCAUS .+ vttt 42, 124
NICPCINIX o vttt e e 90 mnstbor ... 170
NCYIMAK +otvte ettt e 139, 140 mnstist ..oovvii 167
NAGMOX « vttt 42 nstits ... 165
NAim .o A1 DSWIET « ottt 137
NAITEC ..ot 188 MSWIZY .« ovvit i 145
ndlagm ... 107 NSWISM ..t 147
ndlaim ... 106 NSWISY vttt 144
NEStMX . .vvvi e 42,142 ntcabs ... 122
nfabor ... 41 mtchr ... 117
NfAC ..o 41 DECIXY o et 144
nflagm ... 105 ntdmom i 120
nfml ... 41 mtersl ... 56
nfptld .o 51,78 mthist ... 119
nfreqr ..o 158 mnthsav i 119
nfrlag ... 105 mtlist ..o 121
NEAZE ettt e 91 mntmabs 123
NEAZE <o vv e ettt e e 91,94 ntpabs ... 123
§0 7=y 00T QA 140 ntsuit ... 122
020101000005 QA 92 MEYPMX ... 66
NIAEVE ... 52 mnusbor ...l 56, 108, 171
nitmax ... 139 nushmx ... 42

Code_Saturne
documentation

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide Page 185/186
TIVAL o oot e 41 SCAMIN .ttt e 151
DIVED ettt ettt et e 56 seuil ... 166
SO 1 PP 56 seudlf ... 170
nvisbr ... 56 sigmae ... 153
nvisla ... 168 sigmak ... 153
nvisls ... 42 SIgMAs ... 152
NVIS o 56, 163 smacel i 51, 77
nvlsta ... 560 SIMAZINX .+ttt e 132
nvilsts ... 56, 167 SITOIML ..t eeeens 98, 149
NVOTE « ottt 69 statis ...l 58, 167
013 T 56 stephn i 148
stoeg ... 91
-0 - surfac ... 43
oCh o 93 SUTTDO o o o 43
0CK 93
optchr ... 116 — T —
B0 150
-P- Ehord ... 49
PO 149 BEPA. + e e 57
pa.rbor """""""""""""""" 58, 169, 171 teptld ..o 78
PCICH o TR O PR UORRRR 92
peick Tt 93 thetav ... 135
PETIVI oottt e 148 FREEED -+ v e oo 137
Pl o 147 thetfl 135
pred0 oo 149 thetro ... o 136
prefth 148 thetsn oo 136
PTOPCE e 44 thetss ..o 136
PTOPEA B HROISt e 136
PTOPIb o I Rty oo 136
PUISIIIL o 100 fhetys oo 137
PUISTAD o 9 timpat 96
-Q - tIMpep oo 96
QTP - et 95 tinfue 96
QUINPAL e et 96 PINOXY ... 96
QUIIPCD et g6 tkelvi 147
thelvin ... 148
-R - thkent ... 95
2 VPP D2 BIMATUS -« v vvveee et 123
reodel ... 99 BIMIAX + et e et e 91, 93, 160
reptld o T8 MmN oot 91, 93, 160
rdevel B3 DAL « e 164
relaxk ... 130 tpptld .o 78
TEIAXD et 141 tprenc 106, 165
rgptld .. T8 trefth 148
rthoOch i 93 tslagr ... 59
rinfin ... 147 tstat ..o 110, 167
TO0 L. T4 StatD «vvv e 172
0 148 ttcabs oo 123
)0 S PP 44,96 ttpabs ... 123
1) 0 Y- PP 44
TOUSET oot e 52 - U -
ruslag 107 urel ... 152
rvarfl L. 152 V-
- S - VAZAUS .« ot v vt ettt e 59
16220 00T b: QN 151 varrdt ... 127

EDF R&D Code_Saturne version 2.0.0-rc2 practical
user’s guide

Code_Saturne
documentation
Page 186/186

VISl ..o 149
VISCVO 162
VSISO Lo 151
visref ... 106, 165
vitflu .. 58, 109
VIEPAT .« 57, 109
volmol 148
volume ... 43
- W —
wmolat ... 91, 93
WINOLEZ e 92
- X —
xashch ... oo 93
KCO2 ottt 92
Xh20 ..o 92
xkabel 94
XKAPPA et 152
xlesfd ... 132
xlesfl oo 81, 132
XImtld ..o 78
xlomlg ... 152
XOPIMX .o 158
D:a1747/1672Y o PRI 118
D:q174//7¢71<) 4 K 43
XYZNOA « ottt 43
XYZPO o 150
- Y —
yIch oo 93
V2Ch o 93
VPIMXY oo 146
ypluli <. 129
-7 —

	Flyleaf
	Abstract
	Table of contents
	Introduction
	Practical information about Code_Saturne
	System Environment for Code_Saturne
	Preliminary settings
	Standard directory hierarchy
	Code_Saturne Kernel library files

	Setting up and running of a calculation
	Step by step calculation
	Temporary execution directory
	Execution modes
	Interactive modification of the target time step

	Case preparer
	Supported mesh and post-processing output formats
	Formats supported for input
	Formats supported for input or output
	Mesh meta-files
	Meshing tools and associated formats
	Meshing remarks

	Preprocessor command line options
	Kernel command line options
	Parameters in the launch script
	Graphical User Interface
	Face and cell mesh-defined properties and selection

	Preprocessing
	Preprocessor options and sub-options
	Option files
	Mesh selection
	Post-processing output
	Faces selection
	Joining of non-conforming meshes
	Periodicity
	Element orientation correction

	Environment variables
	System environment variables

	Optional functionality
	General remarks
	Files passed to the Kernel

	Partitioning for parallel runs
	Options
	Ignore periodicity
	Partitioner choice
	Simulation mode
	Environment variables

	Main variables
	Array sizes
	Geometric variables
	Physical variables
	Variables related to the numerical methods
	User arrays
	Developer arrays
	Parallelism and periodicity
	Geometry and particule arrays related to Lagrangian modeling
	Variables saved to allow calculation restarts

	User subroutines
	Preliminary comments
	Using selection criteria in user subroutines
	Initialisation of the main key words: usini1
	Management of boundary conditions: usclim
	Coding of standard boundary conditions
	Coding of non-standard boundary conditions
	Checking of the boundary conditions
	Sorting of the boundary faces

	Management of the boundary conditions with LES: usvort
	Management of the variable physical properties: usphyv
	Non-default variables initialisation: usiniv
	Non-standard management of the chronological record files: ushist
	User source terms in Navier-Stokes: ustsns
	User source terms for k and : ustske
	User source terms for Rij and : ustsri
	User source terms for and f: ustsv2
	User source terms for k and : ustskw
	User source terms for the user scalars: ustssc
	Management of the pressure drops: uskpdc
	Management of the mass sources: ustsma
	Thermal module in a 1D wall
	 Initialization of the options of the variables related to the ale module: usalin and usstr1
	Management of the boundary conditions of velocity mesh related to the ale module: usalcl
	Management of the structure property: usstr2
	Modification of the turbulent viscosity: usvist
	Modification of the variable C of the dynamic LES model: ussmag
	Temperature-enthalpy and enthalpy-temperature conversions: usthht
	Modification of the mesh geometry: usmodg
	Management of the post-processing intermediate outputs: usnpst
	Definition of post-processing and mesh zones: usdpst
	Modification of the mesh zones to post-process: usmpst
	Definition of the variables to post-process: usvpst
	Modification of the variables at the end of a time step: usproj
	Radiative thermal transfers in semi-transparent gray media
	Initialisation of the radiation main key words: usray1
	Management of the radiation boundary conditions: usray2
	Absorption coefficient of the medium, boundary conditions for the luminance and calcualtion of the net radiative flux: usray3
	Encapsulation of the temperature-enthalpy conversion: usray4

	Utilisation of a specific physics: usppmo
	Management of the boundary conditions related to pulverised coal and gas combustion: usebuc, usd3pc, uslwcc, uscpcl and uscplc
	Initialisation of the variables related to pulverised coal and gas combustion: usebui, usd3pi, uslwci and uscpiv
	Initialisation of the options of the variables related to pulverised coal and gas combustion: usebu1, usd3p1, uslwc1, uscpi1 and uscpl1
	Management of Boundary Conditions of the electric arc: uselcl
	Initialisation of the variables in the electric module
	 Initialisation of the variable options in the electric module
	Management of variable physical properties in the electric module
	Management of the EnSight output in the electric module: uselen
	Compressible module
	 Initialisation of the options of the variables related to the compressible module: uscfx1 and uscfx2
	Management of the boundary conditions related to the compressible module: uscfcl
	Ininitialisation of the variables related to the compressible module: uscfxi
	Compressible module thermodynamics: uscfth
	Management of the variable physical properties in the compressible module: uscfpv

	Lagrangian modeling of multiphasic flows with dipersed inclusions
	Initialisation of the main key words in the Lagrangian modeling: uslag1
	Management of the boundary conditions related to the particles: uslag2 and uslain
	Treatment of the particle/boundary interaction: uslabo
	Option for particle cloning/merging: uslaru
	Manipulation of particulate variables at the end of an iteration and user volumetric statistics: uslast and uslaen
	User stochastic differential equations: uslaed
	Particle relaxation time: uslatp
	Particle thermal characteristic time: uslatc

	Key word list
	Input-output
	''Calculation'' files
	Post-processing for EnSight or other tools
	Chronological records of the variables on specific points
	Time averages
	Others

	Numerical options
	Calculation management
	Scalar unknowns
	Definition of the equations
	Definition of the time advancement
	Turbulence
	Time scheme
	Gradient reconstruction
	Solution of the linear systems
	Convective scheme
	Pressure-continuity step
	Error estimators for Navier-Stokes
	Calculation of the distance to the wall
	Others

	Numerical, physical and modeling parameters
	Numeric Parameters
	Physical parameters
	Physical variables
	Modeling parameters

	ALE
	Thermal radiative transfers: global settings
	Electric module (Joule effect and electric arc): specificities
	Compressible module: specificities
	Lagrangian multiphase flows
	Global settings
	Specific physics models associated with the particles
	Options for two-way coupling
	Numerical modeling
	Volume statistics
	Display of trajectories and particle movements
	Display of the particle/boundary interactions and the statistics at the boundaries

	Bibliography
	Appendix 1 : automatic validation procedure
	Introduction
	Practical informations on the procedure
	Directories architecture
	Validation base
	Elementary tests : gradient calculations
	Laplacien calculation

	Architecture description
	Python files in the modules directory
	XML file description
	To add a new study
	Report files

	Index of the main variables and keywords

