Mapped inlet when there are another inlet faces

Questions and remarks about code_saturne usage
Forum rules
Please read the forum usage recommendations before posting.
Tsubasa
Posts: 175
Joined: Fri Nov 20, 2020 4:09 am

Re: Mapped inlet when there are another inlet faces

Post by Tsubasa »

Hello everyone,

I would like to share the code that can map all variables to another inlet face without any rescaling.

Code: Select all

call getfbr('mapped_inlet_duct', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = -0.02
  coord_shift(2,1) = 0.d0
  coord_shift(3,1) = 0.d0
  inlet_l = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo
cs_user_boundary_conditions-mapped_inlet.f90
(7.83 KiB) Downloaded 58 times
Best regards,
Hamada
Tsubasa
Posts: 175
Joined: Fri Nov 20, 2020 4:09 am

Re: Mapped inlet when there are another inlet faces

Post by Tsubasa »

Hello,

It has been a long time since I came last time.
I did not use codesaturn for a long while, so I have to remember one by one...

In the past, I asked you how to remap without rescaling, and I succeeded.
Now I want to use the same code but apply remapping to two faces.

As I did before, for the face "extraction_mapped_inlet_minus001", I can use the same code without changing.

What I am confused now is how to do same thing for another face.
For "regular_fan_mapped_inlet_minus01" I used a code below, but it does not work...
Maybe I have to define new integer or something...? Like nlfac2, lstfac2?
Also do I have to add "call boundary_conditions_mapped_set" for "regular_fan_mapped_inlet_minus012"?

Code: Select all

call getfbr('extraction_mapped_inlet_minus001', nlfac, lstfac)
if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = 0.d0
  coord_shift(3,1) = -0.01
  inlet_l = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif



call getfbr('regular_fan_mapped_inlet_minus012', nlfac, lstfac)
if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = -0.12
  coord_shift(3,1) = 0.d0
  inlet_l = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo
!===============================================================================
I am sorry I cannot remember many aspects.. could you help me?

When I used this code, it did not work well. It worked only for the face "extraction_mapped_inlet_minus001", but not for "regular_fan_mapped_inlet_minus012."

For example, error shows this kind of message... How can I solve this?

Code: Select all

/home/hamada/CFD/sensecity_full_domain_with_duct.hdf/sensecity_full_domain_with_duct/RESU/20230331-0202/src/cs_user_boundary_conditions-mapped_inlet.f90:82:5:

   82 |    dt     ,                                                       &
      |     1
Warning: Unused dummy argument ‘dt’ at (1) [-Wunused-dummy-argument]
/home/hamada/CFD/sensecity_full_domain_with_duct.hdf/sensecity_full_domain_with_duct/RESU/20230331-0202/src/cs_user_boundary_conditions-mapped_inlet.f90:81:9:

   81 |    icodcl , itrifb , itypfb , izfppp ,                            &
      |         1
Warning: Unused dummy argument ‘icodcl’ at (1) [-Wunused-dummy-argument]
/home/hamada/CFD/sensecity_full_domain_with_duct.hdf/sensecity_full_domain_with_duct/RESU/20230331-0202/src/cs_user_boundary_conditions-mapped_inlet.f90:134:21:

  134 | integer          ifac, iel, iel2, ii, ivar, iscal, ilelt, ilelt2, nlfac, nlfac2
      |                     1
Warning: Unused variable ‘ifac’ declared at (1) [-Wunused-variable]
Best regards,
Hamada
Yvan Fournier
Posts: 4070
Joined: Mon Feb 20, 2012 3:25 pm

Re: Mapped inlet when there are another inlet faces

Post by Yvan Fournier »

Hello,

These are simply warnings, so no issue here. If the code does not work, it is due to another issue.

I recommend switching to the C variant of this user-defined function, as the Fortran variant is deprecated and will probably be removed for code_saturne 9.0 (in 2 years; code_saturne 8.0 is in testing and will be released in June).

You must make sure the first definition is not overwritten with the first one. For this, I would need to see the whole routine, not just a snippet.

Best regards,

Yvan
Tsubasa
Posts: 175
Joined: Fri Nov 20, 2020 4:09 am

Re: Mapped inlet when there are another inlet faces

Post by Tsubasa »

Hello Yvan,

Thank you for your reply and your notice,
but let me continue Fortran now. I will change it to C.

Here is a script. I am also thinking something is overwrapped.
cs_user_boundary_conditions-mapped_inlet.f90
(8.93 KiB) Downloaded 41 times

Code: Select all

!-------------------------------------------------------------------------------

!                      Code_Saturne version 6.0.5
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2019 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

!===============================================================================
! Function:
! ---------

!> \file cs_user_boundary_conditions-mapped_inlet.f90
!>
!> Example of cs_f_user_boundary_conditions subroutine.f90 for inlet
!> with inlet profile mapped to profile inside the domain.

!> This example assumes the mesh is orthogonal at the inlet.
!
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! Arguments
!______________________________________________________________________________.
!  mode           name          role                                           !
!______________________________________________________________________________!
!> \param[in]     nvar          total number of variables
!> \param[in]     nscal         total number of scalars
!> \param[out]    icodcl        boundary condition code:
!>                               - 1 Dirichlet
!>                               - 2 Radiative outlet
!>                               - 3 Neumann
!>                               - 4 sliding and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 5 smooth wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 6 rough wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 9 free inlet/outlet
!>                                 (input mass flux blocked to 0)
!>                               - 13 Dirichlet for the advection operator and
!>                                    Neumann for the diffusion operator
!> \param[in]     itrifb        indirection for boundary faces ordering
!> \param[in,out] itypfb        boundary face types
!> \param[out]    izfppp        boundary face zone number
!> \param[in]     dt            time step (per cell)
!> \param[in,out] rcodcl        boundary condition values:
!>                               - rcodcl(1) value of the dirichlet
!>                               - rcodcl(2) value of the exterior exchange
!>                                 coefficient (infinite if no exchange)
!>                               - rcodcl(3) value flux density
!>                                 (negative if gain) in w/m2 or roughness
!>                                 in m if icodcl=6
!>                                 -# for the velocity \f$ (\mu+\mu_T)
!>                                    \gradt \, \vect{u} \cdot \vect{n}  \f$
!>                                 -# for the pressure \f$ \Delta t
!>                                    \grad P \cdot \vect{n}  \f$
!>                                 -# for a scalar \f$ cp \left( K +
!>                                     \dfrac{K_T}{\sigma_T} \right)
!>                                     \grad T \cdot \vect{n} \f$
!_______________________________________________________________________________

subroutine cs_f_user_boundary_conditions &
 ( nvar   , nscal  ,                                              &
   icodcl , itrifb , itypfb , izfppp ,                            &
   dt     ,                                                       &
   rcodcl )

!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstphy
use cstnum
use entsor
use parall
use period
use ihmpre
use ppppar
use ppthch
use coincl
use cpincl
use ppincl
use ppcpfu
use atincl
use atsoil
use ctincl
use cs_fuel_incl
use mesh
use field
use turbomachinery
use iso_c_binding
use cs_c_bindings

!===============================================================================

implicit none

! Arguments

integer          nvar   , nscal

integer          icodcl(nfabor,nvar)
integer          itrifb(nfabor), itypfb(nfabor)
integer          izfppp(nfabor)

double precision dt(ncelet)
double precision rcodcl(nfabor,nvar,3)

! Local variables

!< [loc_var_dec]
integer          ifac, iel, ii, ivar, iscal, ilelt, nlfac

integer          keyvar, keysca
integer          n_fields, f_id, normalize, interpolate
double precision xdh, rhomoy
double precision fmprsc, uref2

integer, allocatable, dimension(:) :: lstfac, lstcel
double precision, dimension(:), pointer :: brom

double precision, dimension(:,:), pointer :: vel
double precision, dimension(3,1) :: coord_shift
double precision, dimension(1) :: rvoid

type(c_ptr), save :: inlet_l = c_null_ptr
!< [loc_var_dec]

!===============================================================================
! Initialization
!===============================================================================

!< [init]
allocate(lstfac(nfabor))  ! temporary array for boundary faces selection

! Map field arrays
call field_get_val_v(ivarfl(iu), vel)

call field_get_val_s(ibrom, brom)

fmprsc = 1.d0 ! mean prescribed velocity
!< [init]

!===============================================================================
! Assign a pseudo-periodic channel type inlet to a set of boundary faces,
! using boundary condition mapping.

! For each subset:
! - use selection criteria to filter boundary faces of a given subset
! - use boundary_conditions_map_set and boundary_conditions_mapped_set
!   to apply a profile from inside the domain to the inlet, renormalizing
!   for some variables.
!
! The impled feedback loop allows progressively reaching a state similar
! to that of a periodic channel at the inlet.
!===============================================================================

call getfbr('regular_fan_mapped_inlet_plus012', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = 0.12
  coord_shift(3,1) = 0.d0
  inlet_l = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!===============================================================================

call getfbr('extraction_mapped_inlet_minus001', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = 0.d0
  coord_shift(3,1) = -0.01
  inlet_l = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!--------
! Formats
!--------

!----
! End
!----

deallocate(lstfac)  ! temporary array for boundary faces selection

return
end subroutine cs_f_user_boundary_conditions
Would you take a look at this?

Best regards,
Tsubasa
Yvan Fournier
Posts: 4070
Joined: Mon Feb 20, 2012 3:25 pm

Re: Mapped inlet when there are another inlet faces

Post by Yvan Fournier »

Hello,

In your file, you declare only one "inlet_l" variable, than initialize it twice. The second time loses the pointer to the first.

You should use 2 distinct variables for each inlet. For example,

Code: Select all

type(c_ptr), save :: inlet_plus012 = c_null_ptr
type(c_ptr), save :: inlet_minus001 = c_null_ptr
And then associated them in order to the boundary_conditions_map function return value.

Best regards,

Yvan
Tsubasa
Posts: 175
Joined: Fri Nov 20, 2020 4:09 am

Re: Mapped inlet when there are another inlet faces

Post by Tsubasa »

Hello Yvan,

Thank you, it works now.
cs_user_boundary_conditions-mapped_inlet.f90
(11.26 KiB) Downloaded 38 times

Code: Select all

!-------------------------------------------------------------------------------

!                      Code_Saturne version 6.0.5
!                      --------------------------
! This file is part of Code_Saturne, a general-purpose CFD tool.
!
! Copyright (C) 1998-2019 EDF S.A.
!
! This program is free software; you can redistribute it and/or modify it under
! the terms of the GNU General Public License as published by the Free Software
! Foundation; either version 2 of the License, or (at your option) any later
! version.
!
! This program is distributed in the hope that it will be useful, but WITHOUT
! ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
! FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
! details.
!
! You should have received a copy of the GNU General Public License along with
! this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
! Street, Fifth Floor, Boston, MA 02110-1301, USA.

!-------------------------------------------------------------------------------

!===============================================================================
! Function:
! ---------

!> \file cs_user_boundary_conditions-mapped_inlet.f90
!>
!> Example of cs_f_user_boundary_conditions subroutine.f90 for inlet
!> with inlet profile mapped to profile inside the domain.

!> This example assumes the mesh is orthogonal at the inlet.
!
!-------------------------------------------------------------------------------

!-------------------------------------------------------------------------------
! Arguments
!______________________________________________________________________________.
!  mode           name          role                                           !
!______________________________________________________________________________!
!> \param[in]     nvar          total number of variables
!> \param[in]     nscal         total number of scalars
!> \param[out]    icodcl        boundary condition code:
!>                               - 1 Dirichlet
!>                               - 2 Radiative outlet
!>                               - 3 Neumann
!>                               - 4 sliding and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 5 smooth wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 6 rough wall and
!>                                 \f$ \vect{u} \cdot \vect{n} = 0 \f$
!>                               - 9 free inlet/outlet
!>                                 (input mass flux blocked to 0)
!>                               - 13 Dirichlet for the advection operator and
!>                                    Neumann for the diffusion operator
!> \param[in]     itrifb        indirection for boundary faces ordering
!> \param[in,out] itypfb        boundary face types
!> \param[out]    izfppp        boundary face zone number
!> \param[in]     dt            time step (per cell)
!> \param[in,out] rcodcl        boundary condition values:
!>                               - rcodcl(1) value of the dirichlet
!>                               - rcodcl(2) value of the exterior exchange
!>                                 coefficient (infinite if no exchange)
!>                               - rcodcl(3) value flux density
!>                                 (negative if gain) in w/m2 or roughness
!>                                 in m if icodcl=6
!>                                 -# for the velocity \f$ (\mu+\mu_T)
!>                                    \gradt \, \vect{u} \cdot \vect{n}  \f$
!>                                 -# for the pressure \f$ \Delta t
!>                                    \grad P \cdot \vect{n}  \f$
!>                                 -# for a scalar \f$ cp \left( K +
!>                                     \dfrac{K_T}{\sigma_T} \right)
!>                                     \grad T \cdot \vect{n} \f$
!_______________________________________________________________________________

subroutine cs_f_user_boundary_conditions &
 ( nvar   , nscal  ,                                              &
   icodcl , itrifb , itypfb , izfppp ,                            &
   dt     ,                                                       &
   rcodcl )

!===============================================================================

!===============================================================================
! Module files
!===============================================================================

use paramx
use numvar
use optcal
use cstphy
use cstnum
use entsor
use parall
use period
use ihmpre
use ppppar
use ppthch
use coincl
use cpincl
use ppincl
use ppcpfu
use atincl
use atsoil
use ctincl
use cs_fuel_incl
use mesh
use field
use turbomachinery
use iso_c_binding
use cs_c_bindings

!===============================================================================

implicit none

! Arguments

integer          nvar   , nscal

integer          icodcl(nfabor,nvar)
integer          itrifb(nfabor), itypfb(nfabor)
integer          izfppp(nfabor)

double precision dt(ncelet)
double precision rcodcl(nfabor,nvar,3)

! Local variables

!< [loc_var_dec]
integer          ifac, iel, ii, ivar, iscal, ilelt, nlfac

integer          keyvar, keysca
integer          n_fields, f_id, normalize, interpolate
double precision xdh, rhomoy
double precision fmprsc, uref2

integer, allocatable, dimension(:) :: lstfac, lstcel
double precision, dimension(:), pointer :: brom

double precision, dimension(:,:), pointer :: vel
double precision, dimension(3,1) :: coord_shift
double precision, dimension(1) :: rvoid

type(c_ptr), save :: inlet_l1 = c_null_ptr
type(c_ptr), save :: inlet_l2 = c_null_ptr
type(c_ptr), save :: inlet_l3 = c_null_ptr
type(c_ptr), save :: inlet_l4 = c_null_ptr
!< [loc_var_dec]

!===============================================================================
! Initialization
!===============================================================================

!< [init]
allocate(lstfac(nfabor))  ! temporary array for boundary faces selection

! Map field arrays
call field_get_val_v(ivarfl(iu), vel)

call field_get_val_s(ibrom, brom)

fmprsc = 1.d0 ! mean prescribed velocity
!< [init]

!===============================================================================
! Assign a pseudo-periodic channel type inlet to a set of boundary faces,
! using boundary condition mapping.

! For each subset:
! - use selection criteria to filter boundary faces of a given subset
! - use boundary_conditions_map_set and boundary_conditions_mapped_set
!   to apply a profile from inside the domain to the inlet, renormalizing
!   for some variables.
!
! The impled feedback loop allows progressively reaching a state similar
! to that of a periodic channel at the inlet.
!===============================================================================

call getfbr('regular_fan_mapped_inlet_minus012', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = -0.12
  coord_shift(3,1) = 0.d0
  inlet_l1 = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l1, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!===============================================================================

call getfbr('regular_fan_mapped_inlet_plus012', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = 0.12
  coord_shift(3,1) = 0.d0
  inlet_l2 = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l2, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!===============================================================================

call getfbr('reduced_fan_mapped_inlet_minus012', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = -0.12
  coord_shift(3,1) = 0.d0
  inlet_l3 = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l3, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!===============================================================================

call getfbr('extraction_mapped_inlet_minus001', nlfac, lstfac)

if (ntcabs == ntpabs) then
  allocate(lstcel(ncel))
  do iel = 1, ncel
    lstcel(iel) = iel
  enddo
  coord_shift(1,1) = 0.d0
  coord_shift(2,1) = 0.d0
  coord_shift(3,1) = -0.01
  inlet_l4 = boundary_conditions_map(mesh_location_cells, ncel,                &
                                    nlfac, lstcel, lstfac,                    &
                                    coord_shift, 0,                           &
                                    0.01d0)
  deallocate(lstcel)
endif

  call field_get_n_fields(n_fields)
  call field_get_key_id("velocity", keyvar)
  call field_get_key_id("scalar1", keysca)

  interpolate = 0

 do f_id = 0, n_fields-1
    normalize = 0
    call boundary_conditions_mapped_set(f_id, inlet_l4, MESH_LOCATION_CELLS, &
                                        normalize, interpolate,             &
                                        nlfac, lstfac, rvoid,               &
                                        nvar, rcodcl)
  enddo

!--------
! Formats
!--------

!----
! End
!----

deallocate(lstfac)  ! temporary array for boundary faces selection

return
end subroutine cs_f_user_boundary_conditions
Best regards,
Tsubasa
Post Reply