
Nomenclature

cp specific heat capacity
Pr Prandtl number
Q rate of heat transfer
qw wall heat flux
Reτ Reynolds number = uτδ/ν
T temperature
t time
Tm bulk mean temperature
Tτ friction temperature = qw/ρcpuτ
ui, u, v,w velocity component
uτ friction velocity =

√
τw/ρ

x1, x streamwise direction
x2, y wall-normal direction
x3, z spanwise direction
Brackets
( ) statistically averaged
〈 〉 averaged over channel section
Greek
α thermal diffusivity
δ channel half width
µ dynamic viscosity
ν kinematic viscosity
ρ density
τw wall shear stress
θ transformed temperature
Superscipts
( )∗ normalized by δ
( )+ normalized by uτ, ν and Tτ

We begin with the non-dimensional form of the energy equation:

∂T+

∂t∗
+ u j

∂T+

∂x∗j
=

1
ReτPr

∂2T+

∂x∗2j
(1)

The dimensionless temperature T+(x∗, y∗, z∗) can be broken down into a mean temperature which increases
linearly up the channel (with x∗) and a fluctuating component θ+(x∗, y∗, z∗) such that:

T+ =
d〈T̄+m〉

dx∗
x∗ − θ+ (2)

The mean dimensionless temperature is defined as:

〈T̄+m〉 =

1∫
0

ū+1 T̄+dy∗
/ 1∫

0

ū+1 dy∗ (3)
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〈T̄+m〉 is averaged over time (statistically) and cross section and is thus only a function of x∗.

The derivative may be found as follows:

Q = ṁcpdT

2qwδzdx = 2ρ〈ū〉cpdTδδz
dT
dx
=

qw

ρcpδ

ρuτcpδ

qw

dT
dx
=

uτ
〈ū〉

d(ρuτcpT/qw)
d(x/δ)

=
1
〈ū+〉

d〈T̄+m〉
dx∗

=
1
〈ū+〉

(4)

Using these transformations the energy equation can be found:

∂

∂t∗

(d〈T̄+m〉
dx∗

x∗ − θ+
)
+ u+j

∂

∂x∗j

(d〈T̄+m〉
dx∗

x∗ − θ+
)
=

1
ReτPr

∂2

∂x∗2j

(d〈T̄+m〉
dx∗

x∗ − θ+
)

(5)

In the first left hand term in (5) the first part of the derivative relates to how the mean non-dimensional temperature
gradient varies with time, since it is statistically averaged it does not vary with time and thus the term is equal to
zero. In the second term on the left side the mean non-dimensional temperature gradient is a function of only x∗

and thus when differentiated with respect to y∗, z∗ the derivative is zero, however for x∗ it is non-zero, whereas the
fluctating part is a function of all three directions. The second derivative of the mean non-dimensional temperature
gradient is zero if the gradient is assumed to be linear (as was the case in the formation of (4)). Thus (5) may be
rewritten as:

−
∂θ+

∂t∗
+ u+1

∂

∂x∗

(d〈T̄+m〉
dx∗

x∗
)
− u+j

∂θ+

∂x∗j
= −

1
ReτPr

∂2θ+

∂x∗2j
∂θ+

∂t∗
+ u+j

∂θ+

∂x∗j
=

1
ReτPr

∂2θ+

∂x∗2j
+ u+1

d〈T̄+m〉
dx∗

∂θ+

∂t∗
+ u+j

∂θ+

∂x∗j
=

1
ReτPr

∂2θ+

∂x∗2j
+

u+1
〈ū+〉

(6)

(6) may be solved directly by some programs, however for use in Code Saturne further manipulation is required
since it operates on the generic transport equation which utilises f (t, x, y, z) rather than dimensionless quantities
f (t∗, x∗i ).

The following relations are used:

t∗ = tuτ/δ

x∗i = xi/δ

Reτ = uτδ/nu

Pr = µcp/k

µ = ρν

α = ρcp/k

2



Applying these relations to (6) yields:

∂θ+

∂(tuτδ)
+ u+j

∂θ+

∂(x j/δ)
=

νk
uτcpµδ

∂2θ+

∂(x j/δ)2 +
u+1
〈ū+〉

δ

uτ

∂θ+

∂t
+ δu+j

∂θ+

∂x j
=

δk
ρuτcp

∂2θ+

∂x2
j

+
u+1
〈ū+〉

∂θ+

∂t
+ uτu+j

∂θ+

∂x j
=

1
α

∂2θ+

∂x2
j

+
uτ
δ

u+1
〈ū+〉

∂θ+

∂t
+ u j

∂θ+

∂x j
=

1
α

∂2θ+

∂x2
j

+
1
δ

u1

〈ū+〉

∂(δθ+)
∂t

+ u j
∂(δθ+)
∂x j

=
1
α

∂2(δθ+)
∂x2

j

+
u1

〈ū+〉
(7)

(8)

(7) is then the transport equation for a property δθ+ with the additional source term u1
〈ū+〉

3


