
Large Eddy Simulation in a Tube Bundle
using Code Saturne and User Subroutines

03 TB LES SRC

1 Introduction
Flows through tubes bundles are encountered in many heat exchanger applications. One
example is in nuclear power plants where the nuclear fuel rods are cooled by passing
cold water over them, but similar arrangements are also employed in more conventional
exchangers. The objective of this type of heat exchanger is, of course, to extract as much
heat as possible from the tubes. In a computational study, in order to calculate the heat
transfer reliably, it is necessary to resolve the flow around the tubes correctly.

A typical staggered tube bundle configuration, which is to be studied in this exercise,
can be seen in figure 1. It is assumed to consist of a large number of tubes, so the flow
around any one is considered to be similar to that around the others, when the flow is fully
developed. A 2D cross-section of the computational domain employed is highlighted
(dashed lines). Periodic boundary conditions are applied in the 3 directions, X, Y, Z.

Figure 1: Flow description

The flow is to be computed using Large Eddy Simulation (LES). This technique allows
for solving turbulence in time by filtering the flow field and separating large and small
scales of turbulence. Here, the Smagorinsky [1] model is used. This is a basic model in

1

Tube bundle LES 2

which the filter width is proportional to the grid size, therefore turbulence inside a cell (or
control volume, for finite volume-based codes) is modelled, while the rest is resolved.

The mesh of the 2D cross-section representing the domain (see figure 1) contains
about 6.5 million control volumes. The diameter of the tubes is D = 0.0217 and the
pitch divided by the diameter is P/D = 2.07. the Reynolds number to be simulated is
Re = 18000, based on the bulk velocity and the diameter.

The mesh is plotted in figure 2. The 2D plane represented in the figure is extruded
along the Z-direction for a length of 2D and over 128 cells.

Figure 2: Mesh of 2D cross-section (X - Y)

2 Objectives
In this tutorial, the flow across the tube bundle will be computed using LES. Due to the
large size of the mesh, it will be necessary to run the calculation in parallel. The main
objective of this session involves:

• Adapting the necessary subroutines (remote supercomputer), including restarting
from a previous simulation

• Running the simulation on a remote supercomputer

• Visualisation of the results on the local training machine

Note that this tutorial is tailored for this particular supercomputer and the setup will be
different for another type of machine. The remote machine is an IBM Blue Gene/Q called

Tube bundle LES 3

Blue Joule located at the Hartree Centre, Daresbury Laboratory. It was ranked 13th in the
June 2012 SuperComputer Top 500 list. Remote connection will be compulsory and files
will have to be copied across.

3 Code Saturne

Code Saturne is a multipurpose CFD software designed to solve the Navier-Stokes equa-
tions for 2D, 2D axisymmetric or 3D flows. Its main module is designed for the simulation
of flows which may be steady or unsteady, laminar or turbulent, incompressible or poten-
tially dilatable, isothermal or not. The code employs a finite volume discretisation and
allows the use of various mesh types, including hybrid arrangements (where the mesh
contains several kinds of elements) and structural non-conformities (hanging nodes).

The code includes specific modules, referred to as ‘specific physics’, for the treatment
of Lagrangian particle tracking, semi-transparent radiative transfer, gas, pulverised coal
and heavy fuel oil combustion, electricity effects (Joule effect and electric arcs), com-
pressible flows, but these are not required for the present exercise.

Code Saturne is open-source; it can be downloaded, modified and/or redistributed
under the terms of the GNU General Public License as published by the Free Software
Foundation.

The following instructions provide a guide through the steps required to prepare and
run the present cases in Code Saturne version 4.0, and subsequently postprocess the re-
sults using the open-source postprocessing software ParaView and xmgrace.

All necessary files are stored in a shared folder available for all the participants. A pdf
copy of this tutorial is to be found in:

/gpfs/home/training/dxp58/shared/Tutorials/01_TB_LAM_SRC

It is recommended to open the pdf file, and to copy and paste the necessary commands
to set up the case.

The command to open a pdf file is evince and should be used to open the file as
follows: evince 03_TB_LES_SRC.pdf

4 Guide to run Code Saturne

All the setup is performed on the remote supercomputer as no GUI is used for this tutorial.
It is then necessary to connect there by typing:

[bash: $] ssh -X username@login.joule.hartree.stfc.ac.uk

Software usage and environment variables are loaded by modules. Modules are designed
to load variables and parameters to the Linux environment for specific programs, in this
case Code Saturne . The following instruction is to be typed to get Code Saturne work-
ing:

[bash:$] module load ibmmpi parmetis/4.0.3 scotch/6.0.0 libxml2/2.9.0
[bash:$] module load code_saturne/4.0.2

Typing code saturne allows to check that loading the module has been effective:

Tube bundle LES 4

[bash:$] code_saturne
Usage: /gpfs/packages/ibm/code_saturne/4.0.2/bin/code_saturne <topic>

Topics:
help
autovnv
compile
config
create
gui
info
run
salome

Options:
-h, --help show this help message and exit

5 Preparation of the simulation
The steps followed in this section are:

• The creation of the study and case

• The modification of the user subroutines

• The compilation and the creation of the executable

• The copy of the mesh, the partition and the restart files to the right location

• The modification of scripts used to run the simulation

5.1 Test case creation
If the TUBE BUNDLE LES directory does not exist yet, the study needs to be created by

• Going to the desired location for the study

• Typing
[bash:$] code_saturne create -s TUBE_BUNDLE_LES -c LES_SRC

which returns:
code_saturne 4.0 study/case generation

o Creating study ’TUBE_BUNDLE_LES’...
o Creating case ’LES_SRC’...

Alternatively, if the study TUBE BUNDLE LES already exists, only the case LES SRC
is created in the TUBE BUNDLE LES directory, as:
[bash:$] code_saturne create -c LES_SRC
code_saturne 4.0 study/case generation

o Creating case ’LES_SRC’...

Tube bundle LES 5

The file structure can be seen in figure 3. The details of the structure are:

Figure 3: File structure created by Code Saturne

• LES SRC: This is the case file. A study can have several cases, for example each
using different turbulence models, different boundary conditions, etc.

– DATA: This directory contains the script to launch the GUI, SaturneGUI.
This is also where the restarting and other input files should be copied.

– SRC: This is where the user subroutines should be. During the compilation
stage the code will re-compile all the subroutines present in this directory. All
the user subroutines are available in the REFERENCE directory. Examples
how to program them can be found in EXAMPLES. Depending on what is
needed for the simulation only a few of these might be required.

– RESU: This directory contains the files required for a simulation to run as well
as the result files.

– SCRIPTS: This is where the script to launch simulations is available.

• MESH: The program will read the mesh from this directory. The mesh formats
that can be read are I-DEAS, CGNS, Gambit Neutral files (neu), EnSight, pro-
star/STAR4 (ngeom), Gmsh, NUMECA Hex, MED, Simail and Meta-mesh files.

• POST: This is an empty directory designed to contain postprocessing macros that
may be relevant in some cases.

Tube bundle LES 6

5.2 Case set up
5.2.1 Restart, mesh and partition files

In the following section a restart file generated from a previous calculation will be used.
The previous simulation ran over a long period of time and performed so that time aver-
aged quantities could be obtained. The necessary input files will have to be copied from
the shared directory. The required files are

• checkpoint directory

• mesh output

• partition input

Copy these into the DATA directory by typing:
cd LES_SRC
cp -r \
˜/../shared/Tutorials/03_TB_LES_SRC/CASEFILES/MESHES/checkpoint DATA/.
cp -r \
˜/../shared/Tutorials/03_TB_LES_SRC/CASEFILES/MESHES/mesh_output DATA/.
cp -r \
˜/../shared/Tutorials/03_TB_LES_SRC/CASEFILES/MESHES/partition_input \
DATA/.

5.2.2 Users subroutines

The subroutines have to be copied in the SRC directory. They are obtained by typing the
following from the REFERENCE directory:
[bash:$] cd SRC
[bash:$] cp REFERENCE/cs_user_parameters.f90 .
[bash:$] cp REFERENCE/cs_user_parameters.c .
[bash:$] cp REFERENCE/cs_user_boundary_conditions.f90 .
[bash:$] cp REFERENCE/cs_user_source_terms.f90 .
[bash:$] cp REFERENCE/cs_user_extra_operations.f90 .

5.2.3 Description of the subroutines

This tutorial is entirely based on user subroutines modifications. The subroutines em-
ployed are:

• cs user parameters.f90: Definition of all the calculation parameters.

• cs user parameters.c: Definition of time averaged quantities.

• cs user boundary conditions.f90: Definition of the boundary conditions.

• cs user source terms.f90: Used to add source terms to all transport equa-
tions.

• cs user extra operations.f90: Used to perform any kind of operation at
the end of each time step.

Tube bundle LES 7

5.3 Detailed changes of the user subroutines
5.3.1 cs user parameters.f90

This file contains all the numerical and physical parameters of the calculation that can be
changed by the user. Most of them are enclosed inside a test (if statement). This is meant
to avoid problems when running both from the files generated by the GUI (.xml files) and
user subroutines. In case of a parameter being defined by the .xml file and by the user
subroutine, the value set in the user subroutine will have precedence. Activating a test and
setting a value is performed by changing if(.false.)then into if(.true.)then

Here is the list of all the parameters that have to be changed within the subroutine:

• Open the file with an editor (gedit for example 1).

• Activate the Smagorinsky turbulence model by changing the code at line 549 so it
looks like:

if (ixmlpu.eq.0) then
iturb = 40

endif

• Activate the unsteady algorithm with constant time step (line 706)

if (.true.) then
idtvar = 0

endif

• Set the number of time steps to 16500 (line 715)

if (.true.) then
ntmabs = 13000

endif

• Set the time step to 7.5 × 10−6 (line 722)

if (.true.) then
dtref = 7.5d-6

endif

• The fluid properties and reference values (line 1078) are set to

if (.true.) then
ro0 = 1.2d0
viscl0 = 1.82d-5
cp0 = 1017.24d0

endif

• The reference velocity needs to be prescribed as (line 1265)

1In gedit you can type Crtl-I to go to a specific line numbers. Line numbers are displayed by going to
Edit-Preferences

Tube bundle LES 8

if (.true.) then
uref = 12.5d0

endif

• The last modification concerns the setup of monitoring points. Modify the text (line
1536) as follows:

! --- probes output step

if (.true.) then

nthist = 1
frhist = -1.d0

endif

! --- Number of monitoring points (probes) and their positions
! (limited to ncaptm=100)
if (.true.) then

ncapt = 6
tplfmt = 1 ! time plot format (1: .dat, 2: .csv, 3: both)
xyzcap(1,1) = -0.03d0
xyzcap(2,1) = 0.0005d0
xyzcap(3,1) = 0.01d0

xyzcap(1,2) = -0.015d0
xyzcap(2,2) = 0.015d0
xyzcap(3,2) = 0.01d0

xyzcap(1,3) = 0.015d0
xyzcap(2,3) = 0.015d0
xyzcap(3,3) = 0.01d0

xyzcap(1,4) = 0.0158d0
xyzcap(2,4) = 0.008d0
xyzcap(3,4) = 0.01d0

xyzcap(1,5) = 0.0158d0
xyzcap(2,5) = 0.0d0
xyzcap(3,5) = 0.01d0

xyzcap(1,6) = 0.238d0
xyzcap(2,6) = 0.0d0
xyzcap(3,6) = 0.01d0

endif
ineedf = 1 ! activate calculation of the forces on Boundary faces

The variable ineedf = 1 is required to compute forces computed at boundary
faces. This is used to calculate lift and drag (see section 5.3.5)

Tube bundle LES 9

5.3.2 cs user parameters.c

In order to compute the time averaged variables, it is necessary to use the cs user parameters.c
subroutine.

The reference file is empty so it is necessary to fill in the section for the “time mo-
ments”. An example can be found in the same files under the EXAMPLES directory. To
define a moment or time averaged value, it is necessary to call the function

cs time moment define by field ids. The parameters are:

• name: name of associated moment

• n fields: number of associated fields

• field id: ids of associated fields

• component id: ids of matching field components (-1 for all)

• type: moment type (CS TIME MOMENT MEAN or CS TIME MOMENT VARIANCE)

• nt start: starting time step (or -1 to use t start)

• t start: starting time

• restart mode: behavior in case or restart: CS TIME MOMENT RESTART RESET,
CS TIME MOMENT RESTART AUTO, or CS TIME MOMENT RESTART EXACT

• restart name: name in previous run, NULL for default

For example, to calculate the time average of pressure, the following should be written
(inside de cs user time moments routine, line 212):

{ int moment_f_id[] = {CS_F_(p)->id};
int moment_c_id[] = {-1};
int n_fields = 1;
cs_time_moment_define_by_field_ids("P_mean",

n_fields,
moment_f_id,
moment_c_id,
CS_TIME_MOMENT_MEAN,
10000, /* nt_start */
-1, /* t_start */
CS_TIME_MOMENT_RESTART_AUTO,
NULL);

}

Here the array moment f id has the id of the pressure obtained from the CS F field
pointer array. In this case, because the pressure is a scalar, the components array moment c id
has been set to -1, i.e. all components. In the case of velocity, the function should be called
like this:

{ int moment_f_id[] = {CS_F_(u)->id};
int moment_c_id[] = {-1};
int n_fields = 1;
cs_time_moment_define_by_field_ids("Vel_mean",

Tube bundle LES 10

n_fields,
moment_f_id,
moment_c_id,
CS_TIME_MOMENT_MEAN,
10000, /* nt_start */
-1, /* t_start */
CS_TIME_MOMENT_RESTART_AUTO,
NULL);

}

Finally, to compute the average of UU and UV, the following can be done:

{
/* Moment <u v>. */
int moment_f_id[] = {CS_F_(u)->id, CS_F_(u)->id};
int moment_c_id[] = {0, 0};
int n_fields = 2;
cs_time_moment_define_by_field_ids("UU_mean",

n_fields,
moment_f_id,
moment_c_id,
CS_TIME_MOMENT_MEAN,
10000,/* nt_start */
-1, /* t_start */
CS_TIME_MOMENT_RESTART_AUTO,
NULL);

}
{

/* Moment <u v>. */
int moment_f_id[] = {CS_F_(u)->id, CS_F_(u)->id};
int moment_c_id[] = {0, 1};
int n_fields = 2;
cs_time_moment_define_by_field_ids("UV_mean",

n_fields,
moment_f_id,
moment_c_id,
CS_TIME_MOMENT_MEAN,
10000,/* nt_start */
-1, /* t_start */
CS_TIME_MOMENT_RESTART_AUTO,
NULL);

}

5.3.3 cs user boundary conditions.f90

In this subroutine the boundary conditions are defined. The user variables ifac, ilelt,
nlelt have to be declared, after
INSERT VARIABLE DEFINITIONS HERE

! INSERT_VARIABLE_DEFINITIONS_HERE
integer ifac, ilelt, nlelt

Since periodicity is used in all three directions only boundary conditions for the
tube walls have to be defined. Wall faces are labelled by two keywords, CYLIN and

Tube bundle LES 11

CYLIN_OUT. In order to get a group of boundary faces, Code Saturne uses the function
getfbr called as follow:
call getfbr("CYLIN or CYLIN_OUT", nlelt, lstelt)

The function takes as argument a string with the definitions of the faces to be grouped and
returns an array lstelt containing the face numbers. The total number of faces found
with the prescribed characteristics is nlelt.

Once the array with the faces corresponding to the walls is filled, it is necessary to do
a loop and assign the type of boundary conditions. This is done by first obtaining the face
number ifac, which is stored in the lstelt array, i.e. ifac = lstelt(ilelt).
Then, set the array is set to itypfb(ifac) = iparoi 2. This will automatically set
standard wall boundaries to all the variables. The piece of code to be added to set up
the boundary conditions should be written after this line: INSERT MAIN CODE HERE.
It should look like this
! INSERT_MAIN_CODE_HERE
call getfbr("CYLIN or CYLIN_OUT", nlelt, lstelt)
!==========
do ilelt = 1, nlelt

ifac = lstelt(ilelt)
itypfb(ifac) = iparoi

enddo

There are many examples on how to set other types of boundary conditions in the EXAMPLES
directory.

5.3.4 cs user source terms.f90

This subroutine is used to drive the flow, adding a constant pressure gradient in the mo-
mentum equation. The test at line 202 should be changed from if (.true.) to if
(.false.), before changing the values of ckp=0.d0 and qdm=800.d0. The final
code should look like:
if (.false.) return
! ---------------------
ckp = 0.d0
qdm = 800.d0

do iel = 1, ncel
crvimp(1,1,iel) = - volume(iel)*cpro_rom(iel)*ckp

enddo

do iel = 1, ncel
crvexp(1,iel) = volume(iel)*qdm

enddo

This will add a source term to the explicit part of the momentum equation.
Note Several subroutines are available in cs user source terms.f90 to add source
terms in the transport equations. In the present case, modifications must be done in
the subroutine ustsnv, since it controls the source terms for the momentum equations
solved with the coupled velocity solver.

2“paroi” means wall in french

Tube bundle LES 12

5.3.5 cs user extra operations.f90

In this subroutine lift and drag coefficients are computed at each time step.

• The local variables are declared first

! INSERT_VARIABLE_DEFINITIONS_HERE
integer iel, ii, ifac
integer ilelt , nlelt
integer, allocatable, dimension(:) :: lstelt
double precision cyl_area, radius, dia, depth
double precision xcof(3), torque, tcof
double precision xfor(3)
double precision, dimension(:,:), pointer :: bfprp_for

• Then, memory is allocated for the array used for the selection of the faces and the
values of the stresses are retrieved using the field get val v function:

! INSERT_ADDITIONAL_INITIALIZATION_CODE_HERE
allocate(lstelt(max(ncel,nfac,nfabor)))
if (ineedf.eq.1) call field_get_val_v(iforbr, bfprp_for)

• The next step is to create a test on ineedf to make sure the subroutine is only used
if the surface stresses have been calculated (see section 5.3.1).

• Local arrays and variables are initialised. The first part of the MAIN CODE should
look like:

! INSERT_MAIN_CODE_HERE
if (ineedf.eq.1) then

do ii = 1, ndim
xfor(ii) = 0.d0
torque = 0.d0
xcof(ii) = 0.d0
tcof = 0.d0

enddo
dia = 2.17d-2
radius = dia/2.d0
depth = dia

• The getfbr function is used to obtain the list of faces that belong to the cylinder
located in the centre of the domain. The faces have been labelled as CYLIN, as

call getfbr("CYLIN", nlelt, lstelt)
!==========

• The next step is to loop on all the boundary faces labelled by CYLIN, which are
stored in the array lstelt of size nlelt. The forces calculated by the code are
stored in an 2D array called bfprp for. The first dimension of the array is the
direction (1 stands for X, 2 for Y and 3 for Z). The second dimension is the face
index. The sum over the faces is stored in a local array called xfor of size 3 (one
for each direction).

Tube bundle LES 13

• The torque is also computed by multiplying the Y component of the force by the X
component of the centre of face, and subtracting the product of the X component of
the force and the Y component of the centre of the face. This is because the centre
of the cylinder is at (0,0) leading to T = Fx∆y − Fy∆x

do ilelt = 1, nlelt
ifac = lstelt(ilelt)
do ii = 1, ndim
xfor(ii) = xfor(ii) + bfprp_for(ii, ifac)

enddo
torque = xfor(2)*cdgfbo(1,ifac) - xfor(1)*cdgfbo(2,ifac)

enddo

• So far, only sums per processors (local sums) have been computed. Since the simu-
lation is run in parallel, to obtain global sums, it is necessary to call the correspond-
ing subroutines for communication between processors.

if (irangp.ge.0) then
call parrsm(ndim,xfor)
call parsom(torque)

endif

The integer irangp is -1 if the calculation is serial and the rank number, if it is
parallel.

• Lift and drags coefficients are obtained by normalising the force asC = F/(1
2
ρU2A):

cyl_area = depth*dia
do ii=1,ndim

xcof(ii) = xfor(ii) /(0.5d0*ro0*uref**2*cyl_area)
enddo
tcof = torque/(0.5d0*ro0*uref**2*cyl_area*radius)

• Coefficients are written into a file. User files can be written with pointers specif-
ically left unused in the code for this type of tasks. The pointers available for the
user files are stored in impusr().

– A file called ‘coefficients.dat’ is opened

– Its headers are written at the first iteration only. This can be achieved by a test
on ntcabs (current time step) and ntpabs (previous time step). The rest of
the subroutine should look like:

if (irangp.eq.0) then
if (ntcabs.eq.ntpabs+1) then

open(unit=impusr(1), file="coefficients.dat")
write(impusr(1),*) "#File with Cl and Cd"
write(impusr(1),*) "#R", radius
write(impusr(1),*) "#Uinf ", uref
write(impusr(1),*) "#rho ", ro0
write(impusr(1),*) "#Front area ", cyl_area
write(impusr(1),*) "#Structure of the results:"
write(impusr(1),*) "#Col 1: Time"
write(impusr(1),*) "#Col 2-3: Force in x and y"

Tube bundle LES 14

write(impusr(1),*) "#Col 4: Torque"
write(impusr(1),*) "#Col 5: Cd"
write(impusr(1),*) "#Col 6: Cl"
write(impusr(1),*) "#Col 7: Ct"

endif
write(impusr(1),1001)ttcabs,xfor(1),xfor(2), &

torque,xcof(1),xcof(2),tcof
if (ntcabs.eq.ntmabs) close(impusr(1))

endif
endif
1001 format(7(e18.9,1x))

Once all subroutines have been modified the code should be compiled as:

[bash:$] code_saturne compile

in order to check that no compilation errors occur.

5.4 Finalisation of the case setup - Extra files
In order to be able to run the jobs on the Blue Gene, extra files need to be dealt with.

The partitioning stage has not been presented here, but partitions generated by METIS-
5.0.2 are available for 1, 204 and 2, 048 subdomains in the directory partition input,
which is available in the shared directory and has to be copied to DATA:

[bash:$] cp -r ˜/../shared/Tutorials/03_TB_LES_SRC/CASEFILES/MESHES/ \
partition_input TUBE_BUNDLE_LES/LES_SRC/DATA/.

5.4.1 cs users scripts.py

Some information is missing for the code to run, namely the location of the mesh output
file, the partition input and the checkpoint directories. To take them into ac-
count,

• Go to the DATA directory

• Copy here the file cs user scripts.py available in the REFERENCE direc-
tory. The REFERENCE directory is also in the DATA directory.

• Open the file and go to line 138 to change the domain.mesh input value from None
to 3:

if domain.param == None:
domain.mesh_input = "DATA/mesh_output"
domain.partition_input = None
domain.restart_input = None

• Go to line 139 to change the domain.partition input value from None to

3Note that in python, indentation is mandatory.

Tube bundle LES 15

if domain.param == None:
domain.mesh_input = "DATA/mesh_output"
domain.partition_input = "DATA/partition_input"
domain.restart_input = None

• Go to line 140 to change the domain.restart input value from None to

if domain.param == None:
domain.mesh_input = "DATA/mesh_output"
domain.partition_input = "DATA/partition_input"
domain.restart_input = "DATA/checkpoint"

5.4.2 Queuing submission script - runcase

Blue Joule is composed of 1 login node (also called frontend) and 6,144 compute nodes.
Each of the compute node has 16 processor cores.

The remote machine is set up to use a queuing system. These types of systems are
usually found on multi-users machines and allow for a better resource allocation. In order
to run a job it is required to submit a set of instructions to the queueing system. From
these instructions, the system tries to match the requirements to the available resources.
The file runcase under the SCRIPTS directory contains instructions for the queuing
system (LoadLeveler) and it should look like this:

#!/bin/bash
#--
#
Batch options for IBM LoadLeveler (example: BlueGene/Q)
=================================
#
To obtain all available options, run the LoadLeveler GUI,
"xloadl", choose the "build job" option; select options,
then select "save". Options and their matching syntax
may then be inferred from the saved file.
#
@ bg_size = 128
@ class = qres01
@ job_name = tube_bundle_les
@ job_type = bluegene
@ step_name = runcase
@ environment = COPY_ALL
@ output = $(job_name).$(jobid).out
@ error = $(job_name).$(jobid).err
@ wall_clock_limit = 12:00:00
@ notification = complete
@ executable = runcase
@ queue
#---
export LOADL_RANKS_PER_NODE=16
Change to submission directory
if test -n "$LOADL_STEP_INITDIR" ; then cd $LOADL_STEP_INITDIR ; fi

Tube bundle LES 16

module purge
module load ibmmpi

Ensure the correct command is found:
export PATH=/gpfs/packages/ibm/code_saturne/4.0.2/bin:$PATH

Run command:
\code_saturne run

Make sure that the following variables are set:

• bg size is set to 128 (number of requested nodes)

• the variable LOADL RANKS PER NODE is set to 16 (number of ranks on each
node)

Once the file is modified, the job can be submitted to the queuing system by typing:
[bash:$] llsubmit runcase

If everything goes fine, information on the current job is available from the llq com-
mand.

6 Results
Once the calculation is finished, the results have to be copied back to the local machine
in order to visualise them. scp is used for this purpose but it only works from the local
machine to the remote machine.

• Open a new terminal on the local machine

• Create a new directory called RESULTS FROM BGQ

• Go to this new directory as
[bash:$] cd RESULTS_FROM_BGQ

• Create a new directory called LES SRC

• Go to this new directory as
[bash:$] cd LES_SRC

• In the case of copying the monitoring and the postprocessing directories (not for-
getting to add the -r option), type:

[bash:$] scp -r bglogin2:PATH_FROM_RESU/monitoring .
[bash:$] scp -r bglogin2:PATH_FROM_RESU/postprocessing .

Vectors, contours and streamlines might be visualised by ParaView (see figure 4 for
an example).

Tube bundle LES 17

Figure 4: Instantaneous velocity field

References
[1] SMAGORINSKY, J. 1963 General circulation experiments with the primitive equa-

tions: I the basic equations. Monthly Weather Review 91, 99–164.

	Introduction
	Objectives
	Code_Saturne
	Guide to run Code_Saturne
	Preparation of the simulation
	Test case creation
	Case set up
	Restart, mesh and partition files
	Users subroutines
	Description of the subroutines

	Detailed changes of the user subroutines
	purplecs_user_parameters.f90
	purplecs_user_parameters.c
	purplecs_user_boundary_conditions.f90
	purplecs_user_source_terms.f90
	purplecs_user_extra_operations.f90

	Finalisation of the case setup - Extra files
	Mygreencs_users_scripts.py
	Queuing submission script - Mygreenruncase

	Results

