8.3
general documentation
Bibliography
[1]

P. Amestoy, I. Duff, and J.-Y. L'Excellent. A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1):15–41, 2020.

[2]

F. Archambeau, N. Méchitoua, and M. Sakiz. code_saturne: a finite volume code for the computation of turbulent incompressible flows. Industrial Applications, International Journal on Finite Volumes, 1, 2004.

[3]

S. Benhamadouche. Modélisation de sous-maille pour la les - validation avec la turbulence homogène isotrope (thi) dans une version de développement de code_saturne, 2001.

[4]

J. Bonelle. Compatible Discrete Operator schemes on polyhedral meshes for elliptic and Stokes equations. PhD thesis, Université Paris-Est, 2014.

[5]

E. Bouzereau, L. Musson-Genon, and B. Carissimo. On the definition of the cloud water content fluctuations and its effects on the computation of a second-order liquid water correlation. J. Atmos. Sci, 64:665–669, 2007.

[6]

E. Bouzereau. Représentation des nuages chauds dans le modèle météorologique ``Mercure'': Application aux panaches d'aéroréfrigérants et aux précipitations orographiques. PhD thesis, Universite Pierre et Marie Curie-Paris VI, 2004.

[7]

P. Cantin. Approximation of scalar and vector transport problems on polyhedral meshes. PhD thesis, Université Paris-Est, 2016.

[8]

Anthony M. Castaldo, R. Clint Whaley, and Anthony T. Chronopoulos. Reducing floating point error in dot product using the superblock family of algorithms. SIAM J. SCI. COMPUT., 31(2):1156 – 1174, 2008.

[9]

J. Deardorff. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res, 83:1889–1903, 1978.

[10]

G.C. Fox and W. Furmanski. Hypercube algorithms for neural network simulation: the crystal accumulator and the crystal router. In Proceedings of the third conference on Hypercube concurrent computers and applications: Architecture, software, computer systems, and general issues - Volume 1, 1988.

[11]

T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable communication protocols for dynamic sparse data exchange. In PPoPP '10: Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages 159–168. ACM, 2010.

[12]

W. Kahan. Pracniques: further remarks on reducing truncation errors. Communications of the ACM, 8(1), 1965.

[13]

N Mechitoua, Y Fournier, and F Hulsemann. Improvements of a finite volume based multigrid method applied to elliptic problems. In International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics. American Nuclear Society, 2009.

[14]

R. Milani, J. Bonelle, and A. Ern. Artificial compressibility methods for the incompressible Navier–Stokes equations using lowest-order face-based schemes on polytopal meshes. Comput. Methods Appl. Math., 22(1):133–154, 2022.

[15]

Riccardo Milani. Compatible Discrete Operator schemes for the unsteady incompressible Navier–Stokes equations. PhD Thesis, Université Paris-Est, 2020.

[16]

Y. Notay and A. Napov. A massively parallel solver for discrete poisson-like problems. J. Comput. Physiscs, 281:237 – 250, 2015.

[17]

Y. Notay. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison. Numerical Linear Algebra with Applications, 12(5-6):419–451, 2005.

[18]

R. Stull. An introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, Kluwer Academic Publishers, 1988.