EDF R&D

Fluid Dynamics, Power Generation and Environment Department Single Phase Thermal-Hydraulics Group

6, quai Watier F-78401 Chatou Cedex

MAY 2020

Code_Saturne documentation

Code_Saturne version 6.0 tutorial: full domain

contact: saturne-support@edf.fr

EDF R&D Code_Saturne version 6.0 tutorial: full domain	Code_Saturne documentation Page 1/66
---	--

TABLE OF CONTENTS

	I Introduction	5
1	Introduction	6
1.1	Code_Saturne SHORT PRESENTATION	6
1.2	About this document	6
1.3	Code_Saturne COPYRIGHT INFORMATIONS	6

Π	Full	domain
11	run	uomam

 $\mathbf{7}$

1	Study description	8
1.1	Objective	8
1.2	Description of the configuration	8
1.3	CHARACTERISTICS	8
1.4	Mesh characteristics	9
1.5	SUMMARY OF THE DIFFERENT CALCULATIONS	9
2	CASE 1: Passive scalar with various boundary conditions and output management	10
2.1	CALCULATION OPTIONS	10
2.2	Initial and boundary conditions	11
2.3	PARAMETERS AND USER ROUTINES	12
2.4	OUTPUT MANAGEMENT	12
2.5	Results	13
3	CASE 2: Time dependent boundary conditions and variable fluid density $\ .$	16
3.1	CALCULATION OPTIONS	16
3.2	Initial and boundary conditions	16
3.3	VARIABLE DENSITY	17
3.4	Parameters	17
3.5	User routine	17
3.6	OUTPUT MANAGEMENT	18
3.7	CALCULATION RESTART	19
3.8	Results	19

4	CASE 3: Head losses, parallelism and spatial average
4.1	CALCULATION OPTIONS
4.2	INITIAL AND BOUNDARY CONDITIONS
4.3	VARIABLE DENSITY
4.4	Head losses
4.5	PARAMETERS
4.6	USER ROUTINES
4.7	Output management
4.8	Results

	III Step by step solution	28
1	Solution for CASE1	29
2	Solution for CASE2	54
3	Solution for CASE3	62

Part I

Introduction

EDF R&D

1 Introduction

1.1 *Code_Saturne* **short presentation**

Code_Saturne is a system designed to solve the Navier-Stokes equations in the cases of 2D, 2D axisymmetric or 3D flows. Its main module is designed for the simulation of flows which may be steady or unsteady, laminar or turbulent, incompressible or potentially dilatable, isothermal or not. Scalars and turbulent fluctuations of scalars can be taken into account. The code includes specific modules, referred to as "specific physics", for the treatment of lagrangian particle tracking, semi-transparent radiative transfer, gas, pulverized coal and heavy fuel oil combustion, electricity effects (Joule effect and electric arcs) and compressible flows. *Code_Saturne* relies on a finite volume discretization and allows the use of various mesh types which may be hybrid (containing several kinds of elements) and may have structural non-conformities (hanging nodes).

1.2 About this document

The present document is a tutorial for *Code_Saturne* version 6.0. It presents three simple test cases and guides the future *Code_Saturne* user step by step into the preparation and the computation of the cases.

The test case directories, containing the necessary meshes and data are available in the examples directory.

This tutorial focuses on the procedure and the preparation of the *Code_Saturne* computations. For more elements on the structure of the code and the definition of the different variables, it is higly recommended to refer to the user manual.

1.3 *Code_Saturne* copyright informations

Code_Saturne is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. *Code_Saturne* is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Part II

Full domain

1 Study description

1.1 Objective

The aim of this case is to tackle the merging of initially separate meshes into a single fluid domain. The questions of mesh joining and hanging nodes will be addressed. The test case will then be used to present more complex calculations, with time dependent variables and Fortran user routines.

1.2 Description of the configuration

The fluid domain is composed of three separate meshes, very roughly representing elements of a nuclear pressurized water reactor vessel:

- the downcomer
- $\bullet\,$ the vessel's bottom
- the lower core plate and core

Figure II.1 represents the complete domain. The flow circulates from the top left horizontal junction to the right vertical outlet.

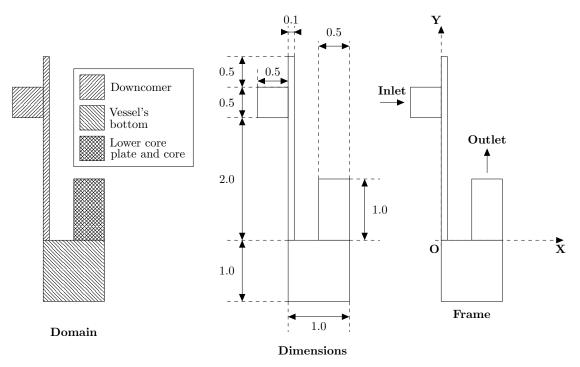


Figure II.1: Geometry of the complete domain

1.3 Characteristics

Characteristics of the geometry and the flow:

Height of downcomer	$H = 3.00 \ m$
Thickness of downcomer	$E_d = 0.10 \ m$
Diameter of the inlet cold branch	$D_b = 0.50 \ m$
Height of vessel's bottom	$H_{fc} = 1.00 \ m$
Width of vessel's bottom	$l_{fc} = 1.00 \ m$
Height of core above the lower core plate	$H_{pic} = 1.00 \ m$
Width of core above the lower core plate	$l_{pic} = 0.50 \ m$
Inlet velocity of fluid	$V = 1 \ m.s^{-1}$

Table II.1: Characteristics of the geometry and the flow

Physical characteristics of fluid:

The initial water temperature in the domain is equal to 20° C. The inlet temperature of water in the cold branch is 300° C. Water characteristics are considered constant¹ and their values taken at 300° C and 150×10^5 Pa, except density which is considered variable in case2 and case3:

- density: $\rho = 725.735 \ kg.m^{-3}$
- dynamic viscosity: $\mu = 0.895 \times 10^{-4} \ kg.m^{-1}.s^{-1} = 8.951 \times 10^{-5} \ Pa.s$
- heat capacity: $C_p = 5\,483 \; J.kg^{-1}.^{\circ}\mathrm{C}^{-1}$
- thermal conductivity = $0.02495 \ W.m^{-1}.K^{-1}$

1.4 Mesh characteristics

Figure II.2 shows a global view of the mesh and some details of the joining zones, to show that *Code_Saturne* can deal with hanging nodes. This mesh is composed of 1650 cells, which is very small compared to those used in real studies. This is a deliberate choice so that tutorial calculations run fast.

Type: block structured mesh

Coordinates system: cartesian, origin on the edge of the main pipe at the outlet level, on the nozzle side (figure II.2)

Mesh generator used: SIMAIL and mesh joining with the Preprocessor of *Code_Saturne* (in order to deal with hanging nodes)

Color definition: see figure II.3

1.5 Summary of the different calculations

Three cases will be studied with this geometry. The following table gives a summary of their different characteristics.

Remark: In this case, you must add three meshes which have to be joined. In order to join the three meshes, you must add a selection criteria in the box **Selection criteria** under the **Preprocessing** sub-folder. In this case, only faces of colors 5, 24 and 32 are liable to be joined (different colors can be entered on a single line, separated by comma).

You can verify the quality of your mesh by running a **Mesh quality criteria only** computation, which you can access through **Execution mode** in the **Mesh** heading.

¹Which makes temperature a passive scalar ... but it is only for simplification purposes.

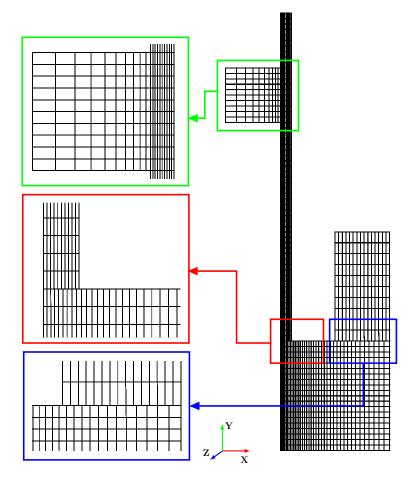


Figure II.2: View of the full domain mesh with zoom on the joining regions

CASE	Characteristics	
CASE 1	Unsteady flow, additionnal passive scalar, output management	
CASE 2	Same as case 1 with time dependent boundary conditions,	
CASE 2	Same as case 1 with time dependent boundary conditions, fluid density depending on the temperature and calculation restart	
CASE 3	Same as case 2 with head losses, parallelism and spatial average	

Table II.2: Summary of the different calculations

2 CASE 1: Passive scalar with various boundary conditions and output management

2.1 Calculation options

Some options are similar to those of the simple_junction tutorial:

- $\rightarrow\,$ Turbulence model: $k-\epsilon$
- \rightarrow Scalar(s): 1 temperature
- $\rightarrow\,$ Physical properties: uniform and constant

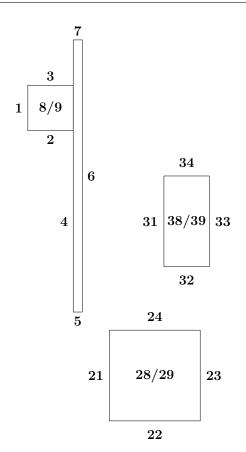


Figure II.3: Colors of the boundary faces

- $\rightarrow\,$ Flow type: unsteady flow
- $\rightarrow\,$ Time step: uniform and constant
- \rightarrow Scalar(s): 2 passive scalar², with diffusion coefficient 8.55 (×10⁻⁵ m².s⁻¹)
- \rightarrow Management of monitoring points

2.2 Initial and boundary conditions

 \rightarrow Initialization: 20°C for temperature 10 for the passive scalar

The boundary conditions are defined in the user interface and depend on the boundary zone.

- Flow inlet: Dirichlet condition, an inlet velocity of $1 m \cdot s^{-1}$, an inlet temperature of 300°C and an inlet value of 200 for the passive scalar are imposed
- **Outlet**: default value
- Walls: velocity, pressure and thermal scalar: default value passive scalar: different conditions depending on the color and geometric parameters

In order to test the ability to specify boundary condition regions in the Graphical Interface, various conditions will be imposed for the passive scalar, as specified in the following table:

²It could correspond to a tracer concentration for instance.

Wall	Nature	Value
wall_1	Imposed value (Dirichlet)	0
wall_2	Imposed value (Dirichlet)	5
wall_3	Imposed value (Dirichlet)	0
wall_4	Imposed value (Dirichlet)	25
wall_5	Imposed value (Dirichlet)	320
wall_6	Imposed value (Dirichlet)	40

The wall_1 to wall_6 regions are defined as follows, through color references and geometric localization:

Label	Color and geometric parameters	
wall_1	24 and $0.1 \leq x$ and $x \leq 0.5$	
wall_2	2 or 3	
wall_3	4 or 7 or 21 or 22 or 23	
wall_4	6 and $y > 1$	
wall_5	6 and $y \leq 1$	
wall_6	31 or 33	

Figure II.3 shows the colors used for boundary conditions and table II.3 defines the correspondance between the colors and the type of boundary condition to use.

Colors	Conditions
1	Inlet
34	Outlet
2 3 4 6 7 21 22 23 24 31 33	Wall
8 9 28 29 38 39	Symmetry

Table II.3: Boundary faces colors and associated references

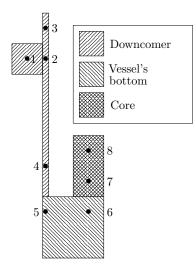
2.3 Parameters and User routines

All parameters necessary to this study can be defined through the Graphical Interface without using any user Fortran files.

Calculation control parameters			
Pressure-Velocity coupling SIMPLEC algorithm			
Number of iterations	300		
Reference time step	0.05		
Output period for post-processing files	2		

In order to join the separate meshes into a single domain, colors 5, 24 and 32 will have to be joined through the Graphical Interface.

2.4 Output management


In this case, different aspects of output management will be addressed.

By default, in the Graphical Interface, all variables are set to appear in the listing, the post-processing and the chronological records. This default choice can be modified by the user.

In this case, the **Pressure**, the **Turbulent energy** and the **Dissipation** will be removed from the listing file.

The **Courant number** (CFL) and **Fourier number** will be removed from the post-processing results³.

Eventually, probes will be defined for chronological records, following the data given in figure II.4. Then the **total pressure** will be deactivated for all probes.

Probe n^o .	x (m)	y (m)	z (m)
1	-0.25	2.25	0
2	0.05	2.25	0
3	0.05	2.75	0
4	0.05	0.5	0
5	0.05	-0.25	0
6	0.75	-0.25	0
7	0.75	0.25	0
8	0.75	0.75	0

Figure II.4: Position and coordinates of probes in the full domain

In addition the domain boundary will be post-processed. This allows to check the boundary conditions, and especially that of the passive scalar.

2.5 Results

Figure II.5 shows the boundary domain colored by the passive scalar boundary conditions. The different regions of boundary conditions defined earlier can be checked.

Figure II.6 presents results obtained at different times of the calculation. They were plotted from the post-processing files, with ParaView.

 $^{^{3}}$ This can be very useful to save some disk space if some variables are of no interest, as post-processing files can be large.

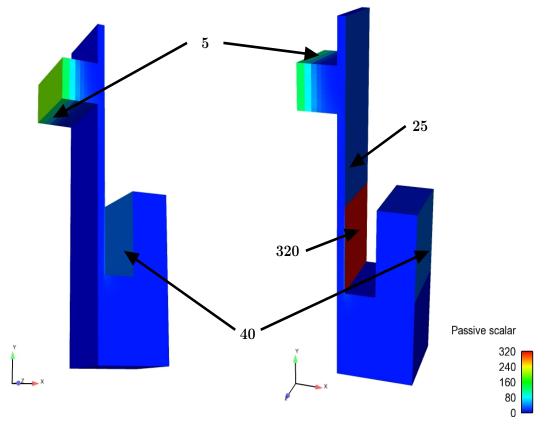


Figure II.5: View of the boundary domain colored by the scalar 2 variable - Case 1

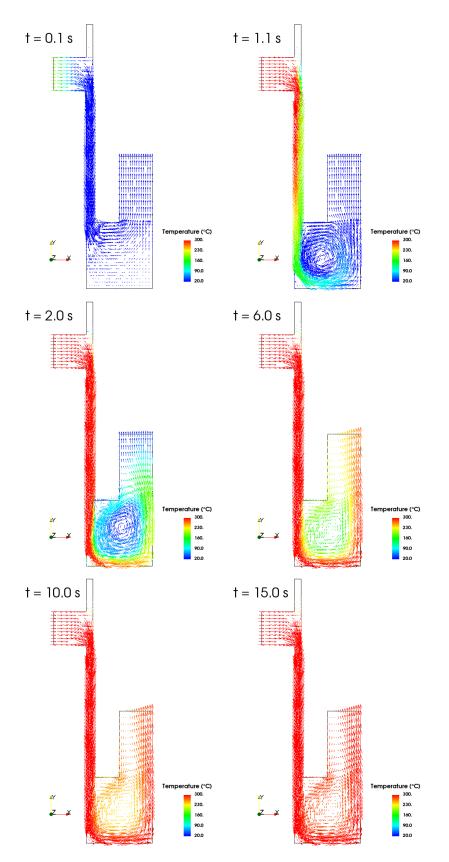


Figure II.6: Water velocity field colored by temperature at different time steps - Case 1

3 CASE 2: Time dependent boundary conditions and variable fluid density

In this case some boundary conditions will be time dependent and some physical characteristics of the fluid will be dependent on the temperature.

Remark: You can copy your case1 in order to make the case2:

\$ code_saturne create --copy-from case1 case2

3.1 Calculation options

The options for this case are the same as in case1, except for the variable fluid density:

- \rightarrow Flow type: unsteady flow
- $\rightarrow\,$ Time step: uniform and constant
- \rightarrow Turbulence model: $k \epsilon$
- \rightarrow Scalar(s): 1 temperature
 - 2 passive scalar
- \rightarrow Physical properties: uniform and constant (except density)
- \rightarrow Management of monitoring points

3.2 Initial and boundary conditions

 \rightarrow Initialization: 20°C for temperature 10 for the passive scalar

The boundary conditions are defined in the user interface and depend on the boundary zone. The time dependence of the temperature boundary condition implies the use of a Fortran user routine (see below).

- Flow inlet: Dirichlet condition, an inlet velocity of $1 m.s^{-1}$, a time dependent inlet temperature and a value of 200 for the passive scalar are imposed;
- **Outlet**: default value;
- Walls: velocity, pressure and thermal scalar: default value passive scalar: different conditions depending on the color and geometric parameters.

The boundary conditions for the passive scalar are identical as those in **case1**, as specified in the following table:

Wall	Nature	Value
wall_1	Imposed value (Dirichlet)	0
wall_2	Imposed value (Dirichlet)	5
wall_3	Imposed value (Dirichlet)	0
wall_4	Imposed value (Dirichlet)	25
wall_5	Imposed value (Dirichlet)	320
wall_6	Imposed value (Dirichlet)	40

The wall_1 to wall_6 regions are defined as follows, through color references and geometric localization:

Figure II.3 shows the colors used for boundary conditions and table II.4 defines the correspondance between the colors and the type of boundary condition to use.

Label	Color and geometric parameters
wall_1	24 and $0.1 \leq x$ and $x \leq 0.5$
wall_2	2 or 3
wall_3	4 or 7 or 21 or 22 or 23
wall_4	6 and y > 1
wall_5	6 and $y \leq 1$
wall_6	31 or 33

Colors	Conditions
1	Inlet
34	Outlet
2 3 4 6 7 21 22 23 31 33	Wall
24 for $0.1 \le x \le 0.5$	Wall
8 9 28 29 38 39	Symmetry

Table II.4:	Boundary	faces	colors	and	associated	references

3.3 Variable Density

In this case the density is a function of the temperature. The variation law is defined in the Graphical User Interface, although it can also be defined in a Fortran user routine. The expression is:

$$o = T(AT + B) + C \tag{II.1}$$

where ρ is the density, T is the temperature, $A = -4.0668 \times 10^{-3}$, $B = -5.0754 \times 10^{-2}$ and C = 1000.9.

In order for the variable density to have an effect on the flow, gravity must be set to a non-zero value. $g = -9.81 \underline{e}_{y}$ will be specified in the Graphical Interface.

Remark:

The temperature is temperature in the user expression. Don't forget ; at the end of the expression.

3.4 Parameters

The calculation parameters are identical as those in case1.

All the parameters necessary to this study can be defined through the Graphical Interface, except the time dependent boundary conditions that have to be specified in user routines.

In order to join the separate meshes into a single domain, colors 5, 24 and 32 will have to be joined through the Graphical Interface.

3.5 User routine

The routine cs_user_boundary_conditions.f90 has to be copied from the folder \boxdot SRC/REFERENCE into the folder \boxdot SRC ⁴.

 4 Only when it appears in the \boxdot SRC directory will it be taken into account by the code.

Parameters of calculation control		
Number of iterations	300	
Reference time step	0.05	
Output period for post-processing files	2	

• cs_user_boundary_conditions.f90

This routine allows to define advanced boundary conditions on the boundary faces.

Even if cs_user_boundary_conditions.f90 is used, all boundary conditions have to be defined in the Graphical User Interface (GUI). Only the conditions that differ from this first definition need to appear in cs_user_boundary_conditions.f90. The boundary conditions defined in cs_user_boundary_conditions.f90 will replace those specified in the Graphical Interface.

In this case, the temperature at entry is supposed variable in time, following the law:

$$\begin{cases} T = 20 + 100t & \text{for } 0 \le t \le 3.8\\ T = 400 & \text{for } t > 3.8 \end{cases}$$
(II.2)

where T is the temperature in $^{\circ}$ C and t is the time in seconds (s).

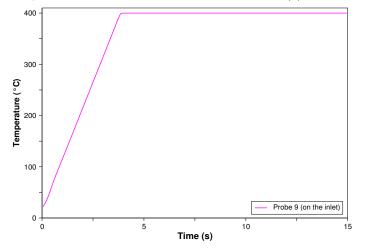


Figure II.7: Time evolution of the temperature at inlet.

Remark:

ttcabs is the current physical time. See the example file in the subdirectory \boxdot SRC/EXAMPLES for the complete cs_user_boundary_conditions.f90 file.

3.6 Output management

The output management is the same as in case1, except that a nineth monitoring point will be added, just at the entry, to monitor the temperature evolution at inlet.

In this case, the **Pressure**, the **Tubulent Energy** and the **Dissipation** will be removed from the listing file.

The **Courant number** (CFL) and **Fourier number** will be removed from the post-processing results⁵.

Eventually, probes will be defined for chronological records, following the data given in figure II.8. Then the **total_pressure** will be deactivated from all probes.

In addition the domain boundary will be post-processed. This allows to check the boundary conditions, and especially that of the temperature and passive scalar.

 $^{{}^{5}}$ This can be very useful to save some disk space if some variables are of no interest, as post-processing files can be large.

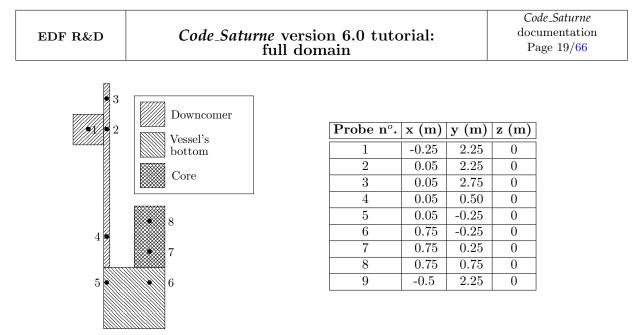


Figure II.8: Position and coordinates of probes in the full domain

3.7 Calculation restart

After the first run, the calculation will be continued for another 400 time steps. The calculation restart is managed through the Graphical Interface.

3.8 Results

Figure II.9 shows the time evolution of temperature recorded on each monitoring probe. Note that the .csv files obtained for each case, were concatenated to plot the evolution of temperature over the entire period.

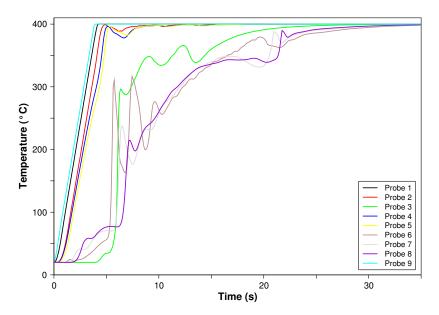


Figure II.9: Time evolution of temperature at monitoring probes - Case 2

Figure II.10 shows the velocity fields colored by temperature in the first run of calculation. Figure II.11 shows the velocity fields in the second calculation (restart of the first one).

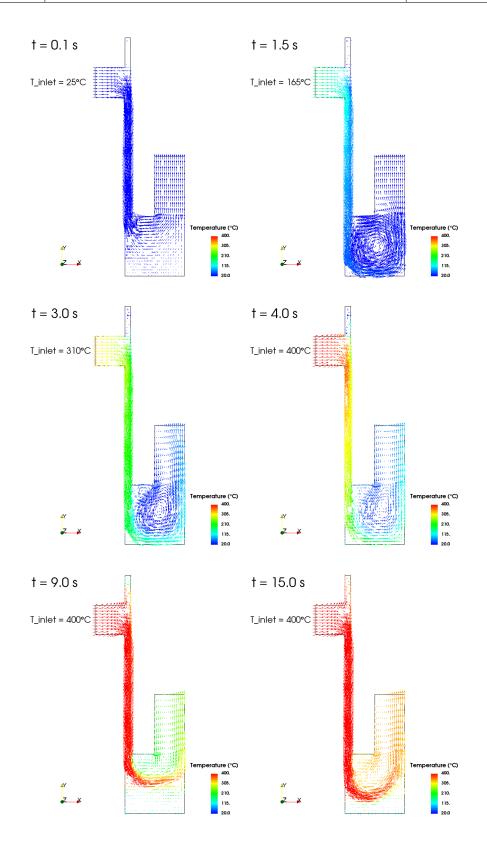


Figure II.10: Water velocity field colored by temperature and inlet temperature value at different time steps (first calculation) - Case 2

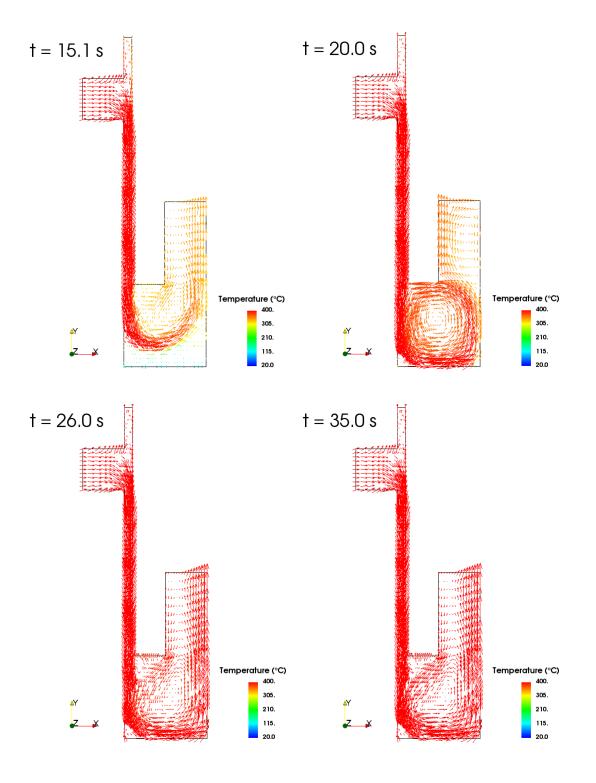


Figure II.11: Water velocity field colored by temperature at different time steps (second calculation) - Case 2

4 CASE 3: Head losses, parallelism and spatial average

This case will be run in parallel on two processors. Head losses will be used to simulate the presence of an obstacle in the flow and the spatial average of the temperature will be calculated at each time step.

4.1 Calculation options

The options for this case are the same as in case2:

- \rightarrow Flow type: unsteady flow
- $\rightarrow\,$ Time step: uniform and constant
- \rightarrow Turbulence model: $k \epsilon$
- → Scalar(s): 1 temperature 2 - passive scalar, with diffusion coefficient 8.55 (×10⁻⁵ $m^2.s^{-1}$)
- \rightarrow Physical properties: uniform and constant (except density)
- \rightarrow Management of monitoring points

4.2 Initial and boundary conditions

 \rightarrow Initialization: 20°C for temperature

10 for the passive scalar

The boundary conditions are defined in the user interface and depend on the boundary zone.

- Flow inlet: Dirichlet condition, an inlet velocity of $1 m \cdot s^{-1}$ and a time dependent inlet temperature and a value of 200 for the passive scalar are imposed
- Outlet: default value
- Walls: velocity, pressure and thermal scalar: default value passive scalar: different conditions depending on the color and geometric parameters

The boundary conditions for the passive scalar are identical as those in **case2**, as specified in the following table:

Wall	Nature	Value
wall_1	Imposed value (Dirichlet)	0
wall_2	Imposed value (Dirichlet)	5
wall_3	Imposed value (Dirichlet)	0
wall_4	Imposed value (Dirichlet)	25
wall_5	Imposed value (Dirichlet)	320
wall_6	Imposed value (Dirichlet)	40

The **wall_1** to **wall_6** regions are defined as follows, through color references and geometric localization:

Label	Color and geometric parameters
wall_1	24 and $0.1 \leq x$ and $x \leq 0.5$
wall_2	2 or 3
wall_3	4 or 7 or 21 or 22 or 23
wall_4	6 and y > 1
wall_5	6 and $y \leq 1$
wall_6	31 or 33

Figure II.3 shows the colors used for boundary conditions and table II.5 defines the correspondance between the colors and the type of boundary condition to use.

Colors	Conditions
1	Inlet
34	Outlet
2 3 4 6 7 21 22 23 31 33	Wall
24 for $0.1 \le x \le 0.5$	Wall
8 9 28 29 38 39	Symmetry

Table II.5: Boundary faces colors and associated references

4.3 Variable Density

The law for the variable density is identical as that in case2.

In this case the density is a function of temperature, the variation law is defined in the Graphical User Interface although it can also be defined in a Fortran user routine. The expression is:

$$\rho = T(AT + B) + C \tag{II.3}$$

where ρ is the density, T is the temperature, $A = -4.0668 \times 10^{-3}$, $B = -5.0754 \times 10^{-2}$ and $C = 1\,000.9$.

In order for the variable density to have an effect on the flow, gravity must be set to a non-zero value. $g = -9.81 \underline{e}_{y}$ will be specified in the Graphical Interface.

4.4 Head losses

To simulate the presence of an obstacle $0.20 \ (m)$ large and $0.5 \ (m)$ high in the vessel, a zone of head losses will be created in the domain (fig II.12).

The head losses zone is located between the coordinates x = 0.2 (m) and x = 0.4 (m), and y = -0.75 (m) and y = -0.25 (m).

The head losses coefficient to apply is $K_{11} = K_{22} = K_{33} = 10^4 = \frac{1}{2} \alpha_{11} = \frac{1}{2} \alpha_{22} = \frac{1}{2} \alpha_{33}$ and is isotropic.

4.5 Parameters

All the parameters necessary to this study can be defined through the Graphical Interface. However, the calculation of the spatial average is defined by a user routine.

Parameters of calculation control		
Number of iterations	900	
Reference time step	0.01	
Output period for post-processing files	2	
The calculation will be run in parallel	2 procs.	

In order to join the separate meshes into a single domain, colors 5, 24 and 32 will have to be joined through the Graphical Interface.

Note that the time step has been reduced because of the head losses: the pressure step is more difficult to be solved in presence of head losses.

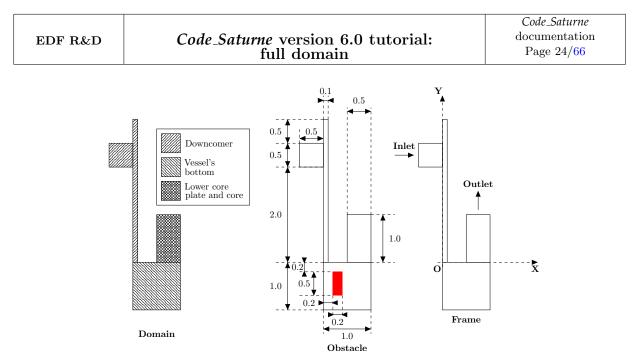


Figure II.12: Full domain geometry with the obstacle

4.6 User routines

The following routines have to be copied from the folder \boxdot SRC/REFERENCE/ into the folder \boxdot SRC/⁶: cs_user_boundary_conditions.f90 and cs_user_extra_operations.f90. We can find and copy some basic and specific boundary conditions examples in the folder \boxdot SRC/EXAMPLES/ to correctly impose the *Code_Saturne* boundary conditions.

• cs_user_boundary_conditions.f90

This routine allows to define advanced boundary conditions on the boundary faces.

Even if cs_user_boundary_conditions.f90 is used, all boundary conditions have to be defined in the Graphical User Interface (GUI). Only the conditions that differ from this first definition need to appear in cs_user_boundary_conditions.f90. The boundary conditions defined in cs_user_boundary_conditions.f90 will replace those specified in the Graphical Interface.

In this case, the temperature at entry is supposed variable in time, following the law:

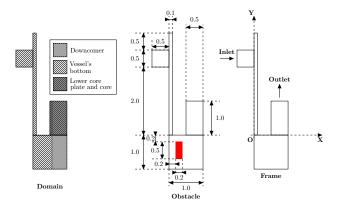
$$\begin{cases} T = 20 + 100t & \text{for } 0 \le t \le 3.8\\ T = 400 & \text{for } t > 3.8 \end{cases}$$
(II.4)

where T is the temperature in $^{\circ}$ C and t is the time in seconds (s).

$\bullet \ cs_user_extra_operations.c$

This routine is called at the end of each time step and has access to the whole set of variables of the code. It is therefore useful for many user-specific post-processing, including the calculation of a spatial average in the present case.

The spatial average of the temperature will be calculated at each time step and the result wrote in a file named moy.dat. The values are saved in order to draw the time evolution of the average temperature.


Beware when calculating the average. Since the calculation is running in parallel, computing the sum of the temperatures on **all the cells** will only yield for each processor to the sum on the cells managed by this processor. In order to obtain the full sum, the parallelism routine cs_parall_sum must be used (see example in the cs_user_extra_operations-scalar_balance.c routine).

 $^{^{6}}$ Only when they appear in the SRC directory will they be taken into account by the code.

Remark: $cs_user_extra_operations_xxx.c$ are different example routines present in the subdirectory \boxdot SRC/EXAMPLES. They should be removed from the \boxdot SRC/ before running the case.

4.7 Output management

The output management is the same as in case2.

Probe n^o .	\mathbf{x} (m)	\mathbf{y} (m)	\mathbf{z} (m)
1	-0.25	2.25	0
2	0.05	2.25	0
3	0.05	2.75	0
4	0.05	0.5	0
5	0.05	-0.25	0
6	0.75	-0.25	0
7	0.75	0.25	0
8	0.75	0.75	0
9	-0.5	2.25	0

Figure II.13: Position and coordinates of probes in the full domain

In this case, the **Pressure**, the **Tubulent Energy** and the **Dissipation** will be removed from the listing file.

The **Courant number** (CFL) and **Fourier number** will be removed from the post-processing results⁷.

Eventually, probes will be defined for chronological records, following the data given in Figure II.4. Then the **total pressure** will be deactivated from all probes.

In addition the domain boundary will be post-processed. This allows to check the boundary conditions, and especially that of the temperature and passive scalar.

4.8 Results

Figure II.14 shows the evolution of the spatial average of the temperature.

Figure II.15 shows velocity fields colored by temperature. The effect of the head loss modeling the obstacle is clearly visible.

 $^{^{7}}$ This can be very useful to save some disk space if some variables are of no interest, as post-processing files can be large.

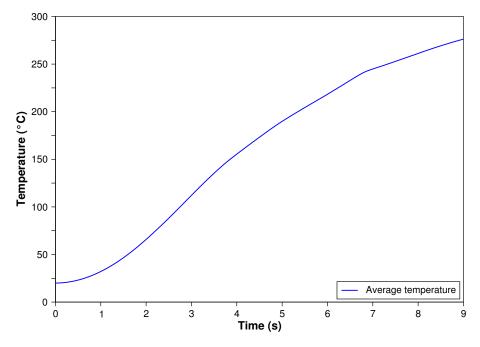
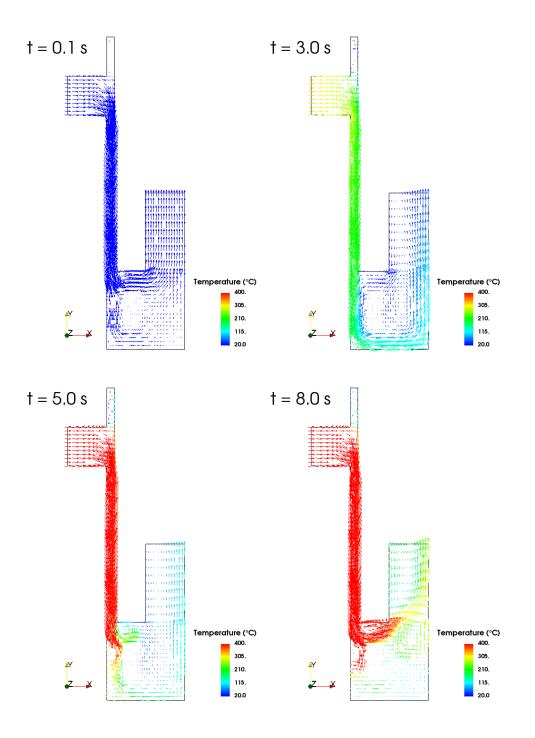
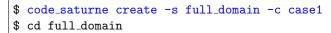


Figure II.14: Evolution of the spatial average of the temperature as a function of time - Case 3




Figure II.15: Water velocity field colored by temperature - Case 3 $\,$

Part III

Step by step solution

1 Solution for CASE1

This case corresponds to a new study, in which there will be three calculation cases (cases 1, 2 and 3). We can create one case in a single code_saturne create command and additional cases can be added later. To test this functionality, first create the study directory, with case subdirectory \boxdot case1, as below:

Go to the \boxdot DATA directory in \boxdot case1, open a new case and select the meshes to use.

Click on the heading **Mesh** then add three meshes which have to be joined as shown below.

E 2 6 6 2 9 E 2 6 6 2 9 E 2 6 7				
Galculation environment	Mesh input			
🗖 🎆 Mesh	\odot Import meshes \bigcirc Use existing mesh input			
Preprocessing				
$\pm \phi \psi$ Calculation features	Local mesh directory (optional)			
ρμ Fluid properties	/MESH			
🗄 🍡 Volume zones				
🗄 👥 Boundary zones	List of meshes			
Δt Time settings	File name Format Reorient Path			
Δx Numerical parameters				
Postprocessing	downcomer.des Simail/NOPO			
🏶 Performance settings	fdc.des Simail/NOPO			
	pic.des Simail/NOPO			
	+ -			
	Execution mode			
Standard Computation				
· · · · · · · · · · · · · · · · · · ·	 Use unmodified checkpoint mesh in case of restart Save mesh if modified by preprocessing 			

Figure III.1: Meshes: list of meshes

In order to join the three meshes, you must add a selection criteria in the box **Selection criteria** of the **Face joining (optional)** item under the **Preprocessing** sub-folder. In this case, only faces of colors 5, 24 and 32 can be joined (different colors can be entered on a single line, separated by comma).

Click on the + icon to enter the list of colors to be joined in the Face joining (optional) item.

📄 눹 🖄 💿 💽 🚱		2	, tê	ŧ			
0 🕱	_						Â
🗄 📑 Calculation environment	Face	e joining	Period	ic Boundari	es Other		
- Mesh							
Preprocessing	Joir	ning					
⊕		Fraction	Plane	Verbosity	Visualization	Selection criteria	
ρμ Fluid properties		0.1	25	1	1	5,24,32	
🕀 🍡 Volume zones							
🕀 👥 Boundary zones							
$\pm \Delta t$ Time settings							
$\pm \Delta x$ Numerical parameters							
🕀 🖂 Postprocessing							
🏶 Performance settings							
							J
< ())))))))))))))))))							

Figure III.2: Join a mesh

You can now verify the quality of your mesh by running a **Mesh quality criteria only** Computation. To do so, go back to the heading **Mesh** and change the **Execution mode** to **Mesh quality criteria only**. calculation.

📑 💼 🕭 🥱 🗷 🔄 🐼	2 2 2 🌣			
 Calculation environment Mesh Preprocessing Postprocessing Performance settings 	Mesh input Import meshes Use existing mesh input Local mesh directory (optional)/MESH List of meshes			
	File name	Format	Reorient	Path
	downcomer.des	Simail/NOPO		
	fdc.des	Simail/NOPO		
	pic.des	Simail/NOPO		
			÷	
	Execution mode Mesh quality criteria only			
	🗹 Save mesh if mo	dified by preproc	cessing	

Figure III.3: Mesh quality criteria

Now, go back to the **Standard Computation** mode and click on the **Calculation features** heading. The heading **Calculation features** is identical to simple_junction.

📑 🖻 🕭 🧔 🖉 🔄 🖗	2 2 2		
 Calculation environment Mesh Calculation features 	Flow Models Standard Eulerian single phase Atmospheric 	Incompressible	v
 Turbulence models Thermal model Body forces 	C Electric arcs		
 Body forces Conjugate heat transfer Species transport 	 Groundwater Reactive flows (combustion) 		
PH Fluid properties + • Volume zones	 Homogeneous Eulerian - VoF model Eulerian multiphase (NEPTUNE_CFD) 		
\oplus Boundary zones $\oplus \Delta t$ Time settings	Additional Features	/	
$\oplus \Delta x$ Numerical parameters $\oplus \overline{\mathbb{M}}$ Postprocessing	Eulerian-Lagrangian model	off	
Performance settings	Turbomachinery model Deformable mesh (ALE method) 	None	×
	Fans (source-term model)		

Figure III.4: Thermophysical models/Calculation features: unsteady flow

To add an additional scalar, click on the **Species transport** item under the **Calculation features** heading.

📄 💼 🕭 👌 🤄 🔳 🖗	22			
🕑 🗷	Model or additional transported varia	bles		
+ Mesh	Name	Turbulent flux model		
□ Φψ Calculation features	temperature	SGDH		
Turbulence models				
Thermal model	scalar2	SGDH		
Body forces				
🕞 Conjugate heat transfer	4 -			
Species transport		U		
PH Fluid properties Variance of model or additional transported variables				
🕀 🍡 Volume zones				
🕀 🐏 Boundary zones	Variance	Species_Name		
$\pm \Delta t$ Time settings				
$\pm \Delta x$ Numerical parameters				
🕀 🖂 Postprocessing				
Performance settings		+ -		

Figure III.5: Additional scalar

The heading **Fluid properties** is identical to **simple_junction**, except for the new scalar. Here, we can specify the diffusion coefficient of this new scalar.

Click on the scalar name to highlight it, then enter the value in the box. In this case, the species diffusion coefficient value is 8.55 (×10⁻⁵ $m^2 s^{-1}$) for the scalar2 scalar to solve.

📄 💼 🏝 🥱 💩 🖬 🖗	2 2 2 🌣	
0 8	Viscosity	^
🕀 📑 Calculation environment	constant 🗸	
🕀 🔜 Mesh		
⊕ Ø Calculation features	Reference value µ 8.951e-05 Pa.s	
<u>P</u> Fluid properties		
🕀 🍡 Volume zones	Specific heat	
🕀 👥 Boundary zones	constant 🗸	
$\pm \Delta t$ Time settings		
\pm Δx Numerical parameters	Reference value $C_{ ho}$ 5483.0 J/kg/K	
🕀 🖂 Postprocessing		
Performance settings	Thermal conductivity	
	constant 👻	
	Reference value λ 0.02495 W/m/K	
	Diffusion coefficient of species	
	Name scalar2 v	
	constant V	1
	Reference value 8.55e-05 m²/s	
< () > >		2

Figure III.6: Fluid properties

Initialization:

To initialize variables at the instant t = 0 s, go to the **Initialization** item under the heading **Volume zones**.

Here the velocity, the thermal scalar and the turbulence can be initialized. In this case, the default values to be set are: zero velocity (default), an initial temperature of 20° C and a turbulence level based on a reference velocity of $1 \ (m.s^{-1})$ (default). You must also initialize the scalar2 species at 10° C.

Specific zones can be defined with different initializations. In this case, only the default **all_cells** is used.

📑 🖆 🏝 🥱 🙋 🔳 🖗	2 2 🌣		
@ ¥			
🕀 📑 Calculation environment	Initialization		
🕂 🔜 Mesh	Volume zone all_cells ~		
$\pm \phi \psi$ Calculation features			
PH Fluid properties	Velocity 😽		
🖃 🍡 Volume zones			
📄 Initialization	Thermal 🛛 🕹		
🕀 🐏 Boundary zones	Turbulence Initialization by reference value(s)		
$\pm \Delta t$ Time settings	Turbulence Initialization by reference value(s)		
$\pm \Delta x$ Numerical parameters	Species scalar2 🗸 🖓		
🕀 🖂 Postprocessing			
Performance settings			
< · · · · · · · · · · · · · · · · · · ·			

Figure III.7: Initialization

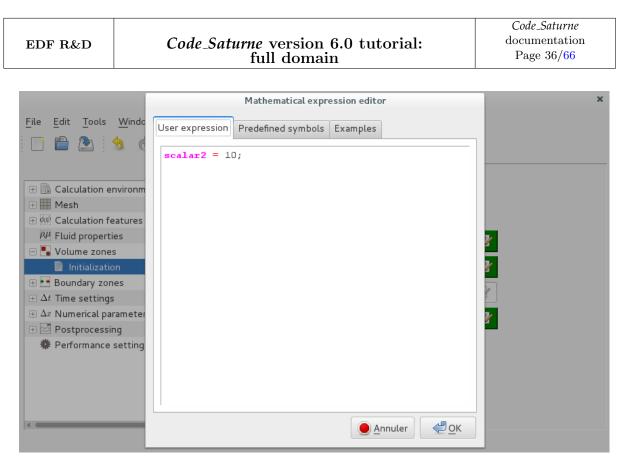


Figure III.8: Initialization: species

Create the boundary zones: The procedure is the same as in simple_junction, but the colors are different. Note that colors 5 and 32 have completely disappeared in the joining process (they are now internal faces and are not considered as boundaries), while some boundary faces of color 24 remain.

Create the inlet, outlet and symmetry boundary zones with the following colors:

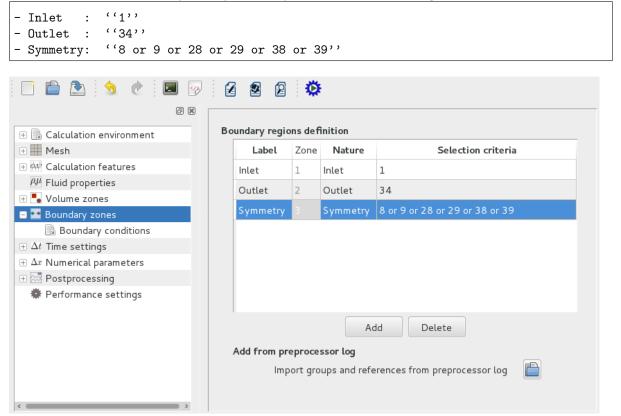


Figure III.9: Creation of the boundary zones

In this case, different conditions are applied for the walls. Separate corresponding wall boundary regions must therefore be created, following the data in the following table.

Label	Zone	Nature	Selection criteria
Wall_1	4	Wall	24 and $0.1 \leq x$ and $x \leq 0.5$
Wall_2	5	Wall	2 or 3
Wall_3	6	Wall	4 or 7 or 21 or 22 or 23
Wall_4	7	Wall	6 and y > 1
Wall_5	8	Wall	$6 \text{ and } y \leqslant 1$
Wall_6	9	Wall	31 or 33

The Wall_1 region combines color and geometrical criteria. The associated character string to enter in the Selection criteria box 1 is as follows:

''24	and	0.1	<=	х	and	0.5	>=	x''
------	-----	-----	----	---	-----	-----	----	-----

🖹 🖨 🏝 🥱 🥐 🔳 🖗	22	٥	ŧ						
Calculation environment Boundary regions definition									
🗄 Mesh	Label	Zone	Nature	Selection criteria					
+ 👾 Calculation features	Inlet	1	Inlet	1					
ρμ Fluid properties	Outlet	2	Outlet	34					
🗄 🍡 Volume zones									
Boundary zones Symmetry 3 Symmetry 8 or 9 or 28 or 29 or 38 or 39									
Boundary conditions	Wall_1	4	Wall	24 and 0.1 <= x and 0.5 >= x					
$\pm \Delta t$ Time settings									
${ar ext{ }} \Delta x$ Numerical parameters									
🛛 🖾 Postprocessing									
✤ Performance settings									
Add Delete									
	Add from preprocessor log Import groups and references from preprocessor log								
2									

Figure III.10: Creation of a wall boundary region

¹Note that, due to the joining process, there are in fact no boundary faces of color 24 with x coordinate outside the [0.1;0.5] interval. The geometrical criterium is therefore not necessary. It is presented here to show the capabilities of the face selection module.

Define the other wall boundary zones. The faces of color 6 have to be divided in two separate zones, based on a geometrical criterium on y.

Image: Calculation environment Image: Calculation features Image: Calculation features<	Label Inlet	Zone	Nature	Selection criteria
P# Fluid properties	Inlet	1.0		Selection criteria
		1	Inlet	1
🗆 🔩 Volume zones	Outlet	2	Outlet	34
Initialization	Symmetry	3	Symmetry	8 or 9 or 28 or 29 or 38 or 39
Boundary zones	Wall_1	4	Wall	24 and 0.1 <= x and 0.5 >= x
Boundary conditions	Wall_2	5	Wall	2 or 3
$\pm \Delta t$ Time settings	Wall_3	6	Wall	4 or 7 or 21 or 22 or 23
⊕ ∆x Numerical parameters ⊕ ∑ Postprocessing	Wall_4	7	Wall	6 and y > 1
Performance settings	Wall_5	8	Wall	6 and y <= 1
	Wall_6	9	Wall	31 or 33
	ļ			Add Delete

Figure III.11: Creation of wall boundary regions

The dynamic boundary conditions are the same as in simple_junction for the inlet, and there are still no sliding walls.

- Inlet:

8	Velocity	
Calculation environment	norm 🗸 1.0 m/s 🖉	
Mesh		
φψ Calculation features	Direction specified coordinates 🗸	
β# Fluid properties		
	X 1.0 Y 0.0 Z 0.0	
Initialization		
Boundary zones		
Boundary conditions	Turbulence	
∆t Time settings	Calculation by hydraulic diameter 🔽 🖉	
🖫 Start/Restart		
Δx Numerical parameters		
Postprocessing Performance settings	Hydraulic diameter 0.5 m	
	Thermal	
	Type Prescribed value 👻 🖅	
	temperature V	
	Value 300.0	
	Species	
	Type Prescribed value 🗸 🖓	

Figure III.12: Dynamic variables boundary: inlet

- Outlet:

📑 💼 🏝 👌 🕐 国 🚱	22	٥					
Calculation environment	Boundary cond	litions			î		
🕂 🔜 Mesh	Label	Zone	Nature	Selection criteria	2		
$\pm \phi \psi$ Calculation features	Inlet	1	inlet	1			
ρμ Fluid properties	Outlet	2	outlet	34			
🖃 🍡 Volume zones	Wall_1	4	wall	24 and 0.1 <= x and 0.5 >= x	_		
Initialization	Wall_2	5	wall	2 or 3			
🖃 👥 Boundary zones	Wall_3	б	wall	4 or 7 or 21 or 22 or 23			
Boundary conditions	Wall_4	7	wall	б and y > 1			
$\Box \Delta t$ Time settings	Wall_5	8	wall	б and у <= 1			
🗊 Start/Restart					_		
$\pm \Delta x$ Numerical parameters	Thermal fo	r backflow					
🕀 🖂 Postprocessing			Type Pr	escribed (outgoing) flux 🔽 🖓			
Performance settings	te	emperature	Flux	0.0			
Species for backflow Type Prescribed (outgoing) flux 🗸 🖉							
		scalar2 🔽	Flux	0.0			

Figure III.13: Dynamic variables boundary: outlet

To configure the scalar boundary conditions on the walls, select individually each wall in the **Boundary** conditions item.

On all the walls, a default homogeneous **Prescribed flux** is set for temperature, and **Prescribed value** is specified for the passive scalar for each wall, named **scalar2**, according to the following table:

Wall	Nature	Scalar2 value
Wall_1	Prescribed value (Dirichlet)	0
Wall_2	Prescribed value (Dirichlet)	5
Wall_3	Prescribed value (Dirichlet)	0
Wall_4	Prescribed value (Dirichlet)	25
Wall_5	Prescribed value (Dirichlet)	320
Wall_6	Prescribed value (Dirichlet)	40

📄 🖻 🕭 👌 🔄 🔳 🖗 💋 🖉 🌞

	8 ×							
		Wall_2	5	wall	2 or 3			
🕀 📑 Calculation environment		Wall_3	6	wall	4 or 7 or 21 or 22 or 23			
🕀 🔜 Mesh		Wall_4	7	wall	6 and y > 1			
$\pm \phi \psi$ Calculation features		Wall_5	8	wall	6 and y <= 1			
P. Fluid properties								
🗆 📕 Volume zones		Smooth or	rough wall					
Initialization				Smc	ooth wall 🔘 Rough wall			
🖃 🐏 Boundary zones								
📄 Boundary conditions		_						
$= \Delta t$ Time settings		Sliding wall						
🔒 Start/Restart								
$\pm \Delta x$ Numerical parameters		Thermal						
🕀 🖂 Postprocessing					Type Prescribed (outgoing) flux 🔽 🖅			
Performance settings								
-			temperature	~	Flux 0.0			
		Species						
				-	Type Prescribed value			
					Type Prescribed value			
			scalar2 🗸		Value 320.0			
<								

Figure III.14: Scalars boundaries: wall_5

EDF R&D

Some calculation parameters need to be defined now. Go to the **Time settings** heading. In our case the time step is **Constant** and the **Velocity-Pressure algorithm** is **SIMPLEC**. Set the number of iterations to **300** and the reference time step to **0.05** (s).

📑 🖹 🌖 👌 🖬	2 🖻 😰 🔅
8	
🕀 📑 Calculation environment	
🕀 🔜 Mesh	Time step option Constant
$\pm \phi \psi$ Calculation features	Velocity-Pressure algorithm SIMPLEC v
ρμ Fluid properties	
🕀 🎩 Volume zones	
🕀 👥 Boundary zones	Reference time step 0.05 s
😑 🕰 Time settings	
🗟 Start/Restart	
$\Box \Delta x$ Numerical parameters	Stansies with rise Number of time stars
Equation parameters	Stopping criterion Number of time steps 💙 300
Postprocessing	

Figure III.15: Time step setting

Numerical parameters are the same as in simple_junction.

📑 💼 🏝 🥱 🙋 🖬 🦉	2 2 2 🌣		
Calculation environment	Global parameters Gradient calculation method:		
$\pm \phi \psi$ Calculation features	Iterative handling of non-orthogonalities	✓	
P.H. Fluid properties	Pseudo-coupled velocity-pressure solver		
🕂 📕 Volume zones			
🕀 🐏 Boundary zones	Handling of transposed gradient and divergence source terms in momentum equation		
$= \Delta t$ Time settings			
🗒 Start/Restart	Extrapolation of pressure gradient	Neumann 1st order 🗸	
😑 🜆 Numerical parameters	on domain boundary		
Equation parameters	Relaxation of pressure increase	1.0	
🕀 🖂 Postprocessing	Improved pressure interpolation in stratified flow		
Performance settings	improved pressure interpolation in stratiled flow	_	

Figure III.16: Numerical parameters

Go to the **Equation parameters** item under the heading **Numerical parameters**. You can define the maximum and minimum value for the **temperature** and for the **scalar2** scalars.

📑 🖹 👌 👌 🗾 👳	2 2 2 🌣		
0 🛛		 ר	
🕀 📄 Calculation environment	Solver Scheme Clipping		
🕀 🔜 Mesh			
$\pm \phi \psi$ Calculation features	Name	Minimal	Maximal
ρμ Fluid properties		value	value
🕀 🎩 Volume zones	temperature	0	400
🕀 🐏 Boundary zones	scalar2	0	400
$\pm \Delta t$ Time settings			
$ige \Delta x$ Numerical parameters			
Equation parameters			
🕀 🖂 Postprocessing			
* Performance settings	F		

Figure III.17: Clipping

Go to the **Postprocessing** heading to set the output parameters. In the **Output Control** tab, keep the default value for the output listing frequency.

Figure III.18: Output control: log frequency

For the post-processing, go to the **Writer** item and click on **results**.

🗄 🗟 Calculation environment	Output Control W	riter Mesh Partic	les mesh Monito	ring Points
+ Mesh				
$\pm \phi \psi$ Calculation features	Name	Id	Format	Directory
ρμ Fluid properties	results	-1	EnSight	postprocessing
🕂 冕 Volume zones				
+ 👥 Boundary zones				
$\pm \Delta t$ Time settings				
$\pm \Delta x$ Numerical parameters				
a a realiced parameters				
· · · · · · · · · · · · · · · · · · ·				
-				
- 🖂 Postprocessing				
Postprocessing Additional user arrays				
 Postprocessing Additional user arrays Time averages 				
 Postprocessing Additional user arrays Time averages Volume solution control 				
 Postprocessing Additional user arrays Time averages Volume solution control Surface solution control 				

Figure III.19: Output control: writer

EDF R&D

Now you can select the third option in the **Frequency** (output every 'n' time steps) item and set the value of n to 2.

📑 🖆 🕭 🥱 🔄 🔄	2 🛛 🖓			
ð X				
🗄 📄 Calculation environment	Output Control Writer	Mesh Particles mesh	Monitoring Points	
🗄 🔜 Mesh				
$\pm \phi \psi$ Calculation features	Name	ld	Format	Directory
ρμ Fluid properties	results		EnSight	postprocessing
🗄 📕 Volume zones				
🗄 👥 Boundary zones				
$\pm \Delta t$ Time settings		4		
$\pm \Delta x$ Numerical parameters		u		
🗆 🖾 Postprocessing	Frequency			
📑 Additional user arrays	Output every 'r	' time steps	✓ 2	
📑 Time averages		•		
Volume solution control	Output at st	art of calculation	S Output at e	nd of calculation
Surface solution control				
Profiles	Time-dependency			
🗎 Balance by zone		Fixed m	esh 🗸	
Performance settings				
	Options			
		🗹 Separate su	b-writer for each mesh	
		File type	binary (native) 🗸 🗸	
		Polygons	display 🗸	
		Polyhedra	display	

Figure III.20: Output control: results

You can also choose the format. In our case, we choose the EnSight format.

In this case, chronological records on specified monitoring probes are needed. To define the probes, click on the **Monitoring Points** tab. Click on + and enter the coordinates of the monitoring points you want to define.

Repeat the procedure for the other probes. The coordinates of the probes are indicated in the following table (the z coordinate is always 0):

Probe n^o .	x (m)	y (m)	z (m)
1	-0.25	2.25	0.0
2	0.05	2.25	0.0
3	0.05	2.75	0.0
4	0.05	0.50	0.0
5	0.05	-0.25	0.0
6	0.75	-0.25	0.0
7	0.75	0.25	0.0
8	0.75	0.75	0.0

<u>></u> 42 2 2 ۲ ð 🗙 Output Control Writer Mesh Particles mesh Monitoring Points + 🗟 Calculation environment 🗄 📕 Mesh Monitoring points output $\pm \phi \psi$ Calculation features Monitoring points files at each time step ✓ Format .dat ✓ $\rho\mu$ Fluid properties 🗄 🍡 Volume zones Monitoring points coordinates 🗄 🐏 Boundary zones Υ Ζ Х $\pm \Delta t$ Time settings n $\pm \Delta x$ Numerical parameters 1 -0,25 2,25 0 Postprocessing 2 0,05 2,25 0 🗟 Additional user arrays 3 0,05 2,75 0 🗟 Time averages 🗟 Volume solution control 4 0,5 0 0,05 Surface solution control Duplicate Import from CSV _ 🗟 Profiles 🗟 Balance by zone Display monitoring points on SALOME VTK viewer Performance settings Probe's radius (m)

Figure III.21: Output control: monitoring points

Remember to save the xml file regularly.

Go to the **Volume solution control** item to define which variables will appear in the listing, the post-processing and the chronological records.

Uncheck the boxes in front of the **Pressure**, **k** and **epsilon** variables, in the **Print in listing** column. Information on these three variables will not appear in the output listing anymore.

Uncheck the boxes in front of the **CourantNb** and **FourierNb** variables in the **Post-processing** column. These variables will be removed from the post-processing results.

Uncheck the box in front of the **total_pressure** variable in the **Monitoring** column. No chronological record will be created for this variable.

📑 🗎 🕭 🔶 国 🦻	2 2 2				
Ø X					
🕀 📄 Calculation environment	Solution control				
+ Mesh	Output label	Internal name	Print in listing	Post- processing	Monitoring
ρμ Fluid properties	- Base		Ξ	2	
🗄 🍡 Volume zones	Pressure	pressure			Z
🗄 👥 Boundary zones	Velocity	velocity	v	S	S
$\pm \Delta t$ Time settings	total_pressure	total_pressure	✓	≤	
$\pm \Delta x$ Numerical parameters	 Turbulence 		-	S	a
🗆 🔜 Postprocessing	epsilon	epsilon			
🗟 Additional user arrays	k	k		Z	
📑 Time averages	TurbVisc	c turbulent_viscosity		I	a
Volume solution control	Thermal		✓		
🗟 Surface solution control	TempC	temperature	\checkmark		
Profiles	Other		S	-	a
🕞 Balance by zone	scalar2	scalar2	≤		S
Performance settings	CourantNb	courant_number	S		
	FourierNb	fourier_number	✓		a
	•	Iterative process error estimators			
	Prediction reconstruct	ion off		~	
	Mass conservation	off		~	
	Correction reconstruct	tion	off 🗸		
	Navier-Stokes sub-iter	rations		~	
< ()					

Figure III.22: Solution control: output configuration

After completing the interface, before running the calculation, some user routines need to be modified to post-process the additional transported scalars on the domain boundary (only boundary temperature post-processing can be dealt with in the GUI).

Go to the folder \boxdot SRC/REFERENCE and copy cs_user_parameters.c in the \boxdot SRC directory.

In this case cs_user_parameters.c is used to add boundary values for all scalars as follows :

```
void
cs_user_parameters(cs_domain_t *domain)
{
    /* Add boundary values for all scalars */
    {
        int n_fields = cs_field_n_fields();
        for (int f_id = 0; f_id < n_fields; f_id++) {
            cs_field_t *f = cs_field_by_id(f_id);
            if (f->type & CS_FIELD_VARIABLE)
                cs_parameters_add_boundary_values(f);
        }
    }
}
```

To prepare the launch script and, on certain architectures, launch the calculation, click on the **prepare** icon in the menu bar and a new window will appear as shown below:

Mesh Mesh Computation Advanced Script parameters Volume zones Boundary zones Ar Time settings Ar Numerical parameters Postprocessing Number of processes 1		Run computation
M Calculation features M Fluid properties Volume zones Boundary zones Δt Time settings Δx Numerical parameters Postprocessing Performance settings Threads per process 1 Computation start	Calculation environment	
P/4 Fluid properties Script parameters Image: Script parameters Script parameters Image: Script parameters Result subdirectory name Image: Script parameters Number of processes Image: Script parameters Image: Script parameters Image: Script parameters Number of processes Image: Script parameters Image: Script parameters Image: Script parameters Image: Script parameter	E Mesh	Computation Advanced
 Note properties Volume zones Soundary zones At Time settings Ar Numerical parameters Postprocessing Performance settings Threads per process Computation start 		Societ economications
 Soundary zones At Time settings At Numerical parameters Postprocessing Performance settings Threads per process Computation start 		Script parameters
 At Time settings At Numerical parameters Postprocessing Number of processes Threads per process Computation start 		
Ar Numerical parameters Ar Number of processing ★ Performance settings Threads per process 1 ↓ Computation start		
Postprocessing Number of processes 1	-	Result subdirectory name
Performance settings Threads per process Computation start		Number of processes 1
Computation start		
	The Performance settings	Threads per process 1
		Computation start

Figure III.23: Prepare batch calculation: computer selection

Run the calculation by clicking on the **Save case and run calculation** button:

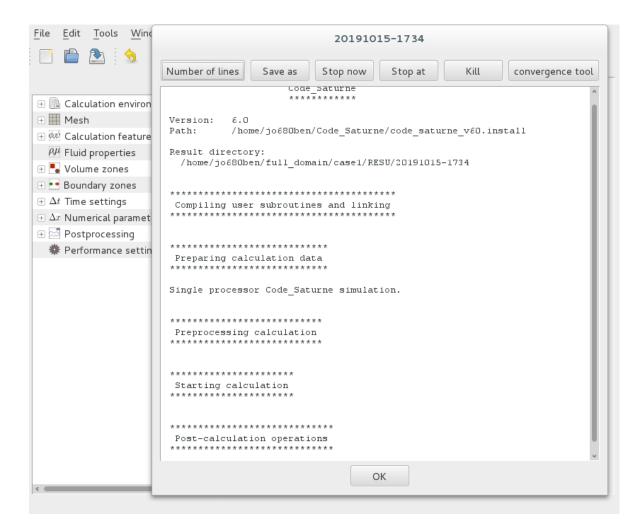


Figure III.24: Run

2 Solution for CASE2

Only a few elements are different from case1.

In this case the density becomes variable. Go to the **Fluid properties** heading and change the nature of the density from **constant** to **user law**.

📑 🖹 🏝 🕱 🔄 🔳 🖗	2 🖻 🖉 🌣	
6 X _		
🕀 📄 Calculation environment	Reference total pressure	
🕂 🛄 Mesh	value 101325.0	Pa
$\oplus \phi \psi$ Calculation features		- I
PH Fluid properties	Reference temperature	
🕀 🍡 Volume zones	value 20.0	°C
🕀 🐏 Boundary zones		- I
$\pm \Delta t$ Time settings	(used for properties initialization)	
$\pm \Delta x$ Numerical parameters	Density	
🕀 🖂 Postprocessing	constant	
🏶 Performance settings		
	user law ρ 725.735	kg/m³
	material law	
	Viscosity	
	constant 🗸	
	Reference value µ 8.951e-05	Pa.s 🗸

Figure III.25: Fluid properties: variable density

The user law of the density is defined as follows in the *Code_Saturne* (GUI):

density = temperature * (-4.0668E-03*temperature - 5.0754E-02) + 1000.9;

Click on the highlighted icon and define the user law in the window that pops up. Follow the format used in the **Examples** tab.

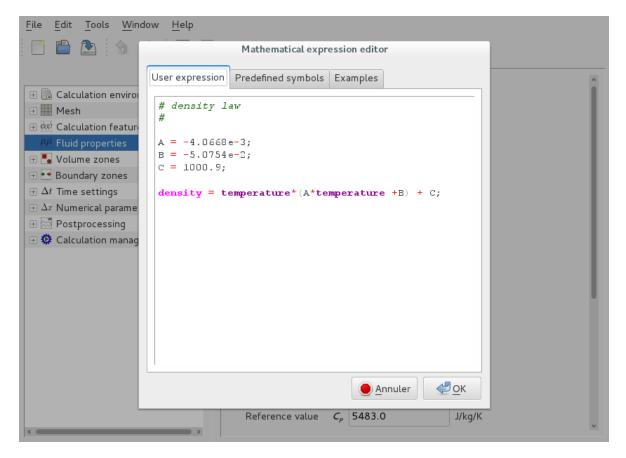


Figure III.26: Fluid properties/Variable density: user expression

As the density is variable, the influence of gravity has to be considered. Go to **Body forces** item under **Calculation features** heading and set the value of each component of the gravity vector.

$g_x = 0.0 g_y = -9.81 g_z = 0.0$		
🦗 尾 🥱 👌 🚵 🖆 🔄 🛿		¥
🕀 📄 Calculation environment	Gravity	
🕂 🔜 Mesh	g _× 0.0	m/s²
 Av Calculation features Turbulence models 	g _y -9.81	m/s²
Thermal model Body forces	g _z 0.0	m/s²
Conjugate heat transfer Species transport	Coriolis source term	s (rotation vector)
<u>B</u> Species transport	Ω _* 0.0	S ⁻¹
🕀 🍡 Volume zones	Ω _y 0.0	s-1
🕂 👥 Boundary zones		
$\pm \Delta t$ Time settings	Ω _z 0.0	S ⁻¹
$\pm \Delta x$ Numerical parameters		
🕀 🔤 Postprocessing		
Performance settings		
< >		

Figure III.27: Fluid properties: gravity

EDF R&D

Add a monitoring point close to the entry boundary condition in the **Monitoring Points** tab under the **Postprocessing** heading.

	9 -0	.5 2.25	0.0				
🖻 🖻 😒 🐀 🍖 🖬 🦻	22	\$					
E 🗟 Calculation environment	Output Contro	ol Writer Mesh	Particles mesh	Monitoring Points			
🗄 🔜 Mesh							
🖗 🚧 Calculation features	Monitoring p	oints output			_		
ρμ Fluid properties	Mon	itoring points files	at each time step	✓ Format .csv	-		
📕 Volume zones							
🐏 Boundary zones	Monitoring p	oints coordinates					
Δt Time settings	n	Х	Y	Z	^		
Δx Numerical parameters	6 0,75 -0,25 0						
Postprocessing	7	0,75	0,25	0			
Performance settings	8	0,75	0,75	0			
	9	-0,5	2,25	0	J		
		4 C	Duplicate	nport from CS			
	Display m	onitoring points o Probe's radiu:		iewer			

Figure III.28: New monitoring probe

After completing the interface, before running the calculation, some Fortran user routines need to be modified.

Go to the folder \boxdot SRC/REFERENCE and copy cs_user_boundary_conditions.f90 in the \boxdot SRC directory.

• cs_user_boundary_conditions.f90:

In this case, cs_user_boundary_conditions.f90 is used to specify the time dependent boundary condition for the temperature. Refer to the comments in the routine or to the *Code_Saturne* user manual for more information on this routine.

In our case, you need to identify the boundary faces of color 1.

The command

```
call getfbr('1',nlelt,lstelt)
```

will return an integer nlelt, corresponding to the number of boundary faces of color 1, and an integer array lstelt containing the list of the nlelt boundary faces of color 1.

Remark: Note that the string 1 can be more complex and combine different colors, group references or geometrical criteria, with the same syntax as in the Graphical Interface.

For each boundary face ifac in the list, the Dirichlet value is given in the multi-dimension array rcodcl as follows:

```
if (ttcabs.lt.3.8d0) then
  do ielt = 1, nlelt
    ifac = lstelt(ielt)
    rcodcl(ifac,isca(2),1) = 20.d0 + 100.d0*ttcabs
  enddo
else
  do ielt = 1, nlelt
    ifac = lstelt(ielt)
    rcodcl(ifac,isca(2),1) = 400.d0
  enddo
endif
```

isca(2) refers to the first scalar and ttcabs is the current physical time.

See the example cs_user_boundary_conditions-base.f90 file in the subdirectory \boxdot SRC/EXAMPLES to complet correctly your boundary conditions for this case2.

Remark: Note that, although the inlet boundary conditions for temperature are specified in the cs_user_boundary_conditions.f90 file, it is necessary to specify them also in the Graphical Interface.

The value given in the Interface can be anything, it will be overwritten by the Fortran routine.

After updating the Fortran file, run the calculation as explained in case1.

When a calculation is finished, *Code_Saturne* stores all the necessary elements to continue the computation in another execution, with total continuity. These elements are stored in several files, grouped in a \bigcirc yyyymmdd-hhmm/checkpoint subdirectory, in the \bigcirc RESU directory.

In this case, after the first calculation is finished, a second calculation will be run, starting from the results of the first one.

Go directly on the **Start/Restart** item under the heading **Time settings**. Activate the **Check-point/Restart** by clicking the **On** box.

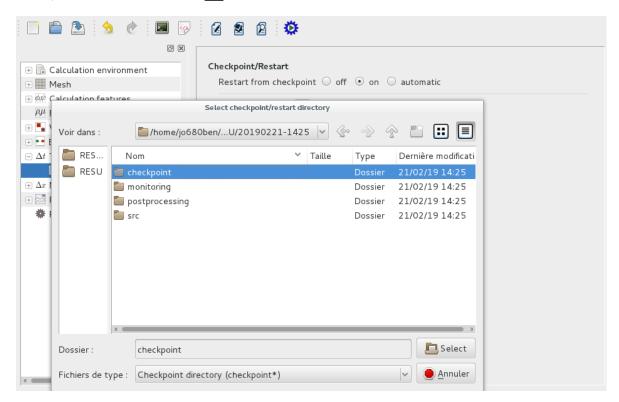


Figure III.29: Start / Restart

A window opens, with the architecture of the study sub-directories. In the **BRESU** folder, click on the folder **Byyyymmdd-hhmm/checkpoint** (where **yyyymmdd-hhmm** corresponds to the reference of the first calculation results). Then click on **Validate**.

📄 🖹 👌 🙋 🖬 🦻	
(X) (A)	
🕀 📑 Calculation environment	Checkpoint/Restart
🗄 🔜 Mesh	Restart from checkpoint \bigcirc off \odot on \bigcirc automatic
+ 👾 Calculation features	
βμ Fluid properties	Checkpoint directory _domain/case2/RESU/20190221-1425/checkpoint
🕀 🎩 Volume zones	Iterations 400
🕀 🐏 Boundary zones	400
${oxedsymbol{ o}}\ \Delta t$ Time settings	Time 20.0
📄 Start/Restart	Different mesh
\pm Δx Numerical parameters	
🕀 🔤 Postprocessing	Calculation on frozen velocity and pressure fields
🏶 Performance settings	
	Advanced options 😹
< >	

Figure III.30: Start/Restart: selection of the restart directory

EDF R&D

Go to the **Time settings** heading and change the **Stopping criterion** from **Number of time steps** to **Additional time steps**. Set it to 400 which means another 400 iterations (the total number of iterations is 700 iterations).

📑 🖆 🕭 🥱 🖻 😰	
🛛 🗷 🕀 🕀 Calculation environment	
+ Mesh	Time step option Constant
⊕	Velocity-Pressure algorithm
🕀 📕 Volume zones	
 	Reference time step 0.05 s
Start/Restart	Limitation by local thermal time step
$\oplus \Delta x$ Numerical parameters	
⊕	Stanning criterian Additional time stans
Performance settings	Stopping criterion Additional time steps 🗸 400

Figure III.31: Time step

Eventually, run the calculation.

3 Solution for CASE3

This case is similar to case2, with the following differences:

- Step 1: define head losses in the fluid domain,
- Step 2: compute the spatial average of temperature scalar,
- Step 3: parallel computation on 2 processors,
- Step 4: dealing with a user results file.
- Step 1-1: Define the head losses in the Graphical User Interface (GUI)

Go to Volume zones folder. Click on Add, unselect Initialization and select Head losses in the Dialog window that pops up (see Figure III.32). In the box named Label, name the head losses region.

Define the limits of the head losses region in **Selection criteria**. The associated character string to enter is as below:

'' x >= 0.2 and x <= 0.4 and y >= -0.75 and y <= -0.25 ',

📑 🖆 🏝 🥱 🙋 🔳 🖗	Dialog	
Ø X		<u>^</u>
🕀 📑 Calculation environment	Initialization	
🗄 🔜 Mesh	J	Selection criteria
$\oplus \phi \psi$ Calculation features	🗹 Head losses	all[]
PH Fluid properties	Porosity	all[]
🖃 🌄 Volume zones	Momentum source term	
📑 Initialization	Momentum source term	
🕀 👥 Boundary zones	Thermal source term	
$\pm \Delta t$ Time settings	Scalar source term	
$\pm \Delta x$ Numerical parameters		
🕀 🖾 Postprocessing	Annuler 🖉 OK	
Performance settings		
		elete Modify
	Add from preprocessor log	

Figure III.32: Creation of the head losses region

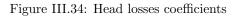

📄 📄 🖄 💿 🖻 🔳	9	2 🙎 🕻	2	\$	
0 (3				
🕀 🗟 Calculation environment	De	efinition of	volun	ne regions	
+ Mesh		Label	Zone	Nature	Selection criteria
$\pm \phi \psi$ Calculation features		all_cells	1	Initialization	all[]
ρμ Fluid properties		-			kod
🖃 📕 Volume zones					
📑 Initialization		Zone_1	2	Head losses	x>=0.2 and x<=0.4 and y>= -0.75 and y<=-0.25
📑 Head losses					
🗄 👥 Boundary zones					
$\pm \Delta t$ Time settings					
\pm Δx Numerical parameters					
🗄 🖂 Postprocessing					
🏶 Performance settings					
				Add	Delete Modify
< () >		Add from	ргерго	cessor loa	

Figure III.33: Selection criteria of the head losses region

• Step 1-2: Specify the head losses coefficients α_{ii}

To specify the head losses coefficients go to the **Head losses** item and select the name of the head losses volume region. In this example, the coefficient is isotropic so that we use the same value for each α_{ii} . Please note that $\alpha_{ii} = 2 \times K_{ii}$, therefore if $K_{ii} = 10^4$, $\alpha_{ii} = 2 \times 10^4$.

🗈 🖹 🂁 👌 🖉 🔳				
① ① ③ Calculation environment Select volume zone for head losses				
🕀 🛄 Mesh	Label Zone Selection criteria			
$\pm \phi \psi$ Calculation features	Zone_1 2 x>=0.2 and x<=0.4 and y>= -0.75 and y<=-0.25			
$ ho\mu$ Fluid properties				
🗆 📕 Volume zones				
📄 Initialization	Tensor coefficients			
📄 Head losses	Head losses coefficients: pdU/dt = -0.5pα _{ij} U Uj			
🕀 👥 Boundary zones	α _{xx} 20000.0 α _{yy} 20000.0 α _{zz} 20000.0			
$\pm \Delta t$ Time settings				
$\pm \Delta x$ Numerical parameters	Reference frame transformation matrix			
🕀 🖂 Postprocessing				
Performance settings				
<				

• Step 2: Compute the spatial average of temperature

The computation of the spatial average must be done in the cs_user_extra_operations.c routine.

The following code computes the spatial average temperature and writes it in a file called moy.dat.

```
/* Global declaration of the moy.dat file that will be filled with Tavg */
static FILE *file = NULL;
void
cs_user_extra_operations(cs_domain_t *domain)
```

```
/* Variables declaration */
/* Get pointers to the mesh and mesh quantities structures */
const cs_mesh_t *m= cs_glob_mesh;
const cs_mesh_quantities_t *fvq = cs_glob_mesh_quantities;
/* Number of cells */
const int n_cells = m > n_cells;
/* Cell volumes */
const cs_real_t *cell_vol = fvq->cell_vol;
/* Get the temperature field */
const cs_field_t *temp = cs_field_by_name_try("temperature");
/* Cell volumes sum, Temp * volumes sum and Tavg */
cs_real_t voltot = 0., temptot =0., Tavg =0.;
/* Compute the sum of the cell volumes */
for (int ii = 0 ; ii < n_{\text{-cells}} ; ii++)
  voltot += cell_vol[ii];
/* Compute the sum T*vol */
for (int ii = 0; ii < n_cells; ii++)
  temptot += temp->val[ii]*cell_vol[ii];
/* Parallel sums */
cs_parall_sum(1, CS_DOUBLE, &voltot);
cs_parall_sum(1, CS_DOUBLE, &temptot);
/* Compute Tavg */
Tavg = temptot / voltot ;
/* Open the file moy.dat at the first iteration
   and write the first comment line only on the
   first processor (0 in parallel, -1 in serial) */
if (cs_glob_time_step \rightarrow nt_cur == 1 \&\& cs_glob_rank_id <= 0) {
  file = fopen("moy.dat", "a");
  fprintf(file, "#Time (s) Average Temperature (C) n");
}
/* Print the average temperature at the current time step
   on the first processor only */
if (cs_glob_rank_id \ll 0)
  fprintf(file, "%.6f %.6f\n", cs_glob_time_step ->t_cur, Tavg);
/* Close the file moy.dat at the last iteration
   on the first processor only */
if (cs_glob_time_step ->nt_cur == cs_glob_time_step ->nt_max
    && cs_glob_rank_id \ll 0)
  fclose(file);
```

• Step 3: Choose a computation with 2 processors

This modification will be done in the **Calculation management** item. To run the calculation on two processors, simply change the number of processors indicator to 2. The launch script will automatically deal with the rest.

Do not forget to set the right **Reference time step** and **Number of iterations** under the heading **Time settings**.

EDF R&D	Code_Saturne version 6 full domain	Code_Saturne documentation Page 65/66	
- C	Run com	putation	
 Calculation et Mesh Mesh Calculation fe Fluid properti Fluid properti Volume zone Moundary zon Δt Time settings Δx Numerical pat Postprocessin Performance 	Computation Advanced Script parameters Result subdirectory nam Number of processes Threads per process	e 2^ 1	
	Computation start	Apply Save case	and run calculation

Figure III.35: Number of processors

• Step 4: Dealing with a user results file moy.dat

The new user file moy.dat created by cs_user_extra_operations.c will be written directly in the yyyymmdd-hhmm results subdirectory created at the end of the computation in the RESU directory.

Remark 3.1 : We do not have to specify the name of the new user file in the Graphical User Interface (GUI), like in previous *Code_Saturne* versions. The name of the new user file had to be identified in the launch script in order to be automatically copied in the \boxdot RESU directory; this is not requested anymore.

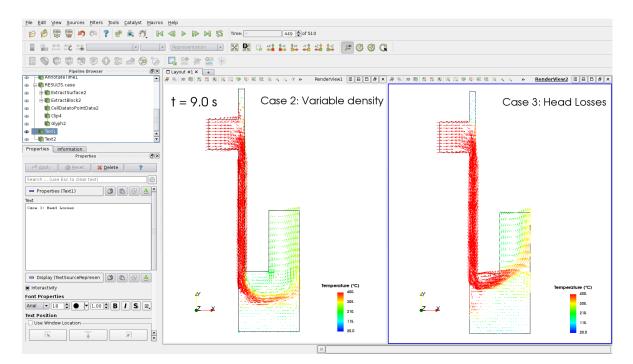


Figure III.36: User results files