
EDF R&D

Fluid Dynamics, Power Generation and Environment Department
Single Phase Thermal-Hydraulics Group

6, quai Watier
F-78401 Chatou Cedex

Tel: 33 1 30 87 75 40
Fax: 33 1 30 87 79 16 MARCH 2024

code saturne documentation

code saturne version 8.0 tutorial:
Heated Square Cavity Flow

contact: saturne-support@edf.fr

http://code-saturne.org/ © EDF 2024

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation

Page 1/37

TABLE OF CONTENTS

I Introduction 5

1 Tutorial Components . 6

2 Tutorial Structure . 6

II Part 1 - Heated Square Cavity Flow CFD Study 7

1 What You Will Learn . 8

2 Case Description . 8

2.1 Flow Physics . 9

2.2 Boussinesq Buoyancy Approximation - Theory 10

2.3 Geometry . 10

2.4 Fluid Properties . 10

2.5 Boundary Conditions . 10

2.6 Flow Regime . 11

2.7 Boussinesq Buoyancy Approximation – code saturne Formulation 11

3 Creating the code saturne case . 11

4 Setting up the CFD Simulation . 12

4.1 Mesh Tab . 13

4.2 Calculation features Tab . 15

4.3 Volume conditions Tab . 16

4.4 Boundary conditions Tab . 17

4.5 Time settings Tab . 18

4.6 Numerical parameters Tab . 18

4.7 Postprocessing Tab . 19

5 Programming the Boussinesq Model with User Coding 20

6 Running and Analysing the Simulation . 20

7 Post-processing the Results . 22

2

III Part 2 - Data Analysis with user subroutine 27

1 What you will learn . 28

2 Comparing the Results with Available Data 28

3 Customising ‘cs user extra operations.c’ . 30

4 Running the case . 31

5 Comparison with Benchmark Data . 31

IV References 33

1 References . 34

V Appendix 35

1 Appendix A – How to create the computational domain 36

1.1 Geometry . 36

1.2 Meshing . 36

3

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation

Page 4/37

Chapter I

Introduction

5

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation

Page 6/37

1 Tutorial Components
This tutorial makes use of:

• The SALOME [1] platform for geometry generation, meshing, and post-processing

• code saturne [2, 3] for CFD calculations

• References [4, 5, 6] for comparison with published results

To work through this tutorial you will need a computer on which these two software applications are
already available or on which you have permission to install them.

You will also need to know how to create and setup a code saturne case with the CFDStudy module.
For instructions on how to do so, please see [7].

2 Tutorial Structure
This tutorial is made of two complementary parts:

• Part 1 (Section II) illustrates how to setup, conduct and analyse a natural buoyancy CFD
simulation with temperature-dependent density using SALOME and code saturne and its user-
defined functions.

• Part 2 (Section III) illustrates how the user subroutine ‘cs user extra operations.f90’ may be used
to compute additional custom data from the calculated data in order to analyse a simulation and
compare its results with published data.

If you are already familiar with setting up CFD simulations with code saturne and SALOME and you
only want to learn how to compute custom data with ‘cs user extra operations.f90’, you may skip Part
1 and go directly to Part 2 (Section III).

Chapter II

Part 1 - Heated Square Cavity Flow
CFD Study

7

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation

Page 8/37

The preparation, simulation and analysis of the ‘Rayleigh1Million’ case of the ‘HeatedSquareCavity’
study are described in section II, from the construction of the computational domain and mesh to the
preparation, running and post-processing of the CFD simulation.

A familiarity with C programming would be desirable to understand the user coding in detail, however
it is not strictly a requirement as the user subroutines may be used in the form delivered with this
tutorial.

1 What You Will Learn
Through this tutorial, you will learn how to perform an end-to-end CFD simulation using SALOME
and code saturne. The tutorial illustrates how to:

• Create a computational domain using available shapes and groups

• Create an hexahedral mesh with different mesh refinement in the X, Y and Z directions

• Setup a code saturne [2, 3] steady-state, viscous, laminar CFD simulation with

◦ Buoyancy

◦ Heat transfer

◦ Variable density

◦ Non-slip walls with a combination of imposed heat flux and temperature

◦ Symmetry planes

• Model natural convection with the Boussinesq approximation and gravity

• Program user subroutines to:

◦ Model the density as a function of temperature

◦ Compute user defined variables and extract quantities of interest for post-processing

• Control and run the code saturne simulation

• Examine the code saturne output and results files

• Analyse and visualise the results

• Visually and quantitatively compare the case results with available data

2 Case Description
The tutorial refers to the classic natural convection benchmark cases of de Vahl Davies and co-workers
[4, 5, 6].

A viscous fluid is contained in a two-dimensional square box, or cavity (Figure II.1). All the walls of
the cavity are fixed. Whilst the horizontal walls are isolated and adiabatic (zero heat flux), the
vertical walls are kept at constant temperature. The left vertical wall is the hot wall, with a fixed
temperature of Th. The right vertical wall is the cold wall, with a fixed temperature of Tc.

The acceleration of gravity points downward in the vertical (y-axis) direction.

The temperature values form part of the specification of the problem and are specified in Sections 2.3
and 2.5 along with the box’s dimension for this tutorial.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation

Page 9/37

Figure II.1: Schematic of the 2D Heated Square Cavity.

The flow physics are described next.

2.1 Flow Physics

The problem is setup to simulate the natural convection of a fluid in the presence of a body force
(gravity) as it changes density with temperature. In this example, a basic pattern is obtained where
the fluid rises along the hot wall, is driven by its momentum along the top wall and towards the cold
wall where it cools down and moves downwards. More or less complex flow patterns may be obtained
depending on the size of the cavity, the fluid properties, and the temperature difference between the
two walls.

The dominant physics of the problem being buoyancy and heat transfer, the problem may be charac-
terised in terms of the Rayleigh number based on the cavity size, defined as the product of the Prandtl
and Grashof numbers:

Ra = PrGr =
µCp
k
.
gβ(∆T)L3

ν2
=
ρ2Cpgβ(∆T)L3

kµ
(II.1)

where ρ is the density, Cp is the specific heat at constant pressure, g is the acceleration of gravity, β

is the thermal expansion coefficient defined as β = − 1
ρ

(
∂ρ
∂T

)
p
, ∆T is the characteristic temperature

difference, k is the thermal conductivity, and µ is the viscosity. In this problem, ∆T = Th − Tc, the
temperature difference between the heated walls of cavity.

The flow patterns and characteristics of the heated cavity, such as velocity extremas and heat fluxes,
can all be classified as functions of the Ra number. Turbulent flow occurs when Ra ≥ 109.

For the purpose of this tutorial, you will perform laminar flow simulations for Ra = 106 and compare
the results to the laminar flow benchmarks of de Vahl Davis et al. [5, 6]. In this regime, the flow is
essentially incompressible. However, variations of density with temperature must be taken into account
in order to simulate buoyancy. This combination of an incompressible fluid assumption with a density
variation explicit in the gravitational term is known as the Boussinesq approximation [9], which is
described next.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 10/37

2.2 Boussinesq Buoyancy Approximation - Theory

Applying the definition of the thermal expansion coefficient to a perfect gas:(
∂ρ

∂T

)
p

= − p

RT 2
= − p

T
−→ β =

1

T
(II.2)

With the Boussinesq approximation, the density is calculated as a function of temperature, with respect
to the reference state (ρ0, T0) :

ρ− ρ0 = −ρ0β0(T − T0) β0 =
1

T0
(II.3)

This density formulation is not already coded in code saturne. Instead, you will need to program it in
user subroutine cs user physical properties.c’, as described in Sections 2.7 and 5 below.

2.3 Geometry

The cavity is a square of length L = 1.0 (m).

2.4 Fluid Properties

The fluid is given the properties of air, specified at the cold wall temperature, Tc , as listed in Table II.1
below.

Density Viscosity Specific Heat Thermal Conductivity

(kg/m3) (Pa.s) (J/kg.K) (W/m.K)

1.2039 1.83× 10−5 1004.84 0.0259

Table II.1: Fluid Properties.

The properties are calculated for a perfect gas at the reference state of T = 293.15K and P =
101325Pa, with γ = 1.4 and to ensure that Pr = 0.71, as per the benchmark specifications.

2.5 Boundary Conditions

As described in above, the domain is fully enclosed by non-slip walls. This means that, exactly at the
surface of the walls, the fluid inside the box attaches to the walls and has exactly the same velocity as
the walls. Therefore, for the momentum equations, the problem is fully defined by specifying that all
the walls are fixed. For the energy equation, the two vertical walls are kept at constant temperature
whilst the horizontal walls are adiabatic. The boundary conditions are summarised in Table II.2 below.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 11/37

Wall Velocity component(m/s) Energy

vx vy T(K) Q(J/m2)

Left 0.0 0.0 303.15 N/A

Top 0.0 0.0 N/A 0.0

Right 0.0 0.0 293.15 N/A

Bottom 0.0 0.0 N/A 0.0

Table II.2: Wall boundary conditions.

The temperature difference between the two walls is kept under 20 (K) which ensures the validity of
the Boussinesq approximation.

2.6 Flow Regime

For this tutorial, the setup is chosen so that Ra = 106, for which the flow is steady and laminar . This
Rayleigh number corresponds to the highest Rayleigh number reported in [5, 6] making comparisons
with benchmark results possible and ensuring significant fluid motion in the cavity and complex flow
patterns.

2.7 Boussinesq Buoyancy Approximation – code saturne Formu-
lation

As the Boussinesq approximation is not directly available in code saturne, it will need to be imple-
mented with user code. The actual programming of user subroutine ’cs user physical properties.c’
for this purpose is described in Section 5. Here, we describe the formulation chosen for this tutorial.

The reference state is taken at the cold wall temperature. Therefore, the density law becomes:

ρ = ρc(1− β(T − Tc)) (II.4)

Further, in order to make the simulations flexible, in this tutorial we make β a variable of the imposed
Rayleigh number, instead of using the physical definition of β as derived for a perfect gas:

β =
kµ

ρ2Cpg(Th − Tc)L3
Ra (II.5)

This way, it will be possible to simulate the flow for different Rayleigh numbers just by changing the
value of the imposed Rayleigh number in the user subroutine and without altering the geometric or
physical setup.

3 Creating the code saturne case
The ‘HeatedSquareCavity’ study and ‘Rayleigh1Million’ case are created using one of the procedures
detailed either in Part I of tutorial 0 [7] (or Figure II.2) or tutorial 1 [8]

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 12/37

Figure II.2: New study in CFDSTUDY.

The next sections describe how to setup and run the heated cavity simulation for a Rayleigh number
of 106.

4 Setting up the CFD Simulation
The CFD case could be setup using either SALOME CFDStudy module or code saturne. In this tuto-
rial code saturne is used. Open the code saturne GUI and follow the next steps. In the code saturne
GUI, create a new code saturne xml file with ‘New File’. Verify that the case directory structure has
been recognised and save the file. The default name is ‘setup.xml’.

You can now proceed with to the set up of code saturne case, in the top down order of the folders in
the left-hand side, starting with the mesh.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 13/37

4.1 Mesh Tab

You could either import meshes or generate cartesian mesh if you previously skiped Meshing creation
part.

Option 1 - Import mesches In the ’Mesh’ section add the ‘HSC mesh.med’ to the initially empty
list of meshes (Figure II.3).

Figure II.3: Selecting the ‘HSC Mesh.med’ file for the calculations.

Option 2 - Generate cartesian mesh This code saturne version allows users to generate paral-
lelepipedal cartesian mesh. This case is compatible with such option. To do so you can select Generate
cartesian mesh, fill all fields for every direction as follows :

Figure II.4: Cartesian mesh generation

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 14/37

Boundary zones Under the ’Boundary zones’ section, press ’add’ three times to add three bound-
ary conditions which are given the ’Wall’ type by default. Change the name of each wall to reflect
exactly the name of each of the walls in the mesh: ‘hot wall’, ‘cold wall’, and ‘adiabatic walls’.Boundary
zones are now fully defined (Figure II.6). Option 1 - Import mesches

Figure II.5: Defining the boundary conditions if mesh is imported

Option 2 - Generate cartesian mesh

Figure II.6: Defining the boundary conditions if mesh is generated via code saturne alternativ method

Note: If you need to define boundary faces in the selection criteria fields you can use the following
abbreviation. X0 refers to the face normal to X axis with the lowest coordinate while X1 refers to the
face normal to X axis with the highest coordinate.

X Y Z
Min X0 Y0 Z0
Max X1 Y1 Z1

No further input is necessary. Next, move to ‘Calculation features’ to specify the flow physics for
the calculations.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 15/37

4.2 Calculation features Tab

In the ’Calculation features’ folder, leave all the default values unchanged: multiphase flow, atmo-
spheric flows, combustion and the electrical and compressible models are all inactive.

Turbulence models Next, change ’Turbulence model’ to ’No model’ for this laminar flow case.

Figure II.7: Desactivating turbulence model

Thermal model In this section, choose ‘Temperature (Kelvin)’ for the ‘Thermal scalar’. This will
activate solution of the energy equation and designate Temperature as the scalar specified at the
boundary conditions (Figure II.8).

Figure II.8: Activating solution of the energy equation.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 16/37

Body forces Go to the ’Body forces’ section in order to activate the acceleration of gravity by
entering the value magnitude ‘−9.81m/s2’ for its component in the vertical (Y) direction (Figure II.9).

Figure II.9: Specifying gravity.

4.3 Volume conditions Tab

Physical properties You can specify the properties of our imaginary fluid by entering all values
from Table II.1 above in the text boxes (Figure II.12). Density paramaters declared in the GUI will be
overwritten by the user subroutine ‘cs user physical properties’. So you can leave density paramaters
as follows.

Figure II.10: Selecting fluid physical properties.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 17/37

Initialization Velocity and temperature initial values are defined in the ‘Initialization’ tab of the
‘Volume zones’ section. The flow is initially stagnant by default. To set the initial temperature,
click on the Mathematical Expression Editor button marked ‘Thermal’ and enter the temperature of
the cold wall (Table II.2) in the pop-up editor panel (Figure II.11).

Figure II.11: Specifying the initial temperature.

4.4 Boundary conditions Tab

You need to define nature for all boundary zones as follows :

Figure II.12: Assigning boundary zone nature.

Where required depending on the boundary type, the conditions applied on the region must also be
specified under the ‘Boundary Conditions’ sub-section of ‘Boundary zones’.

Boundaries of type ‘Symmetry’ do not require further specification. Therefore, they are not listed
in this section. However, ‘Walls’, may also be given a surface roughness, velocity (sliding wall) and
thermal characteristics (either heat flux or temperature).

By default, ‘Walls’ are assumed to be smooth, fixed, and adiabatic. Therefore, no further changes are
required for boundary ‘adiabatic wall’, as shown in Figure II.13(left) below. For the heated vertical
walls, click on each wall in succession, specify ‘Prescribed value’ for the type and enter the imposed
temperature in ‘Value’ according to Table II.2 and as illustrated for the ‘hot wall’ boundary in Fig-
ure II.13(right) below.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 18/37

Figure II.13: Specifying the wall boundaries. Adiabatic wall (left), Hot wall (right).

4.5 Time settings Tab

In the ‘Time settings’ section, change Constant to Time varying (adaptive) at the Time step
option. Then, increase the ‘Number of time steps’ to 450 and the ‘Maximal CFL number’ to 8.0.
leave all the other values unchanged.

Figure II.14: Defining Time settings

4.6 Numerical parameters Tab

Leave all the default settings in the ’Numerical Parameters’ section.

Move to the ‘Equation parameters’ sub-section. The ‘Solver’ tab shows that pressure, velocity and
temperature are solved for. Click on the ‘Scheme’ tab. For better convergence, and as the flow in
the cavity will involve small temperature and density variations, keep the ‘Centered’ scheme for all
variables but unselect the ‘Slope test’ (Figure II.15).

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 19/37

Figure II.15: Defining the numerical schemes.

The ‘Clipping’ tab is used to set the temperature bounds, making it possible to instruct the code to clip
the temperature to these values if it strays outside the defined range. This feature can be very useful
to prevent spurious, low or high values, from poisoning a calculation, for example when convergence
has not yet been achieved. However, it is not required for this tutorial and you may leave the default
values unchanged.

4.7 Postprocessing Tab

Surface solution control : Unselect ‘Yplus’, ‘Stress’, and ‘Tplus’ from the list of variables to output
on surfaces as they are not relevant to this tutorial. Note that both ‘Thermal flux’ and ‘Boundary
temperature’ have been automatically added to the list when the thermal model was activated. Add
‘Boundary layer Nusselt’ to the selection (Figure II.16) and save the file.

Figure II.16: Defining the output variables on surfaces.

The analysis of the wall and domain data will be done in user coding as described in section III below
and no further specification of ‘Time averages’, ‘Output control’ and ‘Profiles’ is required.

The code saturne calculation is now fully specified from the standpoint of the GUI and the file should
be saved again. However, before you can run the simulation, the density law must be programmed in
the user coding file ‘cs user physical properties.c’. This step is described next.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 20/37

5 Programming the Boussinesq Model with User Coding
To begin with, copy the sample file ‘cs user physical properties.c’ from the tutorial’s
/../HeatedSquareCavity/Rayleigh1Million/SRC/REFERENCE directory to the SRC directory itself
in order to create a local copy which you will be able to customise and which will be automatically
recompiled and linked with the ‘cs solver’ executable at run time.

Then, open your local version of the file in your editor of choice.

The files contain a number of subroutines. The specification of a physical property is done in subroutine
‘cs user physical properties’. Scrolling through this subroutine, you can see that several examples of
implementations for different physical properties are available. In this tutorial, you are going to amend
‘Example 1’ with your own implementation of the density as a function of temperature (equations (II.4)
and (II.5)). For clarity, you may remove all the other examples from the file. The customised code
available with the tutorial is already commented. Here we describe the main parts and the logic behind
them.

1. Declare your own local variables at the top, as double precision real values or integer.

2. Activate the example (replace ‘.false.’ with ‘.true.’)

3. Specify the desired Rayleigh number for the simulation

4. Compute the magnitude of the gravity vector from the information entered in the CFDStudy
module

5. Impose the domain size and wall temperatures consistently with the problem setup

6. Compute the expansion coefficient for the physical properties entered in the CFDStudy module
and the imposed Rayleigh number

7. Cycling through the internal cells of the computational domain:

(a) Compute the density as a function of temperature, using the cold wall temperature and
density as the reference state

(b) Compute the density maxima and minima for output purposes

8. Write the values of the density maxima and minima to the output file ‘listing’ with the keyword
‘cs user physical properties’ for easy identification

6 Running and Analysing the Simulation

To launch the simulation, click on the button.

A new window will open allowing you to specify some calculation options (Figure II.17). Here, you
can change the ‘Number of processes’ to those that you require for running the simulation.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 21/37

Figure II.17: Batch calculation settings.

After specifying ‘Number of processes’, press the ‘Save case and run calculation’ button to run the
simulation.

The pop-up panel for the run opens, listing in real time the different stages of the calculation, from
user-subroutines compilation to saving the results.

Wait for the calculations to complete and open the ‘listing’ file in your
‘Rayleigh1Million/RESU/DateOfRunTimeOfRun/’ directory. Verify that the residuals listed under
‘derive’ in the ‘Information on Convergence’ table have dropped several order of magnitudes for all the
solved variables (pressure, velocity, temperature), showing that the calculations have fully converged
to a steady-state.

** INFORMATION ON CONVERGENCE

--

Variable Rhs norm N_iter Norm. residual Drift Time residual

--

c Velocity 0.00000E+00 0 0.00000E+00 0.00000E+00 0.00000E+00

c Velocity[X] 0.00000E+00

c Velocity[Y] 0.00000E+00

c Velocity[Z] 0.00000E+00

c Pressure 0.00000E+00 0 0.00000E+00 -0.00000E+00 0.00000E+00

c TempK 0.40330E+03 1 0.33350E-07 0.94543E-02 0.10001E-02

--

Figure II.18: code saturne Convergence history from the ‘listing’ file, after 1 iteration.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 22/37

** INFORMATION ON CONVERGENCE

--

Variable Rhs norm N_iter Norm. residual Drift Time residual

--

c Velocity 0.14335E-07 7 0.93548E-05 0.99286E-15 0.45550E-05

c Velocity[X] 0.55852E-15

c Velocity[Y] 0.43434E-15

c Velocity[Z] 0.42593E-45

c Pressure 0.47414E-09 9 0.10387E-07 0.60185E-04 0.41853E-05

c TempK 0.31390E+01 1 0.27810E-05 0.77969E-08 0.64957E-07

--

Figure II.19: code saturne Convergence history from the ‘listing’ file, after 450 iterations.

Scanning through the listing file for the ‘cs user physical properties’ output, inspect how the density
has changed during the calculations, to verify that the user-code has been called and validate your
implementation. As required, the density has decreased as a consequence of the temperature of the
fluid increasing next to the hot wall.

INSTANT 0.100000000E+00 TIME STEP NUMBER 1

===

rho_min = 1.2038999999756232 , rho_max = 1.2038999999756232

Figure II.20: code saturne Density extremas history from the ‘listing’ file, after 1 iteration.

INSTANT 0.450000000E+02 TIME STEP NUMBER 450

===

rho_min = 1.2038603236819787 , rho_max = 1.2038997567079919

Figure II.21: code saturne Density extremas history from the ‘listing’ file, after 400 iterations.

You can now proceed with examining and post-processing the results by returning to the SALOME
platform.

7 Post-processing the Results
The post-processing is performed with the ParaView [10] visualisation package, which is integrated in
the ParaVis SALOME module. To start the analysis, select the ParaVis module from the drop-down
module selector in the top menu bar. The name of the module will add itself to the Object Browser
list and the ParaView-specific panels and menus will be activated, including a new ‘ParaView scene
viewer’ window.

Before loading the run data in ParaView, follow the steps described in Tutorial 1, Part 2 [7] to modify
the default colour schemes.

In the ‘Pipeline Browser’ panel on the left-hand side, right click and select ‘Open’ in the drop-down
menu. Point to the ‘RESULTS FLUID DOMAIN.case’ file in the RESU directory for the run you have
just concluded:

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 23/37

/../Rayleigh1Million/RESU/DateOfRunTimeOfRun/postprocessing/RESULTS FLUID DOMAIN.case.

The new Paraview object ‘RESULTS FLUID DOMAIN.case’ will now become visible in the ‘Pipeline
Browser’.

To visualise the results and compare them qualitatively to the benchmarks of [5, 6], you will need to
create isoline contours of temperature and streamlines which show the flow patterns. To create these
plots, the data output by code saturne given at the centres of the cells first needs to be interpolated
to the cell vertices. As described in Tutorial 1, Part 2 [7], with ‘RESULTS FLUID DOMAIN.case’
selected, in ‘Filters’ at the top of the Paraview window, select the ‘CellDatatoPointData‘ filter, which
will create the ‘CellDatatoPointData1’ object. Click on the object and select ‘Contours’ in the list
of filters. Again this will create a new object based on its originator, this time name ‘Contour1’
(Figure II.22).

Figure II.22: The chain of Paraview visualisation objects.

To create the temperature isolines, click on ‘Contour1’ and click on ‘Apply’ in its ‘Object Inspector’
‘Properties’ tab. Choose ‘TempK’ in the ‘Contour’ category as shown in Figure II.23 below.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 24/37

Figure II.23: Specifying the temperature isolines in the Contour filter.

In the ‘Isosurfaces’ category, press ‘Delete All’ to reset the contour levels. Then press ‘New Range’
and specify 11 levels in the pop-up window in order to display the same number of isolines as in the
plots published in [5], [6]. The correct value range should already be set in the panel. For better
rendering, the colour scale should be changed to the ‘Blue to Red’ ‘HSV’ in the ‘Display’ tab, as per
the instructions of Tutorial 1, Part 2 [7]. Add the colour scale to the plot by clicking on its icon on
the left of the top Paraview menu bar.

To complete the image, we want to superimpose the contour lines on top of the computational domain.
Select ‘CellDataToPointData1’ and ‘Solid Color’ for the display. Change the representation from
‘Surface’ to ‘Outline’ to visualise the cavity’s perimeter. Make sure that the icon in the form of an eye
to the left of ‘CellDataToPointData1’ is active for the object to be visible. If the isolines have become
invisible, unclick on the eye icons on the ‘Contour1’ and ‘CellDatatoPointData1’ objects, then make
them visible again starting with ‘CellDatatoPointData1’ to keep it in the background.

A plot of 9 visible isolines of temperature is then obtained which compares very well with the published
results of [5], [6] (Figure II.24). If required, reset the temperature scale manually for the bounds to
match exactly the range of the isolines (Figure II.23).

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 25/37

Figure II.24: Temperature isolines.

Next, prepare a visualisation of the streamlines which can also be compared directly with the bench-
mark results. The procedure to generate streamlines superimposed on a view of the computational
domain has already been described in Tutorial 1, Part 2 [7] and only the features specific to this tutorial
are detailed here.

With ‘CellDatatoPointData1’ selected in the Pipeline Browser, choose ‘Steam tracer’ from the ‘Filters’
list. Select the ‘StreamTracer1’ object in the Pipeline Browser and make it visible. In the ‘Object
Inspector’, select the ‘Properties’ tab and modify the default settings for ‘Seeds’. Change ‘Point Source’
to ‘Line Source’. The diagonal line showing the location of the streamline seeds becomes visible in the
visualisation window. For the purpose of post-processing, unselect ‘Show Line’ under ‘Seed Type’. In
the ‘Display’ tab, choose ‘Velocity’ and ‘Magnitude’ in the ‘Color’ sub-category. The streamlines show
the expected flow symmetry and very good agreement with the published benchmarks (Figure II.25).

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 26/37

Figure II.25: Streamlines coloured by velocity magnitude.

Chapter III

Part 2 - Data Analysis with user
subroutine

27

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 28/37

The first part of the tutorial describes how to setup the heated cavity case so that it can be compared
directly to published benchmark results. In the second part of the tutorial, we illustrate how users
may introduce their own source code in order to calculate additional data of specific relevance to their
case based on variables internal to code saturne and whilst the calculations are running.

1 What you will learn
Through section III, you will learn how:

• code saturne gives access to all the internal variables which are used in the calculations, whether
related to the domain geometry, such as the cells’ positions, or the physical properties or the
primitive variables for the calculations, such as density or velocity

• User subroutine ‘cs user extra operations.c’ provides an entry point to use or modify these vari-
ables at each iteration or time step

• ‘cs user extra operations.c’ may be programmed to calculate new, custom variables which are of
significance to your case based on the code’s internal variables

• To format and add the results to the ‘listing’ file for clean outputs

• To post-process the output to produce files which can be used easily to produce line plots

2 Comparing the Results with Available Data
We would now like to perform quantitative comparisons with the benchmark results [5, 6] and compare
the maximum x and y velocities at the half-way planes and the Nusselt numbers computed at the hot
wall and in the vertical mid-plane to the published values. Computing these quantities at each time
step will also give us a good indication of the convergence of the calculations.

For Ra = 106 , de Vahl Davis et al. [5, 6] report:

• Ũx,max = 64.63 at x̃ = 0.5 and ỹ = 0.85

• Ũy,max = 219.36 at x̃ = 0.0379 and ỹ = 0.5

• Nu,0 = 8.817 at x̃ = 0.0, integrated from ỹ = 0.0 to ỹ = 1.0

• Nu, 12 = 8.799 at x̃ = 0.5, integrated from ỹ = 0.0 to ỹ = 1.0

where the symbol ˜ has been used to denote non-dimensional quantities. In [5, 6], these are defined
as follows:

T̃ = T−Tc

Th−Tc
, ũ = uL

κ =
ρCp

k uL, x̃ = x
L , ỹ = y

L

In the calculations quoted by [5], [6], the full Boussinesq model is used in which the density is assumed
to be constant and its variation with temperature is taken into account only in the buoyancy term.
For consistency, we use the density at the cold wall temperature as the reference value and specify the
non-dimensional velocity vector as: ũ =

ρcCp

k uL.

The Nusselt number, Nu, is evaluated along vertical planes from the definitions:

Nu =

∫ 1

0

Q̃(
1

2
, ỹ)dỹ Q̃ = ũxT̃ −

∂T̃

∂x̃
(III.1)

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 29/37

Expressed in dimensional variables and applied at the mid-plane (x̃ = 1
2), this definition becomes:

Nu, 12 =

∫ y=L

y=0

(
ρcCp
k

Lux
T − Tc
Th − Tc

− L

Th − Tc
∂T

∂x
)
dy

L

=
1

Th − Tc

∫ y=L

y=0

(
ρcCp
k

ux(T − Tc)−
∂T

∂x
)dy

(III.2)

In discretised form on the computational mesh, the integral in Eq.III.2 will be calculated as a sum of
piecewise constant values on all the mesh faces and over the height of the mid-plane.

Nu, 12 =
1

Th − Tc

y=L∑
y=0

(
ρcCp
k

ux(T − Tc)−
∂T

∂x
)f∆y

=
1

Th − Tc

y=L∑
y=0

(
ρcCp
k

ux(T − Tc)−
∂T

∂x
)f
Sf
∆z

=
1

(Th − Tc)∆z

y=L∑
y=0

[
Sf

{
ρcCp
k

(ux)f (T − Tc)f − (
Tif2 − Tif1
xif2 − xif1

)f

}]
(III.3)

where the subscript f indicates a face value, Fm,x = (ρu • Sf)nx represents the mass flux through
the cell face in the X direction, and ∆z is the mesh thickness in the Z direction. The temperature
derivative is evaluated with a central-difference formulation across the two cells on each side of the
interface, as schematised in Figure III.1 below.

Figure III.1: Mesh cell face schematic.

The density, temperature, and velocity at the cell faces are not stored quantities in code saturne.
Therefore, they must be calculated. In this tutorial which makes use of a uniform mesh, the properties
are calculated as means across the cell face whilst the velocity is extracted from the face density and
the mass flux:

ρf =
ρif2 + ρif1

2
Ux,f =

(ρu • Sf)nx
ρf

=
Fmnx
ρf

(III.4)

The mass flux through the face, Fm,x = (ρu • Sf)nx, is one of the stored variables at boundary and
internal faces which are available in ‘cs user extra operations.c’.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 30/37

For the Nusselt number along the hot wall, the expression simplifies to:

Nu, 12 =
1

Th − Tc

∫ y=L

y=0

(−∂T
∂x

)dy

=
1

(Th − Tc)∆z

y=L∑
y=0

[
Sf

{
−(
Ti − Tb
xi − xb

)

}]

=
−1

(Th − Tc)∆z

y=L∑
y=0

[
Sf

{
Ti − coefap(b)

xi − xb

}]
(III.5)

The temperature at each boundary face is computed based on code saturne ’s ‘coefap’ boundary
conditions definition array.

The implementation of the formulae in the user-defined subroutines is described next.

3 Customising ‘cs user extra operations.c’
Similar to the steps described in Section II for ‘cs user physical properties.c’, start by copying:

/HeatedSquareCavity/Rayleigh1Million/SRC/REFERENCE/cs user extra operations.c

to your local SRC directory:

/HeatedSquareCavity/Rayleigh1Million/SRC/.

to create a local copy which you will be able to customise and which will be automatically recompiled
and linked with the ‘cs solver’ executable at run time.

The customised code available with the tutorial is already commented. Here we describe the main
parts and the logic behind them.

1. Declare your own local variables at the top, as double precision real values or integer.

2. Collect information about the case, geometrical and physical. This makes the subroutine setup
independent and flexible:

(a) Identify wall faces

(b) Find their position and the temperature which has been ascribed to them

(c) From their position, compute the size of the domain (assumed to be of square shape) and
the position of the vertical and horizontal mid-planes

3. Compute the Nusselt number for the left vertical wall by cycling through the faces for that wall,
identified using a combination of wall-boundary face indices and their boundary condition

4. Compute the Nusselt number and the maximum x-axis velocity in the vertical mid-plane

(a) Cycling through the internal faces, identify the faces which join cells on each side of the
mid-plane. Because of inevitable numerical inaccuracies, this is more reliable than finding
faces which are exactly at the mid-plane.

(b) Compute the face values of density, temperature and velocity

(c) Compute the face contribution and accumulate the Nusselt number

(d) Compute the maximum x-axis velocity, store its non-dimensional value and its location

5. Compute the maximum y-axis velocity in the horizontal mid-plane

(a) Cycling through the internal faces, identify the faces which join cells on each side of the
mid-plane. Because of inevitable numerical inaccuracies, this is more reliable than finding
faces which are exactly at the mid-plane.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 31/37

(b) Compute the face value of density and velocity

(c) Compute the maximum y-axis velocity, store its non-dimensional value and its location

6. Output the Nusselt numbers, and the maximum velocities and their locations in adimensional
form in the ‘listing’ file. The output is formatted and uses the keyword ‘us extraops’ to flag the
data in ‘listing’.

4 Running the case
To run the case, simply repeat the calculations that are described in Section II. ‘cs user extra operations.c’
will automatically be detected, compiled and linked with the code saturne executable.

At the end of the calculation, open the ‘listing’ file and look for the keyword ‘us extraops’. Data should
appear as below:

** Heated Cavity Solution **

Iter Nu_mid Nu0 Ux_max y(Ux_max) Uy_max x(Uy_max)

1 0 0.1554E+03 0 0.00625 0 0.00625

Figure III.2: Output from ‘cs user extra operations.c’, after 1 iteration.

** Heated Cavity Solution **

Iter Nu_mid Nu0 Ux_max y(Ux_max) Uy_max x(Uy_max)

450 1.6422E+01 0.9162E+01 0.6635E+02 0.8563E+00 0.2209E+03 0.3125E-01

Figure III.3: Output from ‘cs user extra operations.c’, after 450 iterations.

Aside from direct, quantitative comparisons with existing data, computing representative variables for
a case is also very useful to evaluate calculation convergence and stability. For example, in Linux you
may use the command:

grep -n us_extraops /../listing > HeatedSquareCavity.txt

which will output all the data in the text file specified. The file may then be edited to remove
‘us extraops’ and line numbers and imported in a plotting package to graph the evolution of all the
variables as a function of the number of iterations.

5 Comparison with Benchmark Data
The calculated values at the last iteration (450) are compared with the published data in Table III.1
below, showing an excellent quantitative agreement.

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 32/37

Nu 1
2

Nu0 ũmax ỹmax ṽmax x̃max

code saturne 8.99 8.99 65.12 0.86 218.7 0.0313

Benchmark 8.8 8.82 64.63 0.85 219.36 0.0379

Error (%) 2.16 1.93 0.76 1.2 −0.3 17.4

Table III.1: Comparison between code saturne ’s and the benchmark results.

The error is larger for the position of the maximum Y-axis velocity in the horizontal mid-plane.
However, the benchmark maximum values were obtained by fourth-order interpolation whereas here
they are taken at the centre of the cell faces. The absolute difference between the code saturne and
benchmark value is equal to 0.0379− 0.0313 = 6.6× 10−3, which is less than the interval size between
two cell centres, ∆x̃ = 1

L
L
80 = 1.25 × 10−2, and shows that the location of the maximum is captured

accurately in code saturne.

To test your code, you are encouraged to repeat the tests for the lower values of Ra = 104, Ra = 105

which are also listed in [5, 6].

Chapter IV

References

33

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 34/37

1 References
[1] www.salome-platform.org

[2] F. Archambeau, N. Méchitoua, M. Sakiz,
code saturne: a Finite Volume Code for the Computation of Turbulent Incompressible Flows -
Industrial Applications,
International Journal on Finite Volumes, Vol. 1, 2004.

[3] www.code-saturne.org

[4] G.D. Mallinson and G. de Vahl Davis,
Three-dimensional natural convection in Box: a numerical study,
J. Fluid Mech., Vol. 83, part 1, pp. 1-31, 1977.

[5] G. de Vahl Davis and I.P. Jones,
Natural Convection in a Square Cavity: A Comparison Exercise,
International Journal for Numerical Methods in Fluids, Vol. 3, pp 227-248, 1983.

[6] G. de Vahl Davis and I.P. Jones,
Natural Convection of Air in a Square Cavity: A Benchmark Numerical Solution,
International Journal for Numerical Methods in Fluids, Vol. 3, pp. 249-264, 1983.

[7] EDF,
Tutorial 0: Shear Driven Cavity Flow,
code saturne Tutorial Series

[8] EDF,
Tutorial 1: Simple Junction,
code saturne Tutorial Series

[9] P. Oosthuizen and D. Naylor,
Introduction to Convective Heat Transfer Analysis,
WCB/McGraw-Hill, 1999

[10] U. Ayachit,
The ParaView Guide: A Parallel Visualization Application,
Kitware, 2015, ISBN 978-1930934306

www.salome-platform.org
www.code-saturne.org

Chapter V

Appendix

35

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 36/37

1 Appendix A – How to create the computational domain
The computational domain is created with the Shaper module of SALOME. As the geometry is the
same as for tutorial [7] (shear driven 2D cavity), in what follows the geometry creation will be referring
to this tutorial and only the elements which differ from the setup of Tutorial 0 will be highlighted.
Therefore, if you are not already familiar with Shaper, you should first go through Tutorial 0 [7].
Note : Another technical meshing option could be consider via the Generate cartesian mesh option
in code saturne. See II.4.

1.1 Geometry

Follow the same procedure as explains in [7]:

• Create a thin box of dimensions 1.0 m x 1.0 m x 0.01 m

• Create groups including faces and edges to simply boundary conditions settings

This time you need to create groups entitled Adiabatic Walls, Hot Wall and Cold Wall ans Symme-
try Walls based on II.1. See the following figure.

Figure V.1: Groups

You could save the file as HeatedSquareCavity before moving to Meshing procedure.

If your results are like Figure ??, ‘HeatedSquareCavity’ is now ready to be meshed. Save the file and
proceed to Meshing.

1.2 Meshing

Switch to the meshing module, which opens the ‘VTK scene viewer’. Create the ‘Mesh’ and rename
it ‘HSC mesh’. Similarly to Tutorial 0 [7], create a uniform, rectangular mesh with one cell in the Z

EDF R&D code saturne version 8.0 tutorial:
Heated Square Cavity Flow

code saturne
documentation
Page 37/37

direction by following the methodology described in Tutorial 0 [7]. However, this time specify 80 cells
for the discretisation along the ‘X’ and ‘Y’ edges, as shown in Figure V.2 below.

Figure V.2: Edge discretisation for the edges along the X and Y directions.

When all the sub-meshes have been specified, right-click on ‘HSC mesh’ and select ‘Compute’ to
generate the mesh.

The mesh is now completed and the different boundaries may be assigned different colours for visual-
isation, as described in Tutorial 0 [7].

Save the SALOME file and export the mesh file in ‘.med’ format as per the methodology detailed in
Tutorial 0 [7]. The file should be placed in the ‘MESH’ directory of the ‘HeatedSquareCavity’ study,
where code saturne will expect the file to be situated by default.

For the file name, choose ‘HSC mesh’; the ‘.med’ extension is automatically added. You are now ready
to set up the CFD simulation with the CFDStudy module.

	Flyleaf
	Table of contents
	I Introduction
	Tutorial Components
	Tutorial Structure

	II Part 1 - Heated Square Cavity Flow CFD Study
	What You Will Learn
	Case Description
	Flow Physics
	Boussinesq Buoyancy Approximation - Theory
	Geometry
	Fluid Properties
	Boundary Conditions
	Flow Regime
	Boussinesq Buoyancy Approximation – code_saturne Formulation

	Creating the code_saturne case
	Setting up the CFD Simulation
	Mesh Tab
	Calculation features Tab
	Volume conditions Tab
	Boundary conditions Tab
	Time settings Tab
	Numerical parameters Tab
	Postprocessing Tab

	Programming the Boussinesq Model with User Coding
	Running and Analysing the Simulation
	Post-processing the Results

	III Part 2 - Data Analysis with user subroutine
	What you will learn
	Comparing the Results with Available Data
	Customising ‘cs_user_extra_operations.c’
	Running the case
	Comparison with Benchmark Data

	IV References
	References

	V Appendix
	Appendix A – How to create the computational domain
	Geometry
	Meshing

