Porous modelling of AGRs pod boilers with *Code_Saturne*.

Jacopo De Amicis, Juan Uribe

EDF Energy R&D UK Centre, Modelling and Simulation Centre, University of Manchester

02 April 2015
Context

Life extension of AGRs in the framework of target 0/9/65:

- 0 harm;
- 9 years life extension;
- 65 TWh/y generated within the life extension.
Context

Life extension of AGRs in the framework of target 0/9/65:

- 0 harm;
- 9 years life extension;
- 65 TWh/y generated within the life extension.

Critical components for life extension:

- graphite bricks in nuclear reactors;
- pod boilers.
Context - Pod Boilers

Critical aspects:

- temperatures at material transitions welds
Critical aspects:

- temperatures at material transitions welds
- temperatures of 9% Cr tubes fin tips
Critical aspects:

- temperatures at material transitions welds
- temperatures of 9% Cr tubes fin tips
- steam superheat temperature difference
Objectives

Development of a simplified 3D model of the gas side AGRs Pod Boilers.

Information provided by the model:

- fluid flow and heat transfer;
Objectives

Development of a simplified 3D model of the gas side AGRs Pod Boilers.

Information provided by the model:

- fluid flow and heat transfer;
- temperature distribution in the Pod Boiler;
Objectives

Development of a simplified 3D model of the gas side AGRs Pod Boilers.

Information provided by the model:

- fluid flow and heat transfer;
- temperature distribution in the Pod Boiler;
- investigation of boiler spine thermocouples;
Objectives

Development of a simplified 3D model of the gas side AGRs Pod Boilers.

Information provided by the model:

- fluid flow and heat transfer;
- temperature distribution in the Pod Boiler;
- investigation of boiler spine thermocouples;
- effect of modifications to original configuration.
Methodology

Very complex geometry, direct CFD simulation non viable
($\gg 10^9$ cells, months of CPU time on supercomputer)
Methodology

Very complex geometry, direct CFD simulation non viable
($\gg 10^9$ cells, months of CPU time on supercomputer)

\[\downarrow \]

Porous model of the whole Pod Boiler
($\approx 10^5$ cells, hours of CPU time on desktop machine)
Methodology

Very complex geometry, direct CFD simulation non viable
(\(\gg 10^9\) cells, months of CPU time on supercomputer)

\[\Downarrow\]

Porous model of the whole Pod Boiler
(\(\approx 10^5\) cells, hours of CPU time on desktop machine)

Structure of the model:

- general modelling with Code Saturne;
- mesh and porosity information from plant data;
- correlations and detailed CFD submodels for drag coefficients and heat transfer;
- coupling between Code Saturne and NUMEL for heat exchange.
NUMEL is a modular 1D finite-differences code here used to solve the water side of the Boiler;
NUMEL is a modular 1D finite-differences code here used to solve the water side of the Boiler;

- it solves mass, momentum and energy conservation in the whole water domain;
NUMEL is a modular 1D finite-differences code here used to solve the water side of the Boiler;

it solves mass, momentum and energy conservation in the whole water domain;

the domain is divided into homogeneous regions;
Coupling with NUMEL - What is NUMEL?

- NUMEL is a modular 1D finite-differences code here used to solve the water side of the Boiler;
- it solves mass, momentum and energy conservation in the whole water domain;
- the domain is divided into homogeneous regions;
- each region has a number of nodes, the region boundary points are shared with the adjacent regions;
NUMEL is a modular 1D finite-differences code here used to solve the water side of the Boiler;

it solves mass, momentum and energy conservation in the whole water domain;

the domain is divided into homogeneous regions;

each region has a number of nodes, the region boundary points are shared with the adjacent regions;

each point must be given a gas temperature as a thermal boundary condition.
Coupling with NUMEL - Locating the tubes
Coupling with NUMEL - Locating the tubes
The coupling on the Code Saturne consists in:

- reading the profiles of temperatures given by NUMEL, tube by tube;
- interpolate the temperatures and impose them in the cells touched by the tube;
- impose heat sinks proportional to the difference of temperature in the cells;
- compute temperatures to be used as gas boundary condition in NUMEL.
The coupling on the Code Saturne consists in:

- reading the profiles of temperatures given by NUMEL, tube by tube;
- interpolate the temperatures and impose them in the cells touched by the tube;
- impose heat sinks proportional to the difference of temperature in the cells;
- compute temperatures to be used as gas boundary condition in NUMEL.
The coupling on the Code Saturne consists in:

- reading the profiles of temperatures given by NUMEL, **tube by tube**;
- interpolate the temperatures and impose them in the cells touched by the tube;
The coupling on the Code Saturne consists in:

- reading the profiles of temperatures given by NUMEL, **tube by tube**;
- interpolate the temperatures and impose them in the cells touched by the tube;
- impose heat sinks proportional to the difference of temperature in the cells;
The coupling on the Code Saturne consists in:

- reading the profiles of temperatures given by NUMEL, **tube by tube**;
- interpolate the temperatures and impose them in the cells touched by the tube;
- impose heat sinks proportional to the difference of temperature in the cells;
- compute temperatures to be used as gas boundary condition in NUMEL.
Boiler Spine
Boiler Spine
Heat conduction model with thermal radiation in SYRTHES;
Boiler spine

- Heat conduction model with thermal radiation in SYRTHERS;
- Coupling of the porous model with a heat conduction model in SYRTHERS.
Boiler spine

- Heat conduction model with thermal radiation in SYRTHES;
- coupling of the porous model with a heat conduction model in SYRTHES.
- inclusion of an explicit CFD model of the spine gap.
Main results

Cold plume effect:

hot main flow from the reactor;
cold side flow from the bottom of the boiler;

(Boundary conditions here used are not representative of the real conditions of the boilers)
Main results

Cold plume effect:

liner flow entrained by main flow into Reheater;

colder gas up to the 4th row of the Reheater;

(Boundary conditions here used are not representative of the real conditions of the boilers)
Main results

Cold plume effect:

Cold plume dependent on the parameters of the model;

(Boundary conditions here used are not representative of the real conditions of the boilers)
Main results

limited impact of cold plume on the spine;

(Boundary conditions here used are not representative of the real conditions of the boilers)
Main results

spine flow important also at the bottom of the gap;

(Boundary conditions here used are not representative of the real conditions of the boilers)
Conclusions

- equivalent 3D model of complex geometry;
Conclusions

- equivalent 3D model of complex geometry;
- results in hours rather than weeks or months;
Conclusions

- equivalent 3D model of complex geometry;
- results in hours rather than weeks or months;
- double coupling of Code_Saturne with NUMEL and SYRTHES;
Prospects

- full analyses of the pod boiler;
Prospects

- full analyses of the pod boiler;
- extension to dynamic stability analyses or transient analysis;
Prospects

- full analyses of the pod boiler;
- extension to dynamic stability analyses or transient analysis;
- analyses of modifications of the pod boiler;
Prospects

- full analyses of the pod boiler;
- extension to dynamic stability analyses or transient analysis;
- analyses of modifications of the pod boiler;
- extension of the model to other boiler configurations.
thank you