Buoyancy-Driven Flow in AGR Horizontal Annular Penetration Cavity
D. Ammour*, T. Craft, H. Iacovides, Mod. & Sim. Centre, MACE, The U. of Manchester

- In AGCRs, boiler penetrations protrude horizontally out of vessel. Smaller tubes bring CO2 from vessel, surrounded by hot CO2, flow driven by natural convection $Ra = 1.5 \times 10^6$
- No measured data => highly resolved LES to predict heat transfer to/from the central tube, and how far the flow goes inside the penetration.
- LES gives large-scale structures also captured by RANS models in a time-dependent flow solver.
- The overall heat transfer rate is fairly constant along the penetration length, with higher values towards open end.
- The temporal power density spectra show a range of dominant peaks: different unsteadiness concentrated in the bottom half of the penetration.
- Reasonable agreement between the LES (a) and URANS schemes, including for local Nusselt number. Low-Re SST (b) requires a finer mesh than k-eps (c) =>
- Many validation test cases, inclined cavities, co-axial pipes available in thesis.