2014 Code_Saturne User Meeting

EDF – R&D
Chatou, France

02 April 2014
Development and use of *Code_Saturne* at Renuda
For further information please contact:

Brian ANGEL
Director
RENUDA France

brian.angel@renuda.com
T: +33 4 27 49 26 38

Nicolas TONELLO
Director
RENUDA UK

nicolas.tonello@renuda.com
T: +44 20 33 71 17 09

www.renuda.com
1. Introduction
2. Software Development
3. Verification and Validation
4. Applications
5. Summary and Perspectives
1. Introduction
• *Code_Saturne* and its ecosystem of tools/complementary software are used extensively by Renuda

• The CFD solver is part of an open source calculation chain
 o SALOME for CAD, volume meshing and results analysis
 o Syrthes for conjugate heat transfer

• Activities
 o Code development
 o Code verification and validation
 o Industrial projects
 o Internal Renuda projects

• This presentation presents brief examples of this work
2. Software Development
• **Code developed from user subroutines** for more high-level functionalities. Customisation purposes

• For example
 - I/O: initialisation, outputs
 - Properties calculation
 - e.g. Multiphase or combustion

• **Code developments by direct alteration of the source** for more permanent changes and when required by the functionalities themselves

• For example
 - Modification of the pressure calculation
 - Modification of the Lagrangian model
Development Context and Procedures

- Implemented within the general code, *to add additional functionality rather than creating a special version*

- Code obtained from the online repository

- Creation of optimised and debug ports
 - Compatible with free debuggers such as dbx
 - ‘make’ procedures are clear and efficient

- Test case creation and verification within the OSS chain: SALOME and ParaView

- All the tools are there to carry out professional development
 - If you know F90 and C..
• Design and optimise systems to harness wave and tidal energy, such as hydro-turbines

• Work carried out with The University of Edinburgh as a partner of the Energy Technology Institute (ETI) – PerAWaT Project
Level Set Implementation

• Single fluid model
 o Free surface is captured by a scalar, the distance function
 o Fluid properties are computed based on the function’s value

• Implementation is a combination of
 o Changes to the core subroutines to handle the time-varying density and scalar advection
 o Modification of the pressure solution equation
 o User coding for initialisation, code settings, and properties update

 o Renuda also added surface tension
 o The CSF model has been implemented
Conclusions

- The Level Set version makes it possible to handle free surface flows with the very large density ratios required for marine applications and above (> 1000)
- Good quantitative validation have been obtained for theoretical cases
- The Level Set functionality benefits directly from the already available framework, such as parallel capabilities
- The code was also tested with viscous and turbulent flows

Perspectives

- Further developments to bring in redistancing or similar. Hybrid methods? The framework could also be adapted to VOF
- Boundary conditions
• Rust micro-particles in heat exchangers
• Work carried out with EDF R&D

• Particles sizes of the order of microns
 • Deterministic approach is unrealistic
 • Stochastic models based on the academic research of M. Mohaupt\(^1\)
 • Diffusive regime, Brownian

\(^1\) M. Mohaupt, Modélisation et simulation de l’agglomération des colloïdes dans un écoulement turbulent, Thèse de doctorat, INPL, 31 octobre 2011
Particulate Collision Modelling

- Binary collisions
- A posteriori models, with a bias towards one particle

- Boundaries introduce significant complexities
- Dependency of particulates on one another
• Data structure for collision sets
Conclusions

- The two stochastic models were implemented
- The new collision structures should provide a flexible data structures for collision modelling with these or other models
- Likewise for the subset structures
- Interaction between the F90 and C code can be a source of complexity

Perspectives

- Further runs
 - Validation
 - Derive macro-models – collision kernels
- Parallelisation
- Generalise the use of the subset data structures to the general Lagrangian algorithm
3. Verification and Validation
Verification and Validation

- *Code_Saturne* has been tested using a variety of validation and verification test cases

- **Validation**
 - Turbulent flat plate flows and impinging jet flows
 - Buoyancy driven flows
 - Mixed hot and cold water pipe flow
 - Buoyancy driven flows (comparison with DNS)
 - Flow in a reactor core mock-up

- **Verification**
 - Poiseuille and Couette type flows
Verification and Validation

- Mixing of hot and cold water streams

- SALOME for volume meshing – block structured hex mesh
- Unsteady flow calculation
- Both k-ε and LES turbulence modelling
- ρ, μ, C_p and k = f(T)
 - User routines for physical properties and post processing
Verification and Validation

- Mixing of hot and cold water streams

k-ε model

Time Average LES

Instantaneous LES

Horizontal measuring line at x=3.6D

Vertical measuring line at x=1.6D
4. Applications
Applications

- *Code_Saturne* has been used for modelling several industrial applications
 - Accidents in reactor buildings
 - Hydrogen dispersion
 - Combustion of heavy fuel oil
 - Heat recovery system
Accidents in Reactor Buildings

- EDF is looking to put in place a methodology for simulating nuclear accidents in reactor buildings
 - SALOME and Code_Saturne
- Initial project to assess
 - SALOME meshing capability
 - Code_Saturne for running calculations on a variety of mesh / cell types
 - Experimental tests and actual reactor buildings
 - PANDA, PANDA ST1_7 and the P’4 reactor building
Accidents in Reactor Buildings

- Three types of volume mesh

Cubic
Block structured
Tet
Accidents in Reactor Buildings

- PANDA test case results

Tetrahedral Mesh

Block Hex Mesh

$\begin{align*}
&\text{t} = 0s \quad \text{t} = 50s \quad \text{t} = 150s \quad \text{t} = 300s \quad \text{t} = 1000s \quad \text{t} = 4000s \\
&\text{FLUID SOLUTIONS} \quad \text{WWW.RENUDA.COM} \\
\end{align*}$
Accidents in Reactor Buildings

• Simulation of hydrogen dispersion
 o Automatic meshing strategies - snappyHexMesh
Accidents in Reactor Buildings

• Conclusions
 o First computations with different mesh types has given encouraging results that are comparable with cubic mesh results
 o The analysis needs to be completed using a stratified multi-species flow at t = 0s
 o Enhancements to the SALOME cubic meshing method have been proposed

• Perspectives
 o Study mesh sensitivity on more complex configurations such as reactor buildings
 o Generate all meshes using SALOME meshing technology and propose enhancements appropriate for modelling accidents in reactor buildings
5. Summary and Perspectives
Summary

• Renuda has developed, validated and used *Code_Saturne* over the last 12 months for a variety of applications
 o Used in conjunction with SALOME and Syrthes

• Software developments have been carried out within user-subroutine and at kernel level to add modelling capabilities whilst keeping a general CFD solver
 o *Code_Saturne* offers a strong development platform within the required, complete ecosystem
 o Further steps would involve modifying the GUI as well

• Validation and verification programme has shown that *Code_Saturne* can be used to simulate a variety of flows with confidence

• Industrial applications have shown that *Code_Saturne* can be used to model complex flows
Perspectives

• Open source CFD is becoming more accepted in industry as more companies are prepared to exploit this option
 o Significant cost reductions
 o Undertake more complex simulations

• The SALOME – \textit{Code\textsubscript{Saturne}} – Syrthes open source calculation chain can be considered to be a viable alternative to commercial codes for certain applications

• Improvements desired
 o CAD, Volume meshing
 o \textit{Code\textsubscript{Saturne}}
 o Additional capabilities
 o Documentation
 o Post processing