
LATEST NEWS 
AND PROSPECTS 
IN Code_Saturne

From version 3.0 to 3.3, on the road to 4.0

April 2 2014



|  2

Code_Saturne versioning scheme reminder

Code_Saturne user ’s meeting  |  04/2014

 From version 2.0 on, different kinds of versions “x.y.z” are released
 Production version every two years (x increasing)

• With the release of a Verification & Validation summary report

 An intermediate version every six months (y increasing)
• With non-regression tests to ensure the code quality

 Corrective versions when needed (z increasing) 
• To make sure the users are provided with bug fixes and ports
• XML and user subroutines remain compatible, so upgrading is encouraged

br
an

ch
es

2.0.1 2.0.2

trunk 2.1 2.2 2.3 3.0 4.0

2.0.z
3.0.1

2.1.1

2.2.1
2.3.1

2.0



|  3

Code_Saturne version history

 Pre-open source versions
 1998: prototype (long time EDF in-house experience, ESTET-ASTRID, N3S, ...)

 2000: version 1.0 (basic modeling, wide range of meshes)
• 2001: Qualification for single phase nuclear thermal-hydraulic applications

 2004: version 1.1 (complex physics, LES, parallel computing)

 2006: version 1.2 (state of the art turbulence models, GUI)

 Open source (GPL) versions (retired, old stable, stable, intermediate)

 2008/11: version 1.3 (massively parallel, ALE, code coupling, ...)
• 2008/11: version 1.4 (parallel I/O, multi-grid, atmospheric, cooling towers, ...)

 2010/08: version 2.0 (parallel joining, code coupling, easier install, extended GUI)
• 2011/10: version 2.1 (parallel mesh partitioning, dynamic memory, improved scripts, coupling with Syrthes 4)
• 2012/03: version 2.2 (EBRSM, ALE improvements)
• 2012/07: version 2.3 (many physical model additions, Cp handling, BC formulation changes, coupled velocity)

 2013/03: version 3.0 (AFM, DFM thermal wall laws)

• 2013/06: version 3.1 (Lagrangian additions and post-processing, k-ω robustness, radiative quadratures)
• 2013/12: version 3.2 (Joining-based rotor-stator, Lagrangian coal combustion, atmospheric chemistry)

Code_Saturne user ’s meeting  |  04/2014



|  4

Code_Saturne version 3.0

 Released March 22, 2013
 Just before last year’s user meeting
 Now at patch release 3.0.3

• 3.0.4 will be released very soon

 Check NEWS file to see if you should upgrade
• http://code-saturne.org/viewvc/saturne/branches/Version3_0/

 Described in detail in 2013 user meeting

PRODUCTION VERSION

 Current stable
• recommended for most studies 

under quality assurance
• will become “old stable” when 

version 4.0 is released (April 2015)
• will be maintained until release of 

version 5.0 (2017)

 Old stable is 2.0
• will be retired when 4.0 is released 

(April 2015)

Code_Saturne user ’s meeting  |  04/2014



|  5

Code_Saturne Version 3.1 (1/4)

 Released June 2013
 shortly after version 3.0
 contains mainly developments that could have gone into 3.0, but did not make it in time 

before feature freeze

 General changes
 documentation updates
 improve k-ω robustness with low y+

• fixes longstanding bug, detectable on diffuser test case
– versions 1.3 and 2.0 forced relaxation to work around this, at the expense of unsteady computations
– version 3.0 identified the issue, forcing relaxation only in affected cases

» fix is not merged into 3.0, as it is deemed too intrusive

 hybrid parallelism (OpenMP)
• add numbering options for threads

 optional support for NEPTUNE’s Equations of State Library

 radiative model
 add new S4 S6 S8 and Tn quadratures

Code_Saturne user ’s meeting  |  04/2014



|  6

Code_Saturne Version 3.1 (2/4)

 Coal combustion
 increase max coals to 5, add coke composition
 remove old coal combustion model

 add a drift model
 first used for coal combustion
 general framework (radionuclide transport, …)

Code_Saturne user ’s meeting  |  04/2014



|  7

Code_Saturne Version 3.1 (3/4)

 GUI and scripts
 prepare for Windows (with features useful for all, and essential to windows population)

• handle whitespace in paths
• cases may now be created (not just edited) directly from the GUI

 using CFD_Study, display the monitoring points on the SALOME VTK viewer

 Lagrangian model
 add zero-flux particle boundary condition to be applied with Eulerian symmetries.
 with combustion,  use a formulation of the coal

density local to a particle and improve the numerics.
 add a particle resuspension model.
 implement a wall law for fluid velocity, k and ε for

the deposition sub-model
 implement a BC based on the DLVO theory
 full rewrite of the postprocessing output

• now based on the standard mechanisms ;
no restrictions for parallel runs

• trajectories are now really usable
Code_Saturne user ’s meeting  |  04/2014



|  8

Code_Saturne Version 3.1 (4/4)

 Autovnv improvements
 global postprocessing
 prescribe results name,
 many other useful additions

 Automatic installer changes
• The installer is now in the top-level directory, and does not download Code_Saturne anymore

– download code sources code_saturne_x.y.z.tar.gz file first, the installer is inside

• The setup file template is generated by a first call to install_saturne.py.
• MPI should now be installed upstream, but PT-SCOTCH and ParMetis are now handled.

 For more details, see NEWS file in:
 http://code-saturne.org/viewvc/saturne/branches/Version3_1/

Code_Saturne user ’s meeting  |  04/2014



|  9

Code_Saturne Version 3.2 (1/6)

 Released December 2013

 General changes
 Remove uncoupled velocity solver (ivelco = 0), deprecated since version 3.0
 add a new Boundary Condition

type for free inlet
• can be used for natural

convective flows in free
atmosphere for instance
(plumes, flame, etc.).

 Turbulence:
• Major change in Rij-epsilon models:

– the Daly Harlow model on the diffusive term is now by default for SSG
– the GGDH brick is used for all the models (LRR, SSG, EBRSM)
– the "diffusivity_tensor" is added as a field key word
– Rij-epsilon routines are cleaned up and documented using Doxygen.

 Turbomachinery modeling:
 add a rotor-stator model based on mesh joining.

• see specific presentations on this subject today

Code_Saturne user ’s meeting  |  04/2014



|  10

Code_Saturne Version 3.2 (2/6)

 Thermal model
 the thermal model is now defined by the "itherm" keyword/variable, which replaces 
iscsth(iscalt).
• In the case of temperature, the scale used is defined by a separate variable (itpscal).

For additional user scalars, a new array iscacp is defined, such that iscacp(iscal) defines 
whether the scalar behaves like a temperature, so the possibility of modeling multiple passive 
"temperatures" is not lost.

 This change allows for better consistency between the standard and specific      
physics, as the thermal variable is now always a "model" scalar, and user scalars 
remain separate.
• so nscapp = 1 using a thermal model but no specific physical model
• It also allows better consistency between the GUI and user subroutines logic
• It also allows querying

the thermal model with
one less indirection.

Code_Saturne user ’s meeting  |  04/2014



|  11

Code_Saturne Version 3.2 (3/6)

 Atmospheric module:
 add gazeous chemistry models.
 plug the SIze REsolved Aerosol Model (SIREAM).
 see general presentation on atmospheric module today

 Particle tracking module:
 add a modeling of the drying phase of the coal particle combustion
 add a new boundary condition to simulate coal fouling mechanism
 implementation of a particle discretization in the coal combustion model:

• backwards compatibility is ensured (set nlayer = 1)
• computation of intra-particle thermal gradients
• adaptation of chemical source terms to temperature discretization
• reworked the particle injection for coal (clear difference between standard and user-defined coal 

composition)
• adapted the particles and trajectories export routines to be able to output variable information for a 

specific layer

Code_Saturne user ’s meeting  |  04/2014



|  12

Code_Saturne Version 3.2 (4/6)

 Compressible module:
 change the compressible algorithm from a density formulation to a pressure formulation
 merge the compressible algorithm with the coupled velocity components algorithm
 adapt standard operators (codits, bilsc*) in order to make them compatible with the      

compressible algorithm
 implement analytical flux boundary condition

• plus a new total enthalpy / total pressure boundary condition with a fixed point algorithms, 
generalization of the subsonic outlet

 new set of BC coefficients for the convection operator for compressible flows
 density is now a property only, not a solved variable

 Coal combustion module:
 added new NOx model for coal combustion;
 introduction of the coal thermal conductivity

• for the calculation of intra particle gradients in particle-tracking module

Code_Saturne user ’s meeting  |  04/2014



|  13

Code_Saturne Version 3.2 (5/6)

 Documentation
 moved tutorials outside the codebase

• this allows looser synchronization with the code base, as tutorials may be updated somewhat less 
frequently

• for non-EDF users, pdf’s are available on the web site; to contribute, please contact us

 Progress in Doxygen documentation
• Fortran modules
• user examples
• Fortran routines
• install Doxygen documentation from tarball (as built by "make dist")

 Post-processing
 Added experimental ParaView Catalyst co-processing output option

• developed with the SALOME visualization team
• see STFC presentation today

 for CFD_Study
• update to PARAVIS instead of VISU.

Code_Saturne user ’s meeting  |  04/2014



|  14

Code_Saturne Version 3.2 (6/6)

 Programming changes
 moved to PyQt API 2 to plan for future Python version upgrades

• leads to some issues in complex combinations, such as with SALOME, so version 3.3 will add a 
compatibility layer to handle both API 1 and API 2

 replaced propfa and propfb arrays by distinct fields
• use field_get_val_... functions to access values
• for cell properties, more work remains before propce may be removed, but use of field API is 

recommended to avoid requiring future changes

 added cs_c_bindings.f90 module for general definitions of C bindings
• For large modules, it is recommended to use separate files (see field.f90 and post.f90 for 

example), but for smaller modules, this avoids requiring the definition of specific module files

 added cs_field_pointer API for quick access to main fields from C
 moved the convection-diffusion balance (bilsc2.f90) to C

 For more details, see NEWS file in:
 http://code-saturne.org/viewvc/saturne/branches/Version3_2/

Code_Saturne user ’s meeting  |  04/2014



|  15

Code_Saturne Version 3.3 (1/2)

 Version 3.3 to be released late April 2014
 Automated test cases will be run

 Lagrangian module
 Improvements in roughness and 

resuspension models
• added a user keyword for roughness surface 

(calculation of the energy barrier in the case of 
rough wall)

• consideration of the electrostatic force in the 
adhesion force for the resuspension

• mass flux update for particles rolling on the wall

 Atmospheric module
 Add imbrication module (boundary 

condition coefficients interpolation)

 Rewrite of temporal moments handling.
 Moments handling is now more modular,   

and allows for variances in addition to 
means.

 Numerically stable recurrence   relations 
are used to update moments, whose 
values are now directly usable at any given 
time. 
• Weight accumulators are handled inside the 

module, and not seen as fields anymore.

 Also, support for user functions is added.
 Currently, this is mapped to the legacy 

data setup, and tested only in this context, 
but the added functionality will be exposed 
with future changes in case setup.

Code_Saturne user ’s meeting  |  04/2014



|  16

Code_Saturne Version 3.3 (2/2)

 Code Architecture
 Sharing in C of many Fortran keywords
 Migration to C of many finite volume 

operators
• allows for future increased sharing of code with 

NEPTUNE_CFD
• C’s local variable declarations allow for safer 

OpenMP hybrid parallelism deployment
• handling of structures is much simpler
• handling of optional arguments is much simpler 

and safer
– test for NULL

• easier for many tools, such as Doxygen and 
debuggers

 For further details, browse
 http://code-saturne.org/viewvc/saturne/trunk

 or checkout the code
 git svn clone \

http://code-saturne.org/svn/saturne/trunk \
code_saturne

Code_Saturne user ’s meeting  |  04/2014

http://code-saturne.org/viewvc/saturne/trunk�
http://code-saturne.org/svn/saturne/trunk�


|  17

On the road to Code_Saturne 4.0

 4.0 feature freeze with branching of version 4.0 in November 2014
 branch will be known as “4.0 beta”, until it is deemed ready for “4.0 release candidate” 

status
• all test cases must run successfully to come out of beta
• snapshots will be released regularly (every 2 weeks or so)
• when 4.0.0 is released, support for beta and rc versions is discontinued

 Focus on verification and validation
 version 3.0 brought versioned test case setups and automated runs
 version 4.0 will leverage those tests, which are run frequently in the development 

process
• in general, the earlier a bug is detected, the less costly it is to fix it

– and the less time it has to annoy users

 Distributed inside EDF as part of SALOME_CFD

Code_Saturne user ’s meeting  |  04/2014



|  18

On the road to Code_Saturne 4.0

 Feature list not frozen yet, but should include
 postprocessing output improvements

• rewrite of probes and profiles output, using a consistent writer / submesh paradigm
• zone-based balance computation and extraction

 additional physical models
 additional HPC oriented features

• optional use of external linear solver packages (targeting PETSC)
• more cache and thread-friendly mesh numbering
• deployment of hybrid MPI-OpenMP builds

– already functional today, but need more systematic testing within the AutoVnV framework

 And after that ?
 Additions to code structure to prepare for new

numerical schemes may start
appearing shortly after 4.0
• will require time and effort, so start as early as possible

Code_Saturne user ’s meeting  |  04/2014



|  19

SALOME_CFD

 Code_Saturne and SYRTHES are already
well integrated with the SALOME platform
 CFD_STUDY is the main GUI entry point for

Code_Saturne and NEPTUNE_CFD
 SYRTHES also has a SALOME component

 SALOME_CFD aims to be a complete CFD platform
 at least SALOME, Code_Saturne, SYRTHES
 NEPTUNE_CFD for EDF internal builds
 other SALOME modules, such as ADAO and OpenTurns

• exact list not fixed yet; possibly also  JobManager and HOMARD

 What does this mean for Code_Saturne users ?
 version releases synchronized (since 2013)
 For EDF users

• On workstations, Code_Saturne 4 will be distributed as part of SALOME_CFD
– users will thus immediately have a more complete, preconfigured environment, rather than chasing packages

• No change for clusters

Code_Saturne user ’s meeting  |  04/2014



|  20

Organisation

 New internal EDF quality assurance manual to be released soon
 clarifies roles of core development team and contributors
 builds on identified best practices

• based on feedback of the last couple of years, versus older projects

 We realize we ask more of contributors than several years ago
 with more users and developments, integration work needs to be spread to more 

people, or better prepared by contributors.
 The old way of doing things did not scale

• at least not without proportionately increasing the development team
• or integrating unrevised code

– would lead to rapid accumulation of technical debt and skyrocketing support issues 1 to 3 years later

 To help with this, we added a 1 day developer’s course this year
 1st “test” session in 2014

• thanks to our participants for their patience for this first try

 expect 1 session per year
• we’ll be happy to help you make the best use of the code

Code_Saturne user ’s meeting  |  04/2014



THANK YOU



|  22

Reminder:
best practices to cope with version changes
 GUI vs. user subroutines

 GUI advantage: mostly automatic update 
from one version to the next

 User subroutine advantage: slightly less 
layers, so slightly lower risk of bugs
• we are progressively aligning user subroutines 

with the GUI logic so as to make these layers 
thinner, and avoid GUI translation bugs 
altogether.

 Recommended approach
 do as much as possible using the GUI, and 

only the rest using user subroutines
• for example, for a complex inlet boundary 

condition, you may define all conditions  using 
the GUI, except the complex one
– reducing the size of the code that may need 

updating
– enhancing its readability

 Validation test cases are versioned
 Updated regularly
 EDF intranet only

Code_Saturne user ’s meeting  |  04/2014


	Latest news and prospects in Code_Saturne
	Code_Saturne versioning scheme reminder
	Code_Saturne version history
	Code_Saturne version 3.0
	Code_Saturne Version 3.1 (1/4)
	Code_Saturne Version 3.1 (2/4)
	Code_Saturne Version 3.1 (3/4)
	Code_Saturne Version 3.1 (4/4)
	Code_Saturne Version 3.2 (1/6)
	Code_Saturne Version 3.2 (2/6)
	Code_Saturne Version 3.2 (3/6)
	Code_Saturne Version 3.2 (4/6)
	Code_Saturne Version 3.2 (5/6)
	Code_Saturne Version 3.2 (6/6)
	Code_Saturne Version 3.3 (1/2)
	Code_Saturne Version 3.3 (2/2)
	On the road to Code_Saturne 4.0
	On the road to Code_Saturne 4.0
	SALOME_CFD
	Organisation
	Diapositive numéro 21
	Reminder:�best practices to cope with version changes

