Modelling and simulation - what for?

- **Justifying installations**
 - Identification of **new safety margin** i.e. thermal shock on vessel
 - Evolution of regulations and rules
 - Analysis of accidental situations non reproducible by experiments
 - i.e, severe accidents, fire propagation, geological disposal

- **Understanding physics or system response**
 - **Ageing** of materials and installations i.e loads,
 - Addressing the issue of uncertainties and identifying the prominent parameters

- **Qualifying and optimizing processes**
 - NDT methods
 - **Optimizing** equipment i.e combustion, cooling systems
The need for a complete chain of skills and tools

1- Modelling: from physics to equations
 Navier-Stokes

2- Analysing and coding: from equations to algorithms and codes
 Solvers

3- Adaptation to computers architectures for HPC
 Code_Saturn, massively parallel

\[
\frac{1}{v} \frac{\partial \phi(p, \Omega, E, t)}{\partial t} = - [\vec{\Omega} \cdot \vec{V} + \Sigma(p, E)] \phi(p, \Omega, E, t) + \frac{\lambda(p, E)}{4\pi} \int dE' \nu \Sigma_f(p, E') \int d^2 \Omega' \phi(p, \Omega', E', t) + \int dE' \int d^2 \Omega' \Sigma_f(p, \Omega') \phi(p, \Omega', E', t) + Q_c(p, \Omega, E, t)
\]
The need for a complete chain of skills and tools

4- Validating and identifying:
on benchmarks and experimental campaigns, determination of physical parameters V& V requirements

5- Pre and post processing:
Meshing, visualisation, error computation and mesh adaptation
The need for a complete chain of skills and tools

6- Building of methodologies:
probabilistic approach, coupled physics,
multiscale analysis, best estimate
analysis, data assimilation (SALOME)

7- Qualifying:
determination of validity domains
of methodology in real life
applications
CFD – Code_Saturne – Main Priorities

- **Verification and Validation, Uncertainty Quantification**
 - According to Int’l and EDF rules

- **Interoperability – towards a fully packaged product**
 - Salome Platform

- **Improved physics**
 - Heat transfer

- **Anticipation**
 - Assessment of advanced CFD methods
 - Next Generation of Nuclear T/H (reactor cores, SGs, ...)

EDF
THE SALOME MODELLING ENVIRONNEMENT
The open source way for in-house developed codes and systems

Improving the codes:
- By validation, bug detection,
- Extension of validity domain or to new simulation domains

Sharing development effort
- Development induced in the community
- Open codes can be coupled with other ones in multiphysics or multi purposes platforms
- Sharing validation effort

Facilitating collaboration
- With academia (no licence, capitalisation tool, .)
- With industrial partners (interaction with others codes,

Facilitating dissemination acceptance of methods

Support to education
- For students and initial formation
- Building a community of end-users

Code_Saturne, Code_Aster, Telemac, Open-Turns, Salomé
Open Source dissemination of softwares of EDF and Partners

- Free surface Hydraulics
- Simulation
- Heat Transfer
- CFD
- Uncertainties & probabilistic methods
- Simulation Plate-form
- Thermo-Mechanics for structures

Code_Aster
TELEMAC
SUPERHES
Code_Saturne
SALOME

2001 2003 2005 2007 2010 2011
Thanks for your attention