CFD of the upper plenum and its hot legs – How to deal with unsteadiness

Hugo PERRIER, Serge Bellet, Arièle Defossez, Sofiane Benhamadouche

1 Year long Internship R&D / SEPTEN
Contents

• Industrial Context
• Overview of the Study
 – Different cases considered
 – Computational cost
• CFD Results
 – Secondary Structures
 – Temperature Heterogeneity in the Hot Leg
 – Time step dependence
• Steady-State calculations
• Perspectives of the study
Industrial Context

• Uncertainty of the Temperature Measurement:
 - Heterogeneity generates uncertainty in the measurement

• Temperature measurements are useful for several task in the plant operation:
 - Protection systems based on core Inlet/Outlet Temperature differences
 - Control rod guide tubes insertion/extraction
 - Primary Flow measurement by enthalpy balance

• Primary Volume Flow Q_P:
 $$Q_P \propto \frac{(W_{th} - W_P)}{H_{HL} - H_{CL}}$$
 - W_{th}: Power extracted by the Steam generators
 - W_P: Power furnished by the pumps
 - H_{HL}: Hot Leg Enthalpy
 - H_{CL}: Cold Leg Enthalpy
Overview of the CFD study

Temperature heterogeneities:
• Appear in the reactor core due to the power distribution
• Transported through reactor by secondary structures
• Still present at the end of the hot leg

Objectives of the study:
• Get a better understanding of the physical phenomena leading to heterogeneities
• Reduce the uncertainty on the temperature measurement in the hot leg
• Validate CFD results by comparing with experimental results
Overview - Different cases of the study

• **Elementary case**
 – Try different configurations
 – Scalability tests (mock-up scale to full-scale)

• **Mock-up scale studies**
 – Reynolds 10^6 in the hot legs
 – Comparison with experimental data
 – Validation of the CFD code

• **Reactor scale studies**
 – Reynolds 10^8 in the hot legs
 – Reactor measurements available
 – Full scale validation
Overview - Computational cost

- **Mock-up scale calculations:**
 - Y^+ up to 1500 in the hot leg for a 35M cells mesh!
 - 2 months calculations

- **Reactor Scale calculations:**
 - First results on a 30M cells mesh yields values of y^+ up to 10 000
 - Necessity to refine the mesh to reach optimal values of y^+
 - Refined mesh may exceed 200M cells

- **Hardware**
 - Blue Gene Q 65000 Processors Cluster
 - Calculations done on 8000 Processors
CFD Results
Results – Secondary Structures

Instantaneous Tangential velocity in a hot leg section

- We could show using CFD that secondary structures can prevent the good mixing of the flow
- We could also show the influence of the control rod guide tubes on the secondary structures

Average Tangential velocity in a hot leg section

Average Temperature in a hot leg section
Results - Temperature Heterogeneity in the Hot Leg

- **Unsteady Results**
 Numerically and experimentally, we observe an unsteady behavior.

- **Temperature Heterogeneity**
 We thus consider the *time average* to characterize the heterogeneity.

![Graph showing velocity at 2 different points in the hot leg](chart)

- **Evolution of the Temperature map along the hot leg**

![Images of temperature maps](images)
Results - Time step dependence

• A Time step dependence is observed

• Criteria frequently used in Code_Saturne to choose the time step value:
 \[\text{Maximum CFL} \approx 1 \]

\[\text{CFL} = v(\vec{x}, t) \frac{\Delta t}{\Delta(\vec{x})} \]

• Investigation of the representativeness of the criteria to choose the time step
Which CFL criteria have to be used?

- **Distribution of the CFL over the mesh:**
 - Maximum CFL : 2.1
 - Space Averaged CFL : 0.066
 - Ratio Max/Average : 32

- **Disadvantage of the Mean CFL:**
 - Takes into account cells with lower influence on the physics

- **Possible criteria investigated:**
 - Average CFL over a Given part of the mesh
 - Discriminate cells of lower importance using a Criteria (example slower velocities)
Steady-State – Upper plenum case

• One objective of the Steady-State calculation is to reduce calculation time.

Time gain: from several months to a few weeks

• Usage of the Code_Saturne Steady-State Algorithm: (space and time dependent time step)
The results couldn’t be made steady

• Considering the very high number of cells involved in full scale calculations, it seems necessary to have a different Algorithm
Steady-State – New Algorithm

- **Basic Idea of the Algorithm:**
 Force current solution towards a target solution by adding a term in Navier-Stokes

 \[
 \frac{df}{dt} = A(f) \quad \Rightarrow \quad \frac{df}{dt} = A(f) + X(f - f_{\text{Target}})
 \]

- **Target solution** \(f_{\text{target}} \):
 The target solution is the filtered current solution

 \[
 f_{\text{target}} = \int_{0}^{t} T(\tau - t; \Delta) f(\tau) d\tau
 \]

 Exponential filter \(T(\tau - t; \Delta) = \frac{1}{\Delta} \exp\left(\frac{\tau - t}{\Delta}\right) \)

 Differential form of the Filtered solution filter:

 \[
 \dot{f}_{\text{target}} = \frac{1}{\Delta} (f - f_{\text{target}})
 \]
Steady-State – Cylinder in a flow

• Test of a different algorithm on the elementary case “Cylinder in a laminar flow”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds Re= 100</td>
<td>Inlet : Uniform velocity</td>
</tr>
<tr>
<td>Free Outlet</td>
<td>No slipping conditions on cylinder wall</td>
</tr>
</tbody>
</table>

Velocity Vx – **Unsteady Calculation**

Velocity Vx – **Time Averaged**
Steady-State – Results

- **Steady Results:**
 - Saturne basic Steady-State Algo (IDTVAR = 2) (COUMAX = 1)
 - Saturne Steady-State (IDTVAR = -1)
 - New Algorithm

Velocity Vx

Iterations

Time Averaged Unsteady Result:
Perspectives of the study

• Reactor Scale validation on the go
 - Involves Fine Meshes!

• Very long computation time expected

• Steady Calculation could avoid months of calculation time
Thank you for your attention!

Hugo PERRIER
Internship at EDF R&D and SEPTEN
EPFL / ETHZ
Results - Turbulence Models dependence
(Tests on elementary case)

- **K-ε** - (Isotropic modelisation of Reynolds Stresses and Turbulent thermal flux)
 - Instantaneous Tangential Velocity
 - Time Averaged Tangential Velocity

- **Rij** - (Anisotropic modelisation of Reynolds Stresses, Isotropic modelisation of Turbulent thermal flux (SGDH))
 - Instantaneous Tangential Velocity
 - Time Averaged Tangential Velocity