LES of channel flow using the explicit algebraic SGS stress model with the code_Saturne

Amin Rasam, Stefan Wallin, Geert Brethouwer & Arne V. Johansson
Linné FLOW Centre, KTH, Sweden

Introduction

Subgrid-scale (SGS) motions are not always isotropic, especially at coarse resolutions and in the vicinity of the walls. The eddy viscosity model (EVM), often used in large-eddy simulation (LES), is not able to properly model the SGS stresses when the anisotropy in the SGS is significant. In Rasam et al. [1], we showed that LES predictions using the EVM and a highly accurate pseudo-spectral code are very sensitive to the grid resolution and the predictions become inaccurate at coarse resolutions where the SGS anisotropy is considerable. The explicit algebraic SGS models (EASSM) [2, 4] are mixed nonlinear models that improve the predictions of the SGS stresses and scalar fluxes. Due to the better predictions of SGS fluxes by the EASSM, their predictions are less dependent on the grid resolution and are more accurate compared to other conventional SGS models. In this study, we perform LES of channel flow using the code_Saturne and the EASSM to our previous study [1] using a pseudo-spectral code.

The explicit algebraic subgrid stress model (EASSM)

The EASSM is obtained from the modeled transport equations of the SGS stress anisotropy and is adapted from the explicit algebraic model of Wallin & Johansson [3] for RANS. The EASSM consists of three terms

\[ \tau_{ij} = K^{\text{SGS}} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \right). \]

The second term on the right-hand side is an eddy viscosity term and the third term is a nonlinear term. \( \tilde{S}_g \) and \( \tilde{D}_g \) are the normalized strain and rotation-rate tensors:

\[ \tilde{S}_g = \beta_1 \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \right), \]

\[ \tilde{D}_g = \beta_2 \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \right). \]

\( \beta_1 \) and \( \beta_2 \) are coefficients that determine the relative contribution of the eddy viscosity and the nonlinear terms and are given by:

\[ \beta_1 = \frac{33}{64} \left( \frac{\left( k / \langle \nu \rangle \right)^{1/2}}{2 \langle \nu \rangle^{1/4}} \right)^{2/3}, \]

\[ \beta_2 = \left( \frac{\left( k / \langle \nu \rangle \right)^{1/2}}{2 \langle \nu \rangle^{1/4}} \right)^{2/3}. \]

The SGS kinetic energy \( K^{\text{SGS}} \) is modeled as:

\[ K^{\text{SGS}} = \epsilon \Delta^2 \langle \tilde{S}_g \rangle, \]

where the model coefficient \( \epsilon \) is obtained using the Germano identity. The model coefficient \( c_1 \) is expressed in terms of the dynamic coefficient \( \epsilon \):

\[ c_1 = \epsilon \left( \frac{1}{\epsilon} \right)^{1/2}, \]

\[ c_1 = 6.2, \quad c_2 = 2.4, \quad C = 1.6. \]

The SGS time scale \( \tau^* \) is proportional to the inverse shear and is modeled as:

\[ \tau^* = \frac{C_0}{2 \langle \nu \rangle^{3/4}} \langle \tilde{S}_g \rangle^{1/2}, \]

\[ C_0 = 0.1. \]

Channel flow simulations at \( \text{Re}_{\text{Rey}} = 180 \)

LES of channel flow are carried out using the code_Saturne with a constant bulk Reynolds number at two typical LES resolutions, see table below, and the EASSM, the EVM and with no SGS model. The schematic of the channel is shown in the figure below. The friction Reynolds number of the corresponding DNS is \( \text{Re}_{\text{Rey}} = 180 \).

![Schematic of the channel flow simulations](image)

**Table 1. Summary of the simulations**

<table>
<thead>
<tr>
<th>Case</th>
<th>SGS model</th>
<th>( \text{Re}_{\text{Rey}} )</th>
<th>( \Delta )</th>
<th>( \text{L}_y )</th>
<th>( \text{L}_z )</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>EASSM</td>
<td>32 x 32 x 96</td>
<td>128</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>II</td>
<td>EASSM</td>
<td>48 x 48 x 147</td>
<td>240</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>III</td>
<td>EVM</td>
<td>32 x 32 x 96</td>
<td>128</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>IV</td>
<td>EVM</td>
<td>48 x 48 x 147</td>
<td>240</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>V</td>
<td>EVM</td>
<td>32 x 32 x 96</td>
<td>128</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>VI</td>
<td>EVM</td>
<td>48 x 48 x 147</td>
<td>240</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

**Fig. 2: Schematic of the channel flow simulations**

**Concluding remarks**

- LES of channel flow at \( \text{Re}_{\text{Rey}} = 180 \) were performed using the explicit algebraic SGS stress model and the results were compared to those of the dynamic eddy viscosity model, the no SGS model and the DNS data.
- The LES predictions using no SGS model shows an under-prediction of the wall shear indicating that the code has numerical dissipation.
- The LES predictions using the dynamic eddy viscosity model shows a large under-prediction of the wall shear indicating that it provides for a large SGS dissipation.
- The EASSM considerably improves the LES predictions of the mean velocity, wall shear and Reynolds stresses.

**References**


This research was funded by the Swedish Research Council through grant number 632-2010-4895. Computer time provided by the Swedish National Infrastructures for Computing (SNIC) is gratefully acknowledged.